xref: /aosp_15_r20/external/pytorch/torch/distributions/binomial.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1*da0073e9SAndroid Build Coastguard Worker# mypy: allow-untyped-defs
2*da0073e9SAndroid Build Coastguard Workerimport torch
3*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions import constraints
4*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions.distribution import Distribution
5*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions.utils import (
6*da0073e9SAndroid Build Coastguard Worker    broadcast_all,
7*da0073e9SAndroid Build Coastguard Worker    lazy_property,
8*da0073e9SAndroid Build Coastguard Worker    logits_to_probs,
9*da0073e9SAndroid Build Coastguard Worker    probs_to_logits,
10*da0073e9SAndroid Build Coastguard Worker)
11*da0073e9SAndroid Build Coastguard Worker
12*da0073e9SAndroid Build Coastguard Worker
13*da0073e9SAndroid Build Coastguard Worker__all__ = ["Binomial"]
14*da0073e9SAndroid Build Coastguard Worker
15*da0073e9SAndroid Build Coastguard Worker
16*da0073e9SAndroid Build Coastguard Workerdef _clamp_by_zero(x):
17*da0073e9SAndroid Build Coastguard Worker    # works like clamp(x, min=0) but has grad at 0 is 0.5
18*da0073e9SAndroid Build Coastguard Worker    return (x.clamp(min=0) + x - x.clamp(max=0)) / 2
19*da0073e9SAndroid Build Coastguard Worker
20*da0073e9SAndroid Build Coastguard Worker
21*da0073e9SAndroid Build Coastguard Workerclass Binomial(Distribution):
22*da0073e9SAndroid Build Coastguard Worker    r"""
23*da0073e9SAndroid Build Coastguard Worker    Creates a Binomial distribution parameterized by :attr:`total_count` and
24*da0073e9SAndroid Build Coastguard Worker    either :attr:`probs` or :attr:`logits` (but not both). :attr:`total_count` must be
25*da0073e9SAndroid Build Coastguard Worker    broadcastable with :attr:`probs`/:attr:`logits`.
26*da0073e9SAndroid Build Coastguard Worker
27*da0073e9SAndroid Build Coastguard Worker    Example::
28*da0073e9SAndroid Build Coastguard Worker
29*da0073e9SAndroid Build Coastguard Worker        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
30*da0073e9SAndroid Build Coastguard Worker        >>> m = Binomial(100, torch.tensor([0 , .2, .8, 1]))
31*da0073e9SAndroid Build Coastguard Worker        >>> x = m.sample()
32*da0073e9SAndroid Build Coastguard Worker        tensor([   0.,   22.,   71.,  100.])
33*da0073e9SAndroid Build Coastguard Worker
34*da0073e9SAndroid Build Coastguard Worker        >>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8]))
35*da0073e9SAndroid Build Coastguard Worker        >>> x = m.sample()
36*da0073e9SAndroid Build Coastguard Worker        tensor([[ 4.,  5.],
37*da0073e9SAndroid Build Coastguard Worker                [ 7.,  6.]])
38*da0073e9SAndroid Build Coastguard Worker
39*da0073e9SAndroid Build Coastguard Worker    Args:
40*da0073e9SAndroid Build Coastguard Worker        total_count (int or Tensor): number of Bernoulli trials
41*da0073e9SAndroid Build Coastguard Worker        probs (Tensor): Event probabilities
42*da0073e9SAndroid Build Coastguard Worker        logits (Tensor): Event log-odds
43*da0073e9SAndroid Build Coastguard Worker    """
44*da0073e9SAndroid Build Coastguard Worker    arg_constraints = {
45*da0073e9SAndroid Build Coastguard Worker        "total_count": constraints.nonnegative_integer,
46*da0073e9SAndroid Build Coastguard Worker        "probs": constraints.unit_interval,
47*da0073e9SAndroid Build Coastguard Worker        "logits": constraints.real,
48*da0073e9SAndroid Build Coastguard Worker    }
49*da0073e9SAndroid Build Coastguard Worker    has_enumerate_support = True
50*da0073e9SAndroid Build Coastguard Worker
51*da0073e9SAndroid Build Coastguard Worker    def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
52*da0073e9SAndroid Build Coastguard Worker        if (probs is None) == (logits is None):
53*da0073e9SAndroid Build Coastguard Worker            raise ValueError(
54*da0073e9SAndroid Build Coastguard Worker                "Either `probs` or `logits` must be specified, but not both."
55*da0073e9SAndroid Build Coastguard Worker            )
56*da0073e9SAndroid Build Coastguard Worker        if probs is not None:
57*da0073e9SAndroid Build Coastguard Worker            (
58*da0073e9SAndroid Build Coastguard Worker                self.total_count,
59*da0073e9SAndroid Build Coastguard Worker                self.probs,
60*da0073e9SAndroid Build Coastguard Worker            ) = broadcast_all(total_count, probs)
61*da0073e9SAndroid Build Coastguard Worker            self.total_count = self.total_count.type_as(self.probs)
62*da0073e9SAndroid Build Coastguard Worker        else:
63*da0073e9SAndroid Build Coastguard Worker            (
64*da0073e9SAndroid Build Coastguard Worker                self.total_count,
65*da0073e9SAndroid Build Coastguard Worker                self.logits,
66*da0073e9SAndroid Build Coastguard Worker            ) = broadcast_all(total_count, logits)
67*da0073e9SAndroid Build Coastguard Worker            self.total_count = self.total_count.type_as(self.logits)
68*da0073e9SAndroid Build Coastguard Worker
69*da0073e9SAndroid Build Coastguard Worker        self._param = self.probs if probs is not None else self.logits
70*da0073e9SAndroid Build Coastguard Worker        batch_shape = self._param.size()
71*da0073e9SAndroid Build Coastguard Worker        super().__init__(batch_shape, validate_args=validate_args)
72*da0073e9SAndroid Build Coastguard Worker
73*da0073e9SAndroid Build Coastguard Worker    def expand(self, batch_shape, _instance=None):
74*da0073e9SAndroid Build Coastguard Worker        new = self._get_checked_instance(Binomial, _instance)
75*da0073e9SAndroid Build Coastguard Worker        batch_shape = torch.Size(batch_shape)
76*da0073e9SAndroid Build Coastguard Worker        new.total_count = self.total_count.expand(batch_shape)
77*da0073e9SAndroid Build Coastguard Worker        if "probs" in self.__dict__:
78*da0073e9SAndroid Build Coastguard Worker            new.probs = self.probs.expand(batch_shape)
79*da0073e9SAndroid Build Coastguard Worker            new._param = new.probs
80*da0073e9SAndroid Build Coastguard Worker        if "logits" in self.__dict__:
81*da0073e9SAndroid Build Coastguard Worker            new.logits = self.logits.expand(batch_shape)
82*da0073e9SAndroid Build Coastguard Worker            new._param = new.logits
83*da0073e9SAndroid Build Coastguard Worker        super(Binomial, new).__init__(batch_shape, validate_args=False)
84*da0073e9SAndroid Build Coastguard Worker        new._validate_args = self._validate_args
85*da0073e9SAndroid Build Coastguard Worker        return new
86*da0073e9SAndroid Build Coastguard Worker
87*da0073e9SAndroid Build Coastguard Worker    def _new(self, *args, **kwargs):
88*da0073e9SAndroid Build Coastguard Worker        return self._param.new(*args, **kwargs)
89*da0073e9SAndroid Build Coastguard Worker
90*da0073e9SAndroid Build Coastguard Worker    @constraints.dependent_property(is_discrete=True, event_dim=0)
91*da0073e9SAndroid Build Coastguard Worker    def support(self):
92*da0073e9SAndroid Build Coastguard Worker        return constraints.integer_interval(0, self.total_count)
93*da0073e9SAndroid Build Coastguard Worker
94*da0073e9SAndroid Build Coastguard Worker    @property
95*da0073e9SAndroid Build Coastguard Worker    def mean(self):
96*da0073e9SAndroid Build Coastguard Worker        return self.total_count * self.probs
97*da0073e9SAndroid Build Coastguard Worker
98*da0073e9SAndroid Build Coastguard Worker    @property
99*da0073e9SAndroid Build Coastguard Worker    def mode(self):
100*da0073e9SAndroid Build Coastguard Worker        return ((self.total_count + 1) * self.probs).floor().clamp(max=self.total_count)
101*da0073e9SAndroid Build Coastguard Worker
102*da0073e9SAndroid Build Coastguard Worker    @property
103*da0073e9SAndroid Build Coastguard Worker    def variance(self):
104*da0073e9SAndroid Build Coastguard Worker        return self.total_count * self.probs * (1 - self.probs)
105*da0073e9SAndroid Build Coastguard Worker
106*da0073e9SAndroid Build Coastguard Worker    @lazy_property
107*da0073e9SAndroid Build Coastguard Worker    def logits(self):
108*da0073e9SAndroid Build Coastguard Worker        return probs_to_logits(self.probs, is_binary=True)
109*da0073e9SAndroid Build Coastguard Worker
110*da0073e9SAndroid Build Coastguard Worker    @lazy_property
111*da0073e9SAndroid Build Coastguard Worker    def probs(self):
112*da0073e9SAndroid Build Coastguard Worker        return logits_to_probs(self.logits, is_binary=True)
113*da0073e9SAndroid Build Coastguard Worker
114*da0073e9SAndroid Build Coastguard Worker    @property
115*da0073e9SAndroid Build Coastguard Worker    def param_shape(self):
116*da0073e9SAndroid Build Coastguard Worker        return self._param.size()
117*da0073e9SAndroid Build Coastguard Worker
118*da0073e9SAndroid Build Coastguard Worker    def sample(self, sample_shape=torch.Size()):
119*da0073e9SAndroid Build Coastguard Worker        shape = self._extended_shape(sample_shape)
120*da0073e9SAndroid Build Coastguard Worker        with torch.no_grad():
121*da0073e9SAndroid Build Coastguard Worker            return torch.binomial(
122*da0073e9SAndroid Build Coastguard Worker                self.total_count.expand(shape), self.probs.expand(shape)
123*da0073e9SAndroid Build Coastguard Worker            )
124*da0073e9SAndroid Build Coastguard Worker
125*da0073e9SAndroid Build Coastguard Worker    def log_prob(self, value):
126*da0073e9SAndroid Build Coastguard Worker        if self._validate_args:
127*da0073e9SAndroid Build Coastguard Worker            self._validate_sample(value)
128*da0073e9SAndroid Build Coastguard Worker        log_factorial_n = torch.lgamma(self.total_count + 1)
129*da0073e9SAndroid Build Coastguard Worker        log_factorial_k = torch.lgamma(value + 1)
130*da0073e9SAndroid Build Coastguard Worker        log_factorial_nmk = torch.lgamma(self.total_count - value + 1)
131*da0073e9SAndroid Build Coastguard Worker        # k * log(p) + (n - k) * log(1 - p) = k * (log(p) - log(1 - p)) + n * log(1 - p)
132*da0073e9SAndroid Build Coastguard Worker        #     (case logit < 0)              = k * logit - n * log1p(e^logit)
133*da0073e9SAndroid Build Coastguard Worker        #     (case logit > 0)              = k * logit - n * (log(p) - log(1 - p)) + n * log(p)
134*da0073e9SAndroid Build Coastguard Worker        #                                   = k * logit - n * logit - n * log1p(e^-logit)
135*da0073e9SAndroid Build Coastguard Worker        #     (merge two cases)             = k * logit - n * max(logit, 0) - n * log1p(e^-|logit|)
136*da0073e9SAndroid Build Coastguard Worker        normalize_term = (
137*da0073e9SAndroid Build Coastguard Worker            self.total_count * _clamp_by_zero(self.logits)
138*da0073e9SAndroid Build Coastguard Worker            + self.total_count * torch.log1p(torch.exp(-torch.abs(self.logits)))
139*da0073e9SAndroid Build Coastguard Worker            - log_factorial_n
140*da0073e9SAndroid Build Coastguard Worker        )
141*da0073e9SAndroid Build Coastguard Worker        return (
142*da0073e9SAndroid Build Coastguard Worker            value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term
143*da0073e9SAndroid Build Coastguard Worker        )
144*da0073e9SAndroid Build Coastguard Worker
145*da0073e9SAndroid Build Coastguard Worker    def entropy(self):
146*da0073e9SAndroid Build Coastguard Worker        total_count = int(self.total_count.max())
147*da0073e9SAndroid Build Coastguard Worker        if not self.total_count.min() == total_count:
148*da0073e9SAndroid Build Coastguard Worker            raise NotImplementedError(
149*da0073e9SAndroid Build Coastguard Worker                "Inhomogeneous total count not supported by `entropy`."
150*da0073e9SAndroid Build Coastguard Worker            )
151*da0073e9SAndroid Build Coastguard Worker
152*da0073e9SAndroid Build Coastguard Worker        log_prob = self.log_prob(self.enumerate_support(False))
153*da0073e9SAndroid Build Coastguard Worker        return -(torch.exp(log_prob) * log_prob).sum(0)
154*da0073e9SAndroid Build Coastguard Worker
155*da0073e9SAndroid Build Coastguard Worker    def enumerate_support(self, expand=True):
156*da0073e9SAndroid Build Coastguard Worker        total_count = int(self.total_count.max())
157*da0073e9SAndroid Build Coastguard Worker        if not self.total_count.min() == total_count:
158*da0073e9SAndroid Build Coastguard Worker            raise NotImplementedError(
159*da0073e9SAndroid Build Coastguard Worker                "Inhomogeneous total count not supported by `enumerate_support`."
160*da0073e9SAndroid Build Coastguard Worker            )
161*da0073e9SAndroid Build Coastguard Worker        values = torch.arange(
162*da0073e9SAndroid Build Coastguard Worker            1 + total_count, dtype=self._param.dtype, device=self._param.device
163*da0073e9SAndroid Build Coastguard Worker        )
164*da0073e9SAndroid Build Coastguard Worker        values = values.view((-1,) + (1,) * len(self._batch_shape))
165*da0073e9SAndroid Build Coastguard Worker        if expand:
166*da0073e9SAndroid Build Coastguard Worker            values = values.expand((-1,) + self._batch_shape)
167*da0073e9SAndroid Build Coastguard Worker        return values
168