xref: /aosp_15_r20/external/pytorch/torch/distributions/exponential.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1*da0073e9SAndroid Build Coastguard Worker# mypy: allow-untyped-defs
2*da0073e9SAndroid Build Coastguard Workerfrom numbers import Number
3*da0073e9SAndroid Build Coastguard Worker
4*da0073e9SAndroid Build Coastguard Workerimport torch
5*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions import constraints
6*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions.exp_family import ExponentialFamily
7*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions.utils import broadcast_all
8*da0073e9SAndroid Build Coastguard Workerfrom torch.types import _size
9*da0073e9SAndroid Build Coastguard Worker
10*da0073e9SAndroid Build Coastguard Worker
11*da0073e9SAndroid Build Coastguard Worker__all__ = ["Exponential"]
12*da0073e9SAndroid Build Coastguard Worker
13*da0073e9SAndroid Build Coastguard Worker
14*da0073e9SAndroid Build Coastguard Workerclass Exponential(ExponentialFamily):
15*da0073e9SAndroid Build Coastguard Worker    r"""
16*da0073e9SAndroid Build Coastguard Worker    Creates a Exponential distribution parameterized by :attr:`rate`.
17*da0073e9SAndroid Build Coastguard Worker
18*da0073e9SAndroid Build Coastguard Worker    Example::
19*da0073e9SAndroid Build Coastguard Worker
20*da0073e9SAndroid Build Coastguard Worker        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
21*da0073e9SAndroid Build Coastguard Worker        >>> m = Exponential(torch.tensor([1.0]))
22*da0073e9SAndroid Build Coastguard Worker        >>> m.sample()  # Exponential distributed with rate=1
23*da0073e9SAndroid Build Coastguard Worker        tensor([ 0.1046])
24*da0073e9SAndroid Build Coastguard Worker
25*da0073e9SAndroid Build Coastguard Worker    Args:
26*da0073e9SAndroid Build Coastguard Worker        rate (float or Tensor): rate = 1 / scale of the distribution
27*da0073e9SAndroid Build Coastguard Worker    """
28*da0073e9SAndroid Build Coastguard Worker    arg_constraints = {"rate": constraints.positive}
29*da0073e9SAndroid Build Coastguard Worker    support = constraints.nonnegative
30*da0073e9SAndroid Build Coastguard Worker    has_rsample = True
31*da0073e9SAndroid Build Coastguard Worker    _mean_carrier_measure = 0
32*da0073e9SAndroid Build Coastguard Worker
33*da0073e9SAndroid Build Coastguard Worker    @property
34*da0073e9SAndroid Build Coastguard Worker    def mean(self):
35*da0073e9SAndroid Build Coastguard Worker        return self.rate.reciprocal()
36*da0073e9SAndroid Build Coastguard Worker
37*da0073e9SAndroid Build Coastguard Worker    @property
38*da0073e9SAndroid Build Coastguard Worker    def mode(self):
39*da0073e9SAndroid Build Coastguard Worker        return torch.zeros_like(self.rate)
40*da0073e9SAndroid Build Coastguard Worker
41*da0073e9SAndroid Build Coastguard Worker    @property
42*da0073e9SAndroid Build Coastguard Worker    def stddev(self):
43*da0073e9SAndroid Build Coastguard Worker        return self.rate.reciprocal()
44*da0073e9SAndroid Build Coastguard Worker
45*da0073e9SAndroid Build Coastguard Worker    @property
46*da0073e9SAndroid Build Coastguard Worker    def variance(self):
47*da0073e9SAndroid Build Coastguard Worker        return self.rate.pow(-2)
48*da0073e9SAndroid Build Coastguard Worker
49*da0073e9SAndroid Build Coastguard Worker    def __init__(self, rate, validate_args=None):
50*da0073e9SAndroid Build Coastguard Worker        (self.rate,) = broadcast_all(rate)
51*da0073e9SAndroid Build Coastguard Worker        batch_shape = torch.Size() if isinstance(rate, Number) else self.rate.size()
52*da0073e9SAndroid Build Coastguard Worker        super().__init__(batch_shape, validate_args=validate_args)
53*da0073e9SAndroid Build Coastguard Worker
54*da0073e9SAndroid Build Coastguard Worker    def expand(self, batch_shape, _instance=None):
55*da0073e9SAndroid Build Coastguard Worker        new = self._get_checked_instance(Exponential, _instance)
56*da0073e9SAndroid Build Coastguard Worker        batch_shape = torch.Size(batch_shape)
57*da0073e9SAndroid Build Coastguard Worker        new.rate = self.rate.expand(batch_shape)
58*da0073e9SAndroid Build Coastguard Worker        super(Exponential, new).__init__(batch_shape, validate_args=False)
59*da0073e9SAndroid Build Coastguard Worker        new._validate_args = self._validate_args
60*da0073e9SAndroid Build Coastguard Worker        return new
61*da0073e9SAndroid Build Coastguard Worker
62*da0073e9SAndroid Build Coastguard Worker    def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor:
63*da0073e9SAndroid Build Coastguard Worker        shape = self._extended_shape(sample_shape)
64*da0073e9SAndroid Build Coastguard Worker        return self.rate.new(shape).exponential_() / self.rate
65*da0073e9SAndroid Build Coastguard Worker
66*da0073e9SAndroid Build Coastguard Worker    def log_prob(self, value):
67*da0073e9SAndroid Build Coastguard Worker        if self._validate_args:
68*da0073e9SAndroid Build Coastguard Worker            self._validate_sample(value)
69*da0073e9SAndroid Build Coastguard Worker        return self.rate.log() - self.rate * value
70*da0073e9SAndroid Build Coastguard Worker
71*da0073e9SAndroid Build Coastguard Worker    def cdf(self, value):
72*da0073e9SAndroid Build Coastguard Worker        if self._validate_args:
73*da0073e9SAndroid Build Coastguard Worker            self._validate_sample(value)
74*da0073e9SAndroid Build Coastguard Worker        return 1 - torch.exp(-self.rate * value)
75*da0073e9SAndroid Build Coastguard Worker
76*da0073e9SAndroid Build Coastguard Worker    def icdf(self, value):
77*da0073e9SAndroid Build Coastguard Worker        return -torch.log1p(-value) / self.rate
78*da0073e9SAndroid Build Coastguard Worker
79*da0073e9SAndroid Build Coastguard Worker    def entropy(self):
80*da0073e9SAndroid Build Coastguard Worker        return 1.0 - torch.log(self.rate)
81*da0073e9SAndroid Build Coastguard Worker
82*da0073e9SAndroid Build Coastguard Worker    @property
83*da0073e9SAndroid Build Coastguard Worker    def _natural_params(self):
84*da0073e9SAndroid Build Coastguard Worker        return (-self.rate,)
85*da0073e9SAndroid Build Coastguard Worker
86*da0073e9SAndroid Build Coastguard Worker    def _log_normalizer(self, x):
87*da0073e9SAndroid Build Coastguard Worker        return -torch.log(-x)
88