1*da0073e9SAndroid Build Coastguard Worker# mypy: allow-untyped-decorators 2*da0073e9SAndroid Build Coastguard Worker# mypy: allow-untyped-defs 3*da0073e9SAndroid Build Coastguard Workerr"""Implementation for the Resilient backpropagation.""" 4*da0073e9SAndroid Build Coastguard Workerfrom typing import cast, List, Optional, Tuple, Union 5*da0073e9SAndroid Build Coastguard Worker 6*da0073e9SAndroid Build Coastguard Workerimport torch 7*da0073e9SAndroid Build Coastguard Workerfrom torch import Tensor 8*da0073e9SAndroid Build Coastguard Worker 9*da0073e9SAndroid Build Coastguard Workerfrom .optimizer import ( 10*da0073e9SAndroid Build Coastguard Worker _capturable_doc, 11*da0073e9SAndroid Build Coastguard Worker _default_to_fused_or_foreach, 12*da0073e9SAndroid Build Coastguard Worker _differentiable_doc, 13*da0073e9SAndroid Build Coastguard Worker _disable_dynamo_if_unsupported, 14*da0073e9SAndroid Build Coastguard Worker _foreach_doc, 15*da0073e9SAndroid Build Coastguard Worker _get_capturable_supported_devices, 16*da0073e9SAndroid Build Coastguard Worker _get_scalar_dtype, 17*da0073e9SAndroid Build Coastguard Worker _maximize_doc, 18*da0073e9SAndroid Build Coastguard Worker _use_grad_for_differentiable, 19*da0073e9SAndroid Build Coastguard Worker _view_as_real, 20*da0073e9SAndroid Build Coastguard Worker Optimizer, 21*da0073e9SAndroid Build Coastguard Worker ParamsT, 22*da0073e9SAndroid Build Coastguard Worker) 23*da0073e9SAndroid Build Coastguard Worker 24*da0073e9SAndroid Build Coastguard Worker 25*da0073e9SAndroid Build Coastguard Worker__all__ = ["Rprop", "rprop"] 26*da0073e9SAndroid Build Coastguard Worker 27*da0073e9SAndroid Build Coastguard Worker 28*da0073e9SAndroid Build Coastguard Workerclass Rprop(Optimizer): # noqa: D101 29*da0073e9SAndroid Build Coastguard Worker def __init__( 30*da0073e9SAndroid Build Coastguard Worker self, 31*da0073e9SAndroid Build Coastguard Worker params: ParamsT, 32*da0073e9SAndroid Build Coastguard Worker lr: Union[float, Tensor] = 1e-2, 33*da0073e9SAndroid Build Coastguard Worker etas: Tuple[float, float] = (0.5, 1.2), 34*da0073e9SAndroid Build Coastguard Worker step_sizes: Tuple[float, float] = (1e-6, 50), 35*da0073e9SAndroid Build Coastguard Worker *, 36*da0073e9SAndroid Build Coastguard Worker capturable: bool = False, 37*da0073e9SAndroid Build Coastguard Worker foreach: Optional[bool] = None, 38*da0073e9SAndroid Build Coastguard Worker maximize: bool = False, 39*da0073e9SAndroid Build Coastguard Worker differentiable: bool = False, 40*da0073e9SAndroid Build Coastguard Worker ): # noqa: D107 41*da0073e9SAndroid Build Coastguard Worker if isinstance(lr, Tensor) and lr.numel() != 1: 42*da0073e9SAndroid Build Coastguard Worker raise ValueError("Tensor lr must be 1-element") 43*da0073e9SAndroid Build Coastguard Worker if not 0.0 <= lr: 44*da0073e9SAndroid Build Coastguard Worker raise ValueError(f"Invalid learning rate: {lr}") 45*da0073e9SAndroid Build Coastguard Worker if not 0.0 < etas[0] < 1.0 < etas[1]: 46*da0073e9SAndroid Build Coastguard Worker raise ValueError(f"Invalid eta values: {etas[0]}, {etas[1]}") 47*da0073e9SAndroid Build Coastguard Worker 48*da0073e9SAndroid Build Coastguard Worker defaults = dict( 49*da0073e9SAndroid Build Coastguard Worker lr=lr, 50*da0073e9SAndroid Build Coastguard Worker etas=etas, 51*da0073e9SAndroid Build Coastguard Worker step_sizes=step_sizes, 52*da0073e9SAndroid Build Coastguard Worker foreach=foreach, 53*da0073e9SAndroid Build Coastguard Worker maximize=maximize, 54*da0073e9SAndroid Build Coastguard Worker differentiable=differentiable, 55*da0073e9SAndroid Build Coastguard Worker capturable=capturable, 56*da0073e9SAndroid Build Coastguard Worker ) 57*da0073e9SAndroid Build Coastguard Worker super().__init__(params, defaults) 58*da0073e9SAndroid Build Coastguard Worker 59*da0073e9SAndroid Build Coastguard Worker def __setstate__(self, state): # noqa: D105 60*da0073e9SAndroid Build Coastguard Worker super().__setstate__(state) 61*da0073e9SAndroid Build Coastguard Worker for group in self.param_groups: 62*da0073e9SAndroid Build Coastguard Worker group.setdefault("foreach", None) 63*da0073e9SAndroid Build Coastguard Worker group.setdefault("maximize", False) 64*da0073e9SAndroid Build Coastguard Worker group.setdefault("differentiable", False) 65*da0073e9SAndroid Build Coastguard Worker group.setdefault("capturable", False) 66*da0073e9SAndroid Build Coastguard Worker for p in group["params"]: 67*da0073e9SAndroid Build Coastguard Worker p_state = self.state.get(p, []) 68*da0073e9SAndroid Build Coastguard Worker if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): 69*da0073e9SAndroid Build Coastguard Worker step_val = float(p_state["step"]) 70*da0073e9SAndroid Build Coastguard Worker p_state["step"] = ( 71*da0073e9SAndroid Build Coastguard Worker torch.tensor( 72*da0073e9SAndroid Build Coastguard Worker step_val, dtype=_get_scalar_dtype(), device=p.device 73*da0073e9SAndroid Build Coastguard Worker ) 74*da0073e9SAndroid Build Coastguard Worker if group["capturable"] 75*da0073e9SAndroid Build Coastguard Worker else torch.tensor(step_val, dtype=_get_scalar_dtype()) 76*da0073e9SAndroid Build Coastguard Worker ) 77*da0073e9SAndroid Build Coastguard Worker 78*da0073e9SAndroid Build Coastguard Worker def _init_group(self, group, params, grads, prevs, step_sizes, state_steps): 79*da0073e9SAndroid Build Coastguard Worker has_complex = False 80*da0073e9SAndroid Build Coastguard Worker for p in group["params"]: 81*da0073e9SAndroid Build Coastguard Worker if p.grad is None: 82*da0073e9SAndroid Build Coastguard Worker continue 83*da0073e9SAndroid Build Coastguard Worker has_complex |= torch.is_complex(p) 84*da0073e9SAndroid Build Coastguard Worker params.append(p) 85*da0073e9SAndroid Build Coastguard Worker grad = p.grad 86*da0073e9SAndroid Build Coastguard Worker if grad.is_sparse: 87*da0073e9SAndroid Build Coastguard Worker raise RuntimeError("Rprop does not support sparse gradients") 88*da0073e9SAndroid Build Coastguard Worker 89*da0073e9SAndroid Build Coastguard Worker grads.append(grad) 90*da0073e9SAndroid Build Coastguard Worker state = self.state[p] 91*da0073e9SAndroid Build Coastguard Worker 92*da0073e9SAndroid Build Coastguard Worker # State initialization 93*da0073e9SAndroid Build Coastguard Worker if len(state) == 0: 94*da0073e9SAndroid Build Coastguard Worker state["step"] = ( 95*da0073e9SAndroid Build Coastguard Worker torch.zeros((), dtype=_get_scalar_dtype(), device=p.device) 96*da0073e9SAndroid Build Coastguard Worker if group["capturable"] 97*da0073e9SAndroid Build Coastguard Worker else torch.zeros((), dtype=_get_scalar_dtype()) 98*da0073e9SAndroid Build Coastguard Worker ) 99*da0073e9SAndroid Build Coastguard Worker 100*da0073e9SAndroid Build Coastguard Worker state["prev"] = torch.zeros_like(p, memory_format=torch.preserve_format) 101*da0073e9SAndroid Build Coastguard Worker if p.dtype.is_complex: 102*da0073e9SAndroid Build Coastguard Worker # Complex Number should be as if they are two independent real numbers. 103*da0073e9SAndroid Build Coastguard Worker # Hence the step_size shouldn't be zero for imaginary part. 104*da0073e9SAndroid Build Coastguard Worker state["step_size"] = torch.full_like( 105*da0073e9SAndroid Build Coastguard Worker grad, complex(group["lr"], group["lr"]) 106*da0073e9SAndroid Build Coastguard Worker ) 107*da0073e9SAndroid Build Coastguard Worker else: 108*da0073e9SAndroid Build Coastguard Worker state["step_size"] = torch.full_like(grad, group["lr"]) 109*da0073e9SAndroid Build Coastguard Worker 110*da0073e9SAndroid Build Coastguard Worker prevs.append(state["prev"]) 111*da0073e9SAndroid Build Coastguard Worker step_sizes.append(state["step_size"]) 112*da0073e9SAndroid Build Coastguard Worker state_steps.append(state["step"]) 113*da0073e9SAndroid Build Coastguard Worker 114*da0073e9SAndroid Build Coastguard Worker return has_complex 115*da0073e9SAndroid Build Coastguard Worker 116*da0073e9SAndroid Build Coastguard Worker @_use_grad_for_differentiable 117*da0073e9SAndroid Build Coastguard Worker def step(self, closure=None): 118*da0073e9SAndroid Build Coastguard Worker """Perform a single optimization step. 119*da0073e9SAndroid Build Coastguard Worker 120*da0073e9SAndroid Build Coastguard Worker Args: 121*da0073e9SAndroid Build Coastguard Worker closure (Callable, optional): A closure that reevaluates the model 122*da0073e9SAndroid Build Coastguard Worker and returns the loss. 123*da0073e9SAndroid Build Coastguard Worker """ 124*da0073e9SAndroid Build Coastguard Worker self._cuda_graph_capture_health_check() 125*da0073e9SAndroid Build Coastguard Worker 126*da0073e9SAndroid Build Coastguard Worker loss = None 127*da0073e9SAndroid Build Coastguard Worker if closure is not None: 128*da0073e9SAndroid Build Coastguard Worker with torch.enable_grad(): 129*da0073e9SAndroid Build Coastguard Worker loss = closure() 130*da0073e9SAndroid Build Coastguard Worker 131*da0073e9SAndroid Build Coastguard Worker for group in self.param_groups: 132*da0073e9SAndroid Build Coastguard Worker params: List[Tensor] = [] 133*da0073e9SAndroid Build Coastguard Worker grads: List[Tensor] = [] 134*da0073e9SAndroid Build Coastguard Worker prevs: List[Tensor] = [] 135*da0073e9SAndroid Build Coastguard Worker step_sizes: List[Tensor] = [] 136*da0073e9SAndroid Build Coastguard Worker state_steps: List[Tensor] = [] 137*da0073e9SAndroid Build Coastguard Worker 138*da0073e9SAndroid Build Coastguard Worker etaminus, etaplus = group["etas"] 139*da0073e9SAndroid Build Coastguard Worker step_size_min, step_size_max = group["step_sizes"] 140*da0073e9SAndroid Build Coastguard Worker foreach = group["foreach"] 141*da0073e9SAndroid Build Coastguard Worker maximize = group["maximize"] 142*da0073e9SAndroid Build Coastguard Worker 143*da0073e9SAndroid Build Coastguard Worker has_complex = self._init_group( 144*da0073e9SAndroid Build Coastguard Worker group, params, grads, prevs, step_sizes, state_steps 145*da0073e9SAndroid Build Coastguard Worker ) 146*da0073e9SAndroid Build Coastguard Worker 147*da0073e9SAndroid Build Coastguard Worker rprop( 148*da0073e9SAndroid Build Coastguard Worker params, 149*da0073e9SAndroid Build Coastguard Worker grads, 150*da0073e9SAndroid Build Coastguard Worker prevs, 151*da0073e9SAndroid Build Coastguard Worker step_sizes, 152*da0073e9SAndroid Build Coastguard Worker state_steps, 153*da0073e9SAndroid Build Coastguard Worker step_size_min=step_size_min, 154*da0073e9SAndroid Build Coastguard Worker step_size_max=step_size_max, 155*da0073e9SAndroid Build Coastguard Worker etaminus=etaminus, 156*da0073e9SAndroid Build Coastguard Worker etaplus=etaplus, 157*da0073e9SAndroid Build Coastguard Worker foreach=foreach, 158*da0073e9SAndroid Build Coastguard Worker maximize=maximize, 159*da0073e9SAndroid Build Coastguard Worker differentiable=group["differentiable"], 160*da0073e9SAndroid Build Coastguard Worker capturable=group["capturable"], 161*da0073e9SAndroid Build Coastguard Worker has_complex=has_complex, 162*da0073e9SAndroid Build Coastguard Worker ) 163*da0073e9SAndroid Build Coastguard Worker 164*da0073e9SAndroid Build Coastguard Worker return loss 165*da0073e9SAndroid Build Coastguard Worker 166*da0073e9SAndroid Build Coastguard Worker 167*da0073e9SAndroid Build Coastguard WorkerRprop.__doc__ = ( 168*da0073e9SAndroid Build Coastguard Worker r"""Implements the resilient backpropagation algorithm. 169*da0073e9SAndroid Build Coastguard Worker 170*da0073e9SAndroid Build Coastguard Worker .. math:: 171*da0073e9SAndroid Build Coastguard Worker \begin{aligned} 172*da0073e9SAndroid Build Coastguard Worker &\rule{110mm}{0.4pt} \\ 173*da0073e9SAndroid Build Coastguard Worker &\textbf{input} : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta) 174*da0073e9SAndroid Build Coastguard Worker \text{ (objective)}, \\ 175*da0073e9SAndroid Build Coastguard Worker &\hspace{13mm} \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min} 176*da0073e9SAndroid Build Coastguard Worker \text{ (step sizes)} \\ 177*da0073e9SAndroid Build Coastguard Worker &\textbf{initialize} : g^0_{prev} \leftarrow 0, 178*da0073e9SAndroid Build Coastguard Worker \: \eta_0 \leftarrow \text{lr (learning rate)} \\ 179*da0073e9SAndroid Build Coastguard Worker &\rule{110mm}{0.4pt} \\ 180*da0073e9SAndroid Build Coastguard Worker &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ 181*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ 182*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm} \textbf{for} \text{ } i = 0, 1, \ldots, d-1 \: \mathbf{do} \\ 183*da0073e9SAndroid Build Coastguard Worker &\hspace{10mm} \textbf{if} \: g^i_{prev} g^i_t > 0 \\ 184*da0073e9SAndroid Build Coastguard Worker &\hspace{15mm} \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+}, 185*da0073e9SAndroid Build Coastguard Worker \Gamma_{max}) \\ 186*da0073e9SAndroid Build Coastguard Worker &\hspace{10mm} \textbf{else if} \: g^i_{prev} g^i_t < 0 \\ 187*da0073e9SAndroid Build Coastguard Worker &\hspace{15mm} \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-}, 188*da0073e9SAndroid Build Coastguard Worker \Gamma_{min}) \\ 189*da0073e9SAndroid Build Coastguard Worker &\hspace{15mm} g^i_t \leftarrow 0 \\ 190*da0073e9SAndroid Build Coastguard Worker &\hspace{10mm} \textbf{else} \: \\ 191*da0073e9SAndroid Build Coastguard Worker &\hspace{15mm} \eta^i_t \leftarrow \eta^i_{t-1} \\ 192*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t) \\ 193*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm}g_{prev} \leftarrow g_t \\ 194*da0073e9SAndroid Build Coastguard Worker &\rule{110mm}{0.4pt} \\[-1.ex] 195*da0073e9SAndroid Build Coastguard Worker &\bf{return} \: \theta_t \\[-1.ex] 196*da0073e9SAndroid Build Coastguard Worker &\rule{110mm}{0.4pt} \\[-1.ex] 197*da0073e9SAndroid Build Coastguard Worker \end{aligned} 198*da0073e9SAndroid Build Coastguard Worker 199*da0073e9SAndroid Build Coastguard Worker For further details regarding the algorithm we refer to the paper 200*da0073e9SAndroid Build Coastguard Worker `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm 201*da0073e9SAndroid Build Coastguard Worker <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_. 202*da0073e9SAndroid Build Coastguard Worker """ 203*da0073e9SAndroid Build Coastguard Worker + rf""" 204*da0073e9SAndroid Build Coastguard Worker Args: 205*da0073e9SAndroid Build Coastguard Worker params (iterable): iterable of parameters to optimize or dicts defining 206*da0073e9SAndroid Build Coastguard Worker parameter groups 207*da0073e9SAndroid Build Coastguard Worker lr (float, optional): learning rate (default: 1e-2) 208*da0073e9SAndroid Build Coastguard Worker etas (Tuple[float, float], optional): pair of (etaminus, etaplus), that 209*da0073e9SAndroid Build Coastguard Worker are multiplicative increase and decrease factors 210*da0073e9SAndroid Build Coastguard Worker (default: (0.5, 1.2)) 211*da0073e9SAndroid Build Coastguard Worker step_sizes (Tuple[float, float], optional): a pair of minimal and 212*da0073e9SAndroid Build Coastguard Worker maximal allowed step sizes (default: (1e-6, 50)) 213*da0073e9SAndroid Build Coastguard Worker {_foreach_doc} 214*da0073e9SAndroid Build Coastguard Worker {_capturable_doc} 215*da0073e9SAndroid Build Coastguard Worker {_maximize_doc} 216*da0073e9SAndroid Build Coastguard Worker {_differentiable_doc} 217*da0073e9SAndroid Build Coastguard Worker 218*da0073e9SAndroid Build Coastguard Worker """ 219*da0073e9SAndroid Build Coastguard Worker) 220*da0073e9SAndroid Build Coastguard Worker 221*da0073e9SAndroid Build Coastguard Worker 222*da0073e9SAndroid Build Coastguard Workerdef _single_tensor_rprop( 223*da0073e9SAndroid Build Coastguard Worker params: List[Tensor], 224*da0073e9SAndroid Build Coastguard Worker grads: List[Tensor], 225*da0073e9SAndroid Build Coastguard Worker prevs: List[Tensor], 226*da0073e9SAndroid Build Coastguard Worker step_sizes: List[Tensor], 227*da0073e9SAndroid Build Coastguard Worker state_steps: List[Tensor], 228*da0073e9SAndroid Build Coastguard Worker *, 229*da0073e9SAndroid Build Coastguard Worker step_size_min: float, 230*da0073e9SAndroid Build Coastguard Worker step_size_max: float, 231*da0073e9SAndroid Build Coastguard Worker etaminus: float, 232*da0073e9SAndroid Build Coastguard Worker etaplus: float, 233*da0073e9SAndroid Build Coastguard Worker maximize: bool, 234*da0073e9SAndroid Build Coastguard Worker capturable: bool, 235*da0073e9SAndroid Build Coastguard Worker differentiable: bool, 236*da0073e9SAndroid Build Coastguard Worker has_complex: bool, 237*da0073e9SAndroid Build Coastguard Worker): 238*da0073e9SAndroid Build Coastguard Worker for i, param in enumerate(params): 239*da0073e9SAndroid Build Coastguard Worker grad = grads[i] 240*da0073e9SAndroid Build Coastguard Worker grad = grad if not maximize else -grad 241*da0073e9SAndroid Build Coastguard Worker prev = prevs[i] 242*da0073e9SAndroid Build Coastguard Worker step_size = step_sizes[i] 243*da0073e9SAndroid Build Coastguard Worker step = state_steps[i] 244*da0073e9SAndroid Build Coastguard Worker 245*da0073e9SAndroid Build Coastguard Worker # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] 246*da0073e9SAndroid Build Coastguard Worker if not torch._utils.is_compiling() and capturable: 247*da0073e9SAndroid Build Coastguard Worker capturable_supported_devices = _get_capturable_supported_devices() 248*da0073e9SAndroid Build Coastguard Worker assert ( 249*da0073e9SAndroid Build Coastguard Worker param.device.type == step.device.type 250*da0073e9SAndroid Build Coastguard Worker and param.device.type in capturable_supported_devices 251*da0073e9SAndroid Build Coastguard Worker ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." 252*da0073e9SAndroid Build Coastguard Worker 253*da0073e9SAndroid Build Coastguard Worker step += 1 254*da0073e9SAndroid Build Coastguard Worker 255*da0073e9SAndroid Build Coastguard Worker if torch.is_complex(param): 256*da0073e9SAndroid Build Coastguard Worker grad = torch.view_as_real(grad) 257*da0073e9SAndroid Build Coastguard Worker prev = torch.view_as_real(prev) 258*da0073e9SAndroid Build Coastguard Worker param = torch.view_as_real(param) 259*da0073e9SAndroid Build Coastguard Worker step_size = torch.view_as_real(step_size) 260*da0073e9SAndroid Build Coastguard Worker if differentiable: 261*da0073e9SAndroid Build Coastguard Worker sign = grad.mul(prev.clone()).sign() 262*da0073e9SAndroid Build Coastguard Worker else: 263*da0073e9SAndroid Build Coastguard Worker sign = grad.mul(prev).sign() 264*da0073e9SAndroid Build Coastguard Worker 265*da0073e9SAndroid Build Coastguard Worker if capturable: 266*da0073e9SAndroid Build Coastguard Worker sign.copy_(torch.where(sign.gt(0), etaplus, sign)) 267*da0073e9SAndroid Build Coastguard Worker sign.copy_(torch.where(sign.lt(0), etaminus, sign)) 268*da0073e9SAndroid Build Coastguard Worker sign.copy_(torch.where(sign.eq(0), 1, sign)) 269*da0073e9SAndroid Build Coastguard Worker else: 270*da0073e9SAndroid Build Coastguard Worker sign[sign.gt(0)] = etaplus 271*da0073e9SAndroid Build Coastguard Worker sign[sign.lt(0)] = etaminus 272*da0073e9SAndroid Build Coastguard Worker sign[sign.eq(0)] = 1 273*da0073e9SAndroid Build Coastguard Worker 274*da0073e9SAndroid Build Coastguard Worker # update stepsizes with step size updates 275*da0073e9SAndroid Build Coastguard Worker step_size.mul_(sign).clamp_(step_size_min, step_size_max) 276*da0073e9SAndroid Build Coastguard Worker 277*da0073e9SAndroid Build Coastguard Worker # for dir<0, dfdx=0 278*da0073e9SAndroid Build Coastguard Worker # for dir>=0 dfdx=dfdx 279*da0073e9SAndroid Build Coastguard Worker grad = grad.clone(memory_format=torch.preserve_format) 280*da0073e9SAndroid Build Coastguard Worker if capturable: 281*da0073e9SAndroid Build Coastguard Worker grad.copy_(torch.where(sign.eq(etaminus), 0, grad)) 282*da0073e9SAndroid Build Coastguard Worker else: 283*da0073e9SAndroid Build Coastguard Worker grad[sign.eq(etaminus)] = 0 284*da0073e9SAndroid Build Coastguard Worker 285*da0073e9SAndroid Build Coastguard Worker # update parameters 286*da0073e9SAndroid Build Coastguard Worker param.addcmul_(grad.sign(), step_size, value=-1) 287*da0073e9SAndroid Build Coastguard Worker prev.copy_(grad) 288*da0073e9SAndroid Build Coastguard Worker 289*da0073e9SAndroid Build Coastguard Worker 290*da0073e9SAndroid Build Coastguard Workerdef _multi_tensor_rprop( 291*da0073e9SAndroid Build Coastguard Worker params: List[Tensor], 292*da0073e9SAndroid Build Coastguard Worker grads: List[Tensor], 293*da0073e9SAndroid Build Coastguard Worker prevs: List[Tensor], 294*da0073e9SAndroid Build Coastguard Worker step_sizes: List[Tensor], 295*da0073e9SAndroid Build Coastguard Worker state_steps: List[Tensor], 296*da0073e9SAndroid Build Coastguard Worker *, 297*da0073e9SAndroid Build Coastguard Worker step_size_min: float, 298*da0073e9SAndroid Build Coastguard Worker step_size_max: float, 299*da0073e9SAndroid Build Coastguard Worker etaminus: float, 300*da0073e9SAndroid Build Coastguard Worker etaplus: float, 301*da0073e9SAndroid Build Coastguard Worker maximize: bool, 302*da0073e9SAndroid Build Coastguard Worker capturable: bool, 303*da0073e9SAndroid Build Coastguard Worker differentiable: bool, 304*da0073e9SAndroid Build Coastguard Worker has_complex: bool, 305*da0073e9SAndroid Build Coastguard Worker): 306*da0073e9SAndroid Build Coastguard Worker if len(params) == 0: 307*da0073e9SAndroid Build Coastguard Worker return 308*da0073e9SAndroid Build Coastguard Worker 309*da0073e9SAndroid Build Coastguard Worker assert not differentiable, "_foreach ops don't support autograd" 310*da0073e9SAndroid Build Coastguard Worker 311*da0073e9SAndroid Build Coastguard Worker # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] 312*da0073e9SAndroid Build Coastguard Worker if not torch._utils.is_compiling() and capturable: 313*da0073e9SAndroid Build Coastguard Worker capturable_supported_devices = _get_capturable_supported_devices() 314*da0073e9SAndroid Build Coastguard Worker assert all( 315*da0073e9SAndroid Build Coastguard Worker p.device.type == step.device.type 316*da0073e9SAndroid Build Coastguard Worker and p.device.type in capturable_supported_devices 317*da0073e9SAndroid Build Coastguard Worker for p, step in zip(params, state_steps) 318*da0073e9SAndroid Build Coastguard Worker ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." 319*da0073e9SAndroid Build Coastguard Worker 320*da0073e9SAndroid Build Coastguard Worker grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( 321*da0073e9SAndroid Build Coastguard Worker [params, grads, prevs, step_sizes, state_steps] # type: ignore[list-item] 322*da0073e9SAndroid Build Coastguard Worker ) 323*da0073e9SAndroid Build Coastguard Worker for ( 324*da0073e9SAndroid Build Coastguard Worker grouped_params_, 325*da0073e9SAndroid Build Coastguard Worker grouped_grads_, 326*da0073e9SAndroid Build Coastguard Worker grouped_prevs_, 327*da0073e9SAndroid Build Coastguard Worker grouped_step_sizes_, 328*da0073e9SAndroid Build Coastguard Worker grouped_state_steps_, 329*da0073e9SAndroid Build Coastguard Worker ), _ in grouped_tensors.values(): 330*da0073e9SAndroid Build Coastguard Worker grouped_params = cast(List[Tensor], grouped_params_) 331*da0073e9SAndroid Build Coastguard Worker grouped_grads = cast(List[Tensor], grouped_grads_) 332*da0073e9SAndroid Build Coastguard Worker grouped_prevs = cast(List[Tensor], grouped_prevs_) 333*da0073e9SAndroid Build Coastguard Worker grouped_step_sizes = cast(List[Tensor], grouped_step_sizes_) 334*da0073e9SAndroid Build Coastguard Worker grouped_state_steps = cast(List[Tensor], grouped_state_steps_) 335*da0073e9SAndroid Build Coastguard Worker 336*da0073e9SAndroid Build Coastguard Worker # Update steps 337*da0073e9SAndroid Build Coastguard Worker # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over 338*da0073e9SAndroid Build Coastguard Worker # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just 339*da0073e9SAndroid Build Coastguard Worker # wrapped it once now. The alpha is required to assure we go to the right overload. 340*da0073e9SAndroid Build Coastguard Worker if not torch._utils.is_compiling() and grouped_state_steps[0].is_cpu: 341*da0073e9SAndroid Build Coastguard Worker torch._foreach_add_( 342*da0073e9SAndroid Build Coastguard Worker grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 343*da0073e9SAndroid Build Coastguard Worker ) 344*da0073e9SAndroid Build Coastguard Worker else: 345*da0073e9SAndroid Build Coastguard Worker torch._foreach_add_(grouped_state_steps, 1) 346*da0073e9SAndroid Build Coastguard Worker 347*da0073e9SAndroid Build Coastguard Worker # Handle complex params 348*da0073e9SAndroid Build Coastguard Worker if has_complex: 349*da0073e9SAndroid Build Coastguard Worker _view_as_real( 350*da0073e9SAndroid Build Coastguard Worker grouped_params, grouped_grads, grouped_prevs, grouped_step_sizes 351*da0073e9SAndroid Build Coastguard Worker ) 352*da0073e9SAndroid Build Coastguard Worker 353*da0073e9SAndroid Build Coastguard Worker signs = torch._foreach_mul(grouped_grads, grouped_prevs) 354*da0073e9SAndroid Build Coastguard Worker if maximize: 355*da0073e9SAndroid Build Coastguard Worker torch._foreach_neg_(signs) 356*da0073e9SAndroid Build Coastguard Worker 357*da0073e9SAndroid Build Coastguard Worker # At the end of the step, grouped_prevs will contain the current grads, so we reuse 358*da0073e9SAndroid Build Coastguard Worker # grouped_prevs memory instead of creating a new buffer, but, for clarity, we reassign 359*da0073e9SAndroid Build Coastguard Worker # to keep referring to the buffer as grouped_grads. 360*da0073e9SAndroid Build Coastguard Worker torch._foreach_copy_(grouped_prevs, grouped_grads) 361*da0073e9SAndroid Build Coastguard Worker if maximize: 362*da0073e9SAndroid Build Coastguard Worker torch._foreach_neg_(grouped_prevs) 363*da0073e9SAndroid Build Coastguard Worker grouped_grads = grouped_prevs 364*da0073e9SAndroid Build Coastguard Worker 365*da0073e9SAndroid Build Coastguard Worker torch._foreach_sign_(signs) 366*da0073e9SAndroid Build Coastguard Worker if capturable: 367*da0073e9SAndroid Build Coastguard Worker for sign in signs: 368*da0073e9SAndroid Build Coastguard Worker sign.copy_(torch.where(sign.gt(0), etaplus, sign)) 369*da0073e9SAndroid Build Coastguard Worker sign.copy_(torch.where(sign.lt(0), etaminus, sign)) 370*da0073e9SAndroid Build Coastguard Worker sign.copy_(torch.where(sign.eq(0), 1, sign)) 371*da0073e9SAndroid Build Coastguard Worker else: 372*da0073e9SAndroid Build Coastguard Worker for sign in signs: 373*da0073e9SAndroid Build Coastguard Worker sign[sign.gt(0)] = etaplus 374*da0073e9SAndroid Build Coastguard Worker sign[sign.lt(0)] = etaminus 375*da0073e9SAndroid Build Coastguard Worker sign[sign.eq(0)] = 1 376*da0073e9SAndroid Build Coastguard Worker 377*da0073e9SAndroid Build Coastguard Worker # update stepsizes with step size updates 378*da0073e9SAndroid Build Coastguard Worker torch._foreach_mul_(grouped_step_sizes, signs) 379*da0073e9SAndroid Build Coastguard Worker for step_size in grouped_step_sizes: 380*da0073e9SAndroid Build Coastguard Worker step_size.clamp_(step_size_min, step_size_max) 381*da0073e9SAndroid Build Coastguard Worker 382*da0073e9SAndroid Build Coastguard Worker # for dir<0, dfdx=0 383*da0073e9SAndroid Build Coastguard Worker # for dir>=0 dfdx=dfdx 384*da0073e9SAndroid Build Coastguard Worker grouped_grads = list(grouped_grads) 385*da0073e9SAndroid Build Coastguard Worker for i in range(len(grouped_grads)): 386*da0073e9SAndroid Build Coastguard Worker grouped_grads[i].copy_( 387*da0073e9SAndroid Build Coastguard Worker torch.where(signs[i].eq(etaminus), 0, grouped_grads[i]) 388*da0073e9SAndroid Build Coastguard Worker ) 389*da0073e9SAndroid Build Coastguard Worker 390*da0073e9SAndroid Build Coastguard Worker # explicitly del signs as it's not used after here to save memory 391*da0073e9SAndroid Build Coastguard Worker del signs 392*da0073e9SAndroid Build Coastguard Worker 393*da0073e9SAndroid Build Coastguard Worker # update parameters 394*da0073e9SAndroid Build Coastguard Worker grad_signs = [grad.sign() for grad in grouped_grads] 395*da0073e9SAndroid Build Coastguard Worker torch._foreach_addcmul_( 396*da0073e9SAndroid Build Coastguard Worker grouped_params, grad_signs, grouped_step_sizes, value=-1 397*da0073e9SAndroid Build Coastguard Worker ) 398*da0073e9SAndroid Build Coastguard Worker 399*da0073e9SAndroid Build Coastguard Worker # Logically, you may expect grouped_prevs to get updated to grouped_grads, but that's 400*da0073e9SAndroid Build Coastguard Worker # basically already happened since we've been using grouped_prevs' memory to store 401*da0073e9SAndroid Build Coastguard Worker # updated grouped_grads! 402*da0073e9SAndroid Build Coastguard Worker 403*da0073e9SAndroid Build Coastguard Worker 404*da0073e9SAndroid Build Coastguard Worker@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_rprop) 405*da0073e9SAndroid Build Coastguard Workerdef rprop( 406*da0073e9SAndroid Build Coastguard Worker params: List[Tensor], 407*da0073e9SAndroid Build Coastguard Worker grads: List[Tensor], 408*da0073e9SAndroid Build Coastguard Worker prevs: List[Tensor], 409*da0073e9SAndroid Build Coastguard Worker step_sizes: List[Tensor], 410*da0073e9SAndroid Build Coastguard Worker state_steps: List[Tensor], 411*da0073e9SAndroid Build Coastguard Worker # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 412*da0073e9SAndroid Build Coastguard Worker # setting this as kwarg for now as functional API is compiled by torch/distributed/optim 413*da0073e9SAndroid Build Coastguard Worker foreach: Optional[bool] = None, 414*da0073e9SAndroid Build Coastguard Worker capturable: bool = False, 415*da0073e9SAndroid Build Coastguard Worker maximize: bool = False, 416*da0073e9SAndroid Build Coastguard Worker differentiable: bool = False, 417*da0073e9SAndroid Build Coastguard Worker has_complex: bool = False, 418*da0073e9SAndroid Build Coastguard Worker *, 419*da0073e9SAndroid Build Coastguard Worker step_size_min: float, 420*da0073e9SAndroid Build Coastguard Worker step_size_max: float, 421*da0073e9SAndroid Build Coastguard Worker etaminus: float, 422*da0073e9SAndroid Build Coastguard Worker etaplus: float, 423*da0073e9SAndroid Build Coastguard Worker): 424*da0073e9SAndroid Build Coastguard Worker r"""Functional API that performs rprop algorithm computation. 425*da0073e9SAndroid Build Coastguard Worker 426*da0073e9SAndroid Build Coastguard Worker See :class:`~torch.optim.Rprop` for details. 427*da0073e9SAndroid Build Coastguard Worker """ 428*da0073e9SAndroid Build Coastguard Worker # this check is slow during compilation, so we skip it 429*da0073e9SAndroid Build Coastguard Worker # if it's strictly needed we can add this check back in dynamo 430*da0073e9SAndroid Build Coastguard Worker if not torch._utils.is_compiling() and not all( 431*da0073e9SAndroid Build Coastguard Worker isinstance(t, torch.Tensor) for t in state_steps 432*da0073e9SAndroid Build Coastguard Worker ): 433*da0073e9SAndroid Build Coastguard Worker raise RuntimeError( 434*da0073e9SAndroid Build Coastguard Worker "API has changed, `state_steps` argument must contain a list of singleton tensors" 435*da0073e9SAndroid Build Coastguard Worker ) 436*da0073e9SAndroid Build Coastguard Worker 437*da0073e9SAndroid Build Coastguard Worker if foreach is None: 438*da0073e9SAndroid Build Coastguard Worker _, foreach = _default_to_fused_or_foreach( 439*da0073e9SAndroid Build Coastguard Worker params, differentiable, use_fused=False 440*da0073e9SAndroid Build Coastguard Worker ) 441*da0073e9SAndroid Build Coastguard Worker 442*da0073e9SAndroid Build Coastguard Worker if foreach and torch.jit.is_scripting(): 443*da0073e9SAndroid Build Coastguard Worker raise RuntimeError("torch.jit.script not supported with foreach optimizers") 444*da0073e9SAndroid Build Coastguard Worker 445*da0073e9SAndroid Build Coastguard Worker if foreach and not torch.jit.is_scripting(): 446*da0073e9SAndroid Build Coastguard Worker func = _multi_tensor_rprop 447*da0073e9SAndroid Build Coastguard Worker else: 448*da0073e9SAndroid Build Coastguard Worker func = _single_tensor_rprop 449*da0073e9SAndroid Build Coastguard Worker 450*da0073e9SAndroid Build Coastguard Worker func( 451*da0073e9SAndroid Build Coastguard Worker params, 452*da0073e9SAndroid Build Coastguard Worker grads, 453*da0073e9SAndroid Build Coastguard Worker prevs, 454*da0073e9SAndroid Build Coastguard Worker step_sizes, 455*da0073e9SAndroid Build Coastguard Worker state_steps, 456*da0073e9SAndroid Build Coastguard Worker step_size_min=step_size_min, 457*da0073e9SAndroid Build Coastguard Worker step_size_max=step_size_max, 458*da0073e9SAndroid Build Coastguard Worker etaminus=etaminus, 459*da0073e9SAndroid Build Coastguard Worker etaplus=etaplus, 460*da0073e9SAndroid Build Coastguard Worker capturable=capturable, 461*da0073e9SAndroid Build Coastguard Worker maximize=maximize, 462*da0073e9SAndroid Build Coastguard Worker differentiable=differentiable, 463*da0073e9SAndroid Build Coastguard Worker has_complex=has_complex, 464*da0073e9SAndroid Build Coastguard Worker ) 465