xref: /aosp_15_r20/external/rnnoise/training/dump_rnn.py (revision 1295d6828459cc82c3c29cc5d7d297215250a74b)
1*1295d682SXin Li#!/usr/bin/python
2*1295d682SXin Li
3*1295d682SXin Lifrom __future__ import print_function
4*1295d682SXin Li
5*1295d682SXin Lifrom keras.models import Sequential
6*1295d682SXin Lifrom keras.layers import Dense
7*1295d682SXin Lifrom keras.layers import LSTM
8*1295d682SXin Lifrom keras.layers import GRU
9*1295d682SXin Lifrom keras.models import load_model
10*1295d682SXin Lifrom keras import backend as K
11*1295d682SXin Liimport sys
12*1295d682SXin Liimport re
13*1295d682SXin Liimport numpy as np
14*1295d682SXin Li
15*1295d682SXin Lidef printVector(f, ft, vector, name):
16*1295d682SXin Li    v = np.reshape(vector, (-1));
17*1295d682SXin Li    #print('static const float ', name, '[', len(v), '] = \n', file=f)
18*1295d682SXin Li    f.write('static const rnn_weight {}[{}] = {{\n   '.format(name, len(v)))
19*1295d682SXin Li    for i in range(0, len(v)):
20*1295d682SXin Li        f.write('{}'.format(min(127, int(round(256*v[i])))))
21*1295d682SXin Li        ft.write('{}'.format(min(127, int(round(256*v[i])))))
22*1295d682SXin Li        if (i!=len(v)-1):
23*1295d682SXin Li            f.write(',')
24*1295d682SXin Li        else:
25*1295d682SXin Li            break;
26*1295d682SXin Li        ft.write(" ")
27*1295d682SXin Li        if (i%8==7):
28*1295d682SXin Li            f.write("\n   ")
29*1295d682SXin Li        else:
30*1295d682SXin Li            f.write(" ")
31*1295d682SXin Li    #print(v, file=f)
32*1295d682SXin Li    f.write('\n};\n\n')
33*1295d682SXin Li    ft.write("\n")
34*1295d682SXin Li    return;
35*1295d682SXin Li
36*1295d682SXin Lidef printLayer(f, ft, layer):
37*1295d682SXin Li    weights = layer.get_weights()
38*1295d682SXin Li    activation = re.search('function (.*) at', str(layer.activation)).group(1).upper()
39*1295d682SXin Li    if len(weights) > 2:
40*1295d682SXin Li        ft.write('{} {} '.format(weights[0].shape[0], weights[0].shape[1]/3))
41*1295d682SXin Li    else:
42*1295d682SXin Li        ft.write('{} {} '.format(weights[0].shape[0], weights[0].shape[1]))
43*1295d682SXin Li    if activation == 'SIGMOID':
44*1295d682SXin Li        ft.write('1\n')
45*1295d682SXin Li    elif activation == 'RELU':
46*1295d682SXin Li        ft.write('2\n')
47*1295d682SXin Li    else:
48*1295d682SXin Li        ft.write('0\n')
49*1295d682SXin Li    printVector(f, ft, weights[0], layer.name + '_weights')
50*1295d682SXin Li    if len(weights) > 2:
51*1295d682SXin Li        printVector(f, ft, weights[1], layer.name + '_recurrent_weights')
52*1295d682SXin Li    printVector(f, ft, weights[-1], layer.name + '_bias')
53*1295d682SXin Li    name = layer.name
54*1295d682SXin Li    if len(weights) > 2:
55*1295d682SXin Li        f.write('static const GRULayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}_recurrent_weights,\n   {}, {}, ACTIVATION_{}\n}};\n\n'
56*1295d682SXin Li                .format(name, name, name, name, weights[0].shape[0], weights[0].shape[1]/3, activation))
57*1295d682SXin Li    else:
58*1295d682SXin Li        f.write('static const DenseLayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}, {}, ACTIVATION_{}\n}};\n\n'
59*1295d682SXin Li                .format(name, name, name, weights[0].shape[0], weights[0].shape[1], activation))
60*1295d682SXin Li
61*1295d682SXin Lidef structLayer(f, layer):
62*1295d682SXin Li    weights = layer.get_weights()
63*1295d682SXin Li    name = layer.name
64*1295d682SXin Li    if len(weights) > 2:
65*1295d682SXin Li        f.write('    {},\n'.format(weights[0].shape[1]/3))
66*1295d682SXin Li    else:
67*1295d682SXin Li        f.write('    {},\n'.format(weights[0].shape[1]))
68*1295d682SXin Li    f.write('    &{},\n'.format(name))
69*1295d682SXin Li
70*1295d682SXin Li
71*1295d682SXin Lidef foo(c, name):
72*1295d682SXin Li    return None
73*1295d682SXin Li
74*1295d682SXin Lidef mean_squared_sqrt_error(y_true, y_pred):
75*1295d682SXin Li    return K.mean(K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1)
76*1295d682SXin Li
77*1295d682SXin Li
78*1295d682SXin Limodel = load_model(sys.argv[1], custom_objects={'msse': mean_squared_sqrt_error, 'mean_squared_sqrt_error': mean_squared_sqrt_error, 'my_crossentropy': mean_squared_sqrt_error, 'mycost': mean_squared_sqrt_error, 'WeightClip': foo})
79*1295d682SXin Li
80*1295d682SXin Liweights = model.get_weights()
81*1295d682SXin Li
82*1295d682SXin Lif = open(sys.argv[2], 'w')
83*1295d682SXin Lift = open(sys.argv[3], 'w')
84*1295d682SXin Li
85*1295d682SXin Lif.write('/*This file is automatically generated from a Keras model*/\n\n')
86*1295d682SXin Lif.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "rnn.h"\n#include "rnn_data.h"\n\n')
87*1295d682SXin Lift.write('rnnoise-nu model file version 1\n')
88*1295d682SXin Li
89*1295d682SXin Lilayer_list = []
90*1295d682SXin Lifor i, layer in enumerate(model.layers):
91*1295d682SXin Li    if len(layer.get_weights()) > 0:
92*1295d682SXin Li        printLayer(f, ft, layer)
93*1295d682SXin Li    if len(layer.get_weights()) > 2:
94*1295d682SXin Li        layer_list.append(layer.name)
95*1295d682SXin Li
96*1295d682SXin Lif.write('const struct RNNModel rnnoise_model_{} = {{\n'.format(sys.argv[4]))
97*1295d682SXin Lifor i, layer in enumerate(model.layers):
98*1295d682SXin Li    if len(layer.get_weights()) > 0:
99*1295d682SXin Li        structLayer(f, layer)
100*1295d682SXin Lif.write('};\n')
101*1295d682SXin Li
102*1295d682SXin Li#hf.write('struct RNNState {\n')
103*1295d682SXin Li#for i, name in enumerate(layer_list):
104*1295d682SXin Li#    hf.write('  float {}_state[{}_SIZE];\n'.format(name, name.upper()))
105*1295d682SXin Li#hf.write('};\n')
106*1295d682SXin Li
107*1295d682SXin Lif.close()
108