1*c8dee2aaSAndroid Build Coastguard Worker /*
2*c8dee2aaSAndroid Build Coastguard Worker * Copyright 2012 Google Inc.
3*c8dee2aaSAndroid Build Coastguard Worker *
4*c8dee2aaSAndroid Build Coastguard Worker * Use of this source code is governed by a BSD-style license that can be
5*c8dee2aaSAndroid Build Coastguard Worker * found in the LICENSE file.
6*c8dee2aaSAndroid Build Coastguard Worker */
7*c8dee2aaSAndroid Build Coastguard Worker #include "include/core/SkPath.h"
8*c8dee2aaSAndroid Build Coastguard Worker #include "include/core/SkPoint.h"
9*c8dee2aaSAndroid Build Coastguard Worker #include "include/core/SkScalar.h"
10*c8dee2aaSAndroid Build Coastguard Worker #include "src/pathops/SkIntersections.h"
11*c8dee2aaSAndroid Build Coastguard Worker #include "src/pathops/SkPathOpsCurve.h"
12*c8dee2aaSAndroid Build Coastguard Worker #include "src/pathops/SkPathOpsDebug.h"
13*c8dee2aaSAndroid Build Coastguard Worker #include "src/pathops/SkPathOpsLine.h"
14*c8dee2aaSAndroid Build Coastguard Worker #include "src/pathops/SkPathOpsPoint.h"
15*c8dee2aaSAndroid Build Coastguard Worker #include "src/pathops/SkPathOpsQuad.h"
16*c8dee2aaSAndroid Build Coastguard Worker #include "src/pathops/SkPathOpsTypes.h"
17*c8dee2aaSAndroid Build Coastguard Worker
18*c8dee2aaSAndroid Build Coastguard Worker #include <cmath>
19*c8dee2aaSAndroid Build Coastguard Worker
20*c8dee2aaSAndroid Build Coastguard Worker /*
21*c8dee2aaSAndroid Build Coastguard Worker Find the intersection of a line and quadratic by solving for valid t values.
22*c8dee2aaSAndroid Build Coastguard Worker
23*c8dee2aaSAndroid Build Coastguard Worker From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
24*c8dee2aaSAndroid Build Coastguard Worker
25*c8dee2aaSAndroid Build Coastguard Worker "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
26*c8dee2aaSAndroid Build Coastguard Worker control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
27*c8dee2aaSAndroid Build Coastguard Worker A, B and C are points and t goes from zero to one.
28*c8dee2aaSAndroid Build Coastguard Worker
29*c8dee2aaSAndroid Build Coastguard Worker This will give you two equations:
30*c8dee2aaSAndroid Build Coastguard Worker
31*c8dee2aaSAndroid Build Coastguard Worker x = a(1 - t)^2 + b(1 - t)t + ct^2
32*c8dee2aaSAndroid Build Coastguard Worker y = d(1 - t)^2 + e(1 - t)t + ft^2
33*c8dee2aaSAndroid Build Coastguard Worker
34*c8dee2aaSAndroid Build Coastguard Worker If you add for instance the line equation (y = kx + m) to that, you'll end up
35*c8dee2aaSAndroid Build Coastguard Worker with three equations and three unknowns (x, y and t)."
36*c8dee2aaSAndroid Build Coastguard Worker
37*c8dee2aaSAndroid Build Coastguard Worker Similar to above, the quadratic is represented as
38*c8dee2aaSAndroid Build Coastguard Worker x = a(1-t)^2 + 2b(1-t)t + ct^2
39*c8dee2aaSAndroid Build Coastguard Worker y = d(1-t)^2 + 2e(1-t)t + ft^2
40*c8dee2aaSAndroid Build Coastguard Worker and the line as
41*c8dee2aaSAndroid Build Coastguard Worker y = g*x + h
42*c8dee2aaSAndroid Build Coastguard Worker
43*c8dee2aaSAndroid Build Coastguard Worker Using Mathematica, solve for the values of t where the quadratic intersects the
44*c8dee2aaSAndroid Build Coastguard Worker line:
45*c8dee2aaSAndroid Build Coastguard Worker
46*c8dee2aaSAndroid Build Coastguard Worker (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
47*c8dee2aaSAndroid Build Coastguard Worker d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x]
48*c8dee2aaSAndroid Build Coastguard Worker (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
49*c8dee2aaSAndroid Build Coastguard Worker g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
50*c8dee2aaSAndroid Build Coastguard Worker (in) Solve[t1 == 0, t]
51*c8dee2aaSAndroid Build Coastguard Worker (out) {
52*c8dee2aaSAndroid Build Coastguard Worker {t -> (-2 d + 2 e + 2 a g - 2 b g -
53*c8dee2aaSAndroid Build Coastguard Worker Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
54*c8dee2aaSAndroid Build Coastguard Worker 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
55*c8dee2aaSAndroid Build Coastguard Worker (2 (-d + 2 e - f + a g - 2 b g + c g))
56*c8dee2aaSAndroid Build Coastguard Worker },
57*c8dee2aaSAndroid Build Coastguard Worker {t -> (-2 d + 2 e + 2 a g - 2 b g +
58*c8dee2aaSAndroid Build Coastguard Worker Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
59*c8dee2aaSAndroid Build Coastguard Worker 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
60*c8dee2aaSAndroid Build Coastguard Worker (2 (-d + 2 e - f + a g - 2 b g + c g))
61*c8dee2aaSAndroid Build Coastguard Worker }
62*c8dee2aaSAndroid Build Coastguard Worker }
63*c8dee2aaSAndroid Build Coastguard Worker
64*c8dee2aaSAndroid Build Coastguard Worker Using the results above (when the line tends towards horizontal)
65*c8dee2aaSAndroid Build Coastguard Worker A = (-(d - 2*e + f) + g*(a - 2*b + c) )
66*c8dee2aaSAndroid Build Coastguard Worker B = 2*( (d - e ) - g*(a - b ) )
67*c8dee2aaSAndroid Build Coastguard Worker C = (-(d ) + g*(a ) + h )
68*c8dee2aaSAndroid Build Coastguard Worker
69*c8dee2aaSAndroid Build Coastguard Worker If g goes to infinity, we can rewrite the line in terms of x.
70*c8dee2aaSAndroid Build Coastguard Worker x = g'*y + h'
71*c8dee2aaSAndroid Build Coastguard Worker
72*c8dee2aaSAndroid Build Coastguard Worker And solve accordingly in Mathematica:
73*c8dee2aaSAndroid Build Coastguard Worker
74*c8dee2aaSAndroid Build Coastguard Worker (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
75*c8dee2aaSAndroid Build Coastguard Worker d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y]
76*c8dee2aaSAndroid Build Coastguard Worker (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
77*c8dee2aaSAndroid Build Coastguard Worker g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
78*c8dee2aaSAndroid Build Coastguard Worker (in) Solve[t2 == 0, t]
79*c8dee2aaSAndroid Build Coastguard Worker (out) {
80*c8dee2aaSAndroid Build Coastguard Worker {t -> (2 a - 2 b - 2 d g' + 2 e g' -
81*c8dee2aaSAndroid Build Coastguard Worker Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
82*c8dee2aaSAndroid Build Coastguard Worker 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
83*c8dee2aaSAndroid Build Coastguard Worker (2 (a - 2 b + c - d g' + 2 e g' - f g'))
84*c8dee2aaSAndroid Build Coastguard Worker },
85*c8dee2aaSAndroid Build Coastguard Worker {t -> (2 a - 2 b - 2 d g' + 2 e g' +
86*c8dee2aaSAndroid Build Coastguard Worker Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
87*c8dee2aaSAndroid Build Coastguard Worker 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
88*c8dee2aaSAndroid Build Coastguard Worker (2 (a - 2 b + c - d g' + 2 e g' - f g'))
89*c8dee2aaSAndroid Build Coastguard Worker }
90*c8dee2aaSAndroid Build Coastguard Worker }
91*c8dee2aaSAndroid Build Coastguard Worker
92*c8dee2aaSAndroid Build Coastguard Worker Thus, if the slope of the line tends towards vertical, we use:
93*c8dee2aaSAndroid Build Coastguard Worker A = ( (a - 2*b + c) - g'*(d - 2*e + f) )
94*c8dee2aaSAndroid Build Coastguard Worker B = 2*(-(a - b ) + g'*(d - e ) )
95*c8dee2aaSAndroid Build Coastguard Worker C = ( (a ) - g'*(d ) - h' )
96*c8dee2aaSAndroid Build Coastguard Worker */
97*c8dee2aaSAndroid Build Coastguard Worker
98*c8dee2aaSAndroid Build Coastguard Worker class LineQuadraticIntersections {
99*c8dee2aaSAndroid Build Coastguard Worker public:
100*c8dee2aaSAndroid Build Coastguard Worker enum PinTPoint {
101*c8dee2aaSAndroid Build Coastguard Worker kPointUninitialized,
102*c8dee2aaSAndroid Build Coastguard Worker kPointInitialized
103*c8dee2aaSAndroid Build Coastguard Worker };
104*c8dee2aaSAndroid Build Coastguard Worker
LineQuadraticIntersections(const SkDQuad & q,const SkDLine & l,SkIntersections * i)105*c8dee2aaSAndroid Build Coastguard Worker LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i)
106*c8dee2aaSAndroid Build Coastguard Worker : fQuad(q)
107*c8dee2aaSAndroid Build Coastguard Worker , fLine(&l)
108*c8dee2aaSAndroid Build Coastguard Worker , fIntersections(i)
109*c8dee2aaSAndroid Build Coastguard Worker , fAllowNear(true) {
110*c8dee2aaSAndroid Build Coastguard Worker i->setMax(5); // allow short partial coincidence plus discrete intersections
111*c8dee2aaSAndroid Build Coastguard Worker }
112*c8dee2aaSAndroid Build Coastguard Worker
LineQuadraticIntersections(const SkDQuad & q)113*c8dee2aaSAndroid Build Coastguard Worker LineQuadraticIntersections(const SkDQuad& q)
114*c8dee2aaSAndroid Build Coastguard Worker : fQuad(q)
115*c8dee2aaSAndroid Build Coastguard Worker SkDEBUGPARAMS(fLine(nullptr))
116*c8dee2aaSAndroid Build Coastguard Worker SkDEBUGPARAMS(fIntersections(nullptr))
117*c8dee2aaSAndroid Build Coastguard Worker SkDEBUGPARAMS(fAllowNear(false)) {
118*c8dee2aaSAndroid Build Coastguard Worker }
119*c8dee2aaSAndroid Build Coastguard Worker
allowNear(bool allow)120*c8dee2aaSAndroid Build Coastguard Worker void allowNear(bool allow) {
121*c8dee2aaSAndroid Build Coastguard Worker fAllowNear = allow;
122*c8dee2aaSAndroid Build Coastguard Worker }
123*c8dee2aaSAndroid Build Coastguard Worker
checkCoincident()124*c8dee2aaSAndroid Build Coastguard Worker void checkCoincident() {
125*c8dee2aaSAndroid Build Coastguard Worker int last = fIntersections->used() - 1;
126*c8dee2aaSAndroid Build Coastguard Worker for (int index = 0; index < last; ) {
127*c8dee2aaSAndroid Build Coastguard Worker double quadMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2;
128*c8dee2aaSAndroid Build Coastguard Worker SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
129*c8dee2aaSAndroid Build Coastguard Worker double t = fLine->nearPoint(quadMidPt, nullptr);
130*c8dee2aaSAndroid Build Coastguard Worker if (t < 0) {
131*c8dee2aaSAndroid Build Coastguard Worker ++index;
132*c8dee2aaSAndroid Build Coastguard Worker continue;
133*c8dee2aaSAndroid Build Coastguard Worker }
134*c8dee2aaSAndroid Build Coastguard Worker if (fIntersections->isCoincident(index)) {
135*c8dee2aaSAndroid Build Coastguard Worker fIntersections->removeOne(index);
136*c8dee2aaSAndroid Build Coastguard Worker --last;
137*c8dee2aaSAndroid Build Coastguard Worker } else if (fIntersections->isCoincident(index + 1)) {
138*c8dee2aaSAndroid Build Coastguard Worker fIntersections->removeOne(index + 1);
139*c8dee2aaSAndroid Build Coastguard Worker --last;
140*c8dee2aaSAndroid Build Coastguard Worker } else {
141*c8dee2aaSAndroid Build Coastguard Worker fIntersections->setCoincident(index++);
142*c8dee2aaSAndroid Build Coastguard Worker }
143*c8dee2aaSAndroid Build Coastguard Worker fIntersections->setCoincident(index);
144*c8dee2aaSAndroid Build Coastguard Worker }
145*c8dee2aaSAndroid Build Coastguard Worker }
146*c8dee2aaSAndroid Build Coastguard Worker
intersectRay(double roots[2])147*c8dee2aaSAndroid Build Coastguard Worker int intersectRay(double roots[2]) {
148*c8dee2aaSAndroid Build Coastguard Worker /*
149*c8dee2aaSAndroid Build Coastguard Worker solve by rotating line+quad so line is horizontal, then finding the roots
150*c8dee2aaSAndroid Build Coastguard Worker set up matrix to rotate quad to x-axis
151*c8dee2aaSAndroid Build Coastguard Worker |cos(a) -sin(a)|
152*c8dee2aaSAndroid Build Coastguard Worker |sin(a) cos(a)|
153*c8dee2aaSAndroid Build Coastguard Worker note that cos(a) = A(djacent) / Hypoteneuse
154*c8dee2aaSAndroid Build Coastguard Worker sin(a) = O(pposite) / Hypoteneuse
155*c8dee2aaSAndroid Build Coastguard Worker since we are computing Ts, we can ignore hypoteneuse, the scale factor:
156*c8dee2aaSAndroid Build Coastguard Worker | A -O |
157*c8dee2aaSAndroid Build Coastguard Worker | O A |
158*c8dee2aaSAndroid Build Coastguard Worker A = line[1].fX - line[0].fX (adjacent side of the right triangle)
159*c8dee2aaSAndroid Build Coastguard Worker O = line[1].fY - line[0].fY (opposite side of the right triangle)
160*c8dee2aaSAndroid Build Coastguard Worker for each of the three points (e.g. n = 0 to 2)
161*c8dee2aaSAndroid Build Coastguard Worker quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O
162*c8dee2aaSAndroid Build Coastguard Worker */
163*c8dee2aaSAndroid Build Coastguard Worker double adj = (*fLine)[1].fX - (*fLine)[0].fX;
164*c8dee2aaSAndroid Build Coastguard Worker double opp = (*fLine)[1].fY - (*fLine)[0].fY;
165*c8dee2aaSAndroid Build Coastguard Worker double r[3];
166*c8dee2aaSAndroid Build Coastguard Worker for (int n = 0; n < 3; ++n) {
167*c8dee2aaSAndroid Build Coastguard Worker r[n] = (fQuad[n].fY - (*fLine)[0].fY) * adj - (fQuad[n].fX - (*fLine)[0].fX) * opp;
168*c8dee2aaSAndroid Build Coastguard Worker }
169*c8dee2aaSAndroid Build Coastguard Worker double A = r[2];
170*c8dee2aaSAndroid Build Coastguard Worker double B = r[1];
171*c8dee2aaSAndroid Build Coastguard Worker double C = r[0];
172*c8dee2aaSAndroid Build Coastguard Worker A += C - 2 * B; // A = a - 2*b + c
173*c8dee2aaSAndroid Build Coastguard Worker B -= C; // B = -(b - c)
174*c8dee2aaSAndroid Build Coastguard Worker return SkDQuad::RootsValidT(A, 2 * B, C, roots);
175*c8dee2aaSAndroid Build Coastguard Worker }
176*c8dee2aaSAndroid Build Coastguard Worker
intersect()177*c8dee2aaSAndroid Build Coastguard Worker int intersect() {
178*c8dee2aaSAndroid Build Coastguard Worker addExactEndPoints();
179*c8dee2aaSAndroid Build Coastguard Worker if (fAllowNear) {
180*c8dee2aaSAndroid Build Coastguard Worker addNearEndPoints();
181*c8dee2aaSAndroid Build Coastguard Worker }
182*c8dee2aaSAndroid Build Coastguard Worker double rootVals[2];
183*c8dee2aaSAndroid Build Coastguard Worker int roots = intersectRay(rootVals);
184*c8dee2aaSAndroid Build Coastguard Worker for (int index = 0; index < roots; ++index) {
185*c8dee2aaSAndroid Build Coastguard Worker double quadT = rootVals[index];
186*c8dee2aaSAndroid Build Coastguard Worker double lineT = findLineT(quadT);
187*c8dee2aaSAndroid Build Coastguard Worker SkDPoint pt;
188*c8dee2aaSAndroid Build Coastguard Worker if (pinTs(&quadT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(quadT, pt)) {
189*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, pt);
190*c8dee2aaSAndroid Build Coastguard Worker }
191*c8dee2aaSAndroid Build Coastguard Worker }
192*c8dee2aaSAndroid Build Coastguard Worker checkCoincident();
193*c8dee2aaSAndroid Build Coastguard Worker return fIntersections->used();
194*c8dee2aaSAndroid Build Coastguard Worker }
195*c8dee2aaSAndroid Build Coastguard Worker
horizontalIntersect(double axisIntercept,double roots[2])196*c8dee2aaSAndroid Build Coastguard Worker int horizontalIntersect(double axisIntercept, double roots[2]) {
197*c8dee2aaSAndroid Build Coastguard Worker double D = fQuad[2].fY; // f
198*c8dee2aaSAndroid Build Coastguard Worker double E = fQuad[1].fY; // e
199*c8dee2aaSAndroid Build Coastguard Worker double F = fQuad[0].fY; // d
200*c8dee2aaSAndroid Build Coastguard Worker D += F - 2 * E; // D = d - 2*e + f
201*c8dee2aaSAndroid Build Coastguard Worker E -= F; // E = -(d - e)
202*c8dee2aaSAndroid Build Coastguard Worker F -= axisIntercept;
203*c8dee2aaSAndroid Build Coastguard Worker return SkDQuad::RootsValidT(D, 2 * E, F, roots);
204*c8dee2aaSAndroid Build Coastguard Worker }
205*c8dee2aaSAndroid Build Coastguard Worker
horizontalIntersect(double axisIntercept,double left,double right,bool flipped)206*c8dee2aaSAndroid Build Coastguard Worker int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
207*c8dee2aaSAndroid Build Coastguard Worker addExactHorizontalEndPoints(left, right, axisIntercept);
208*c8dee2aaSAndroid Build Coastguard Worker if (fAllowNear) {
209*c8dee2aaSAndroid Build Coastguard Worker addNearHorizontalEndPoints(left, right, axisIntercept);
210*c8dee2aaSAndroid Build Coastguard Worker }
211*c8dee2aaSAndroid Build Coastguard Worker double rootVals[2];
212*c8dee2aaSAndroid Build Coastguard Worker int roots = horizontalIntersect(axisIntercept, rootVals);
213*c8dee2aaSAndroid Build Coastguard Worker for (int index = 0; index < roots; ++index) {
214*c8dee2aaSAndroid Build Coastguard Worker double quadT = rootVals[index];
215*c8dee2aaSAndroid Build Coastguard Worker SkDPoint pt = fQuad.ptAtT(quadT);
216*c8dee2aaSAndroid Build Coastguard Worker double lineT = (pt.fX - left) / (right - left);
217*c8dee2aaSAndroid Build Coastguard Worker if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
218*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, pt);
219*c8dee2aaSAndroid Build Coastguard Worker }
220*c8dee2aaSAndroid Build Coastguard Worker }
221*c8dee2aaSAndroid Build Coastguard Worker if (flipped) {
222*c8dee2aaSAndroid Build Coastguard Worker fIntersections->flip();
223*c8dee2aaSAndroid Build Coastguard Worker }
224*c8dee2aaSAndroid Build Coastguard Worker checkCoincident();
225*c8dee2aaSAndroid Build Coastguard Worker return fIntersections->used();
226*c8dee2aaSAndroid Build Coastguard Worker }
227*c8dee2aaSAndroid Build Coastguard Worker
uniqueAnswer(double quadT,const SkDPoint & pt)228*c8dee2aaSAndroid Build Coastguard Worker bool uniqueAnswer(double quadT, const SkDPoint& pt) {
229*c8dee2aaSAndroid Build Coastguard Worker for (int inner = 0; inner < fIntersections->used(); ++inner) {
230*c8dee2aaSAndroid Build Coastguard Worker if (fIntersections->pt(inner) != pt) {
231*c8dee2aaSAndroid Build Coastguard Worker continue;
232*c8dee2aaSAndroid Build Coastguard Worker }
233*c8dee2aaSAndroid Build Coastguard Worker double existingQuadT = (*fIntersections)[0][inner];
234*c8dee2aaSAndroid Build Coastguard Worker if (quadT == existingQuadT) {
235*c8dee2aaSAndroid Build Coastguard Worker return false;
236*c8dee2aaSAndroid Build Coastguard Worker }
237*c8dee2aaSAndroid Build Coastguard Worker // check if midway on quad is also same point. If so, discard this
238*c8dee2aaSAndroid Build Coastguard Worker double quadMidT = (existingQuadT + quadT) / 2;
239*c8dee2aaSAndroid Build Coastguard Worker SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
240*c8dee2aaSAndroid Build Coastguard Worker if (quadMidPt.approximatelyEqual(pt)) {
241*c8dee2aaSAndroid Build Coastguard Worker return false;
242*c8dee2aaSAndroid Build Coastguard Worker }
243*c8dee2aaSAndroid Build Coastguard Worker }
244*c8dee2aaSAndroid Build Coastguard Worker #if ONE_OFF_DEBUG
245*c8dee2aaSAndroid Build Coastguard Worker SkDPoint qPt = fQuad.ptAtT(quadT);
246*c8dee2aaSAndroid Build Coastguard Worker SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
247*c8dee2aaSAndroid Build Coastguard Worker qPt.fX, qPt.fY);
248*c8dee2aaSAndroid Build Coastguard Worker #endif
249*c8dee2aaSAndroid Build Coastguard Worker return true;
250*c8dee2aaSAndroid Build Coastguard Worker }
251*c8dee2aaSAndroid Build Coastguard Worker
verticalIntersect(double axisIntercept,double roots[2])252*c8dee2aaSAndroid Build Coastguard Worker int verticalIntersect(double axisIntercept, double roots[2]) {
253*c8dee2aaSAndroid Build Coastguard Worker double D = fQuad[2].fX; // f
254*c8dee2aaSAndroid Build Coastguard Worker double E = fQuad[1].fX; // e
255*c8dee2aaSAndroid Build Coastguard Worker double F = fQuad[0].fX; // d
256*c8dee2aaSAndroid Build Coastguard Worker D += F - 2 * E; // D = d - 2*e + f
257*c8dee2aaSAndroid Build Coastguard Worker E -= F; // E = -(d - e)
258*c8dee2aaSAndroid Build Coastguard Worker F -= axisIntercept;
259*c8dee2aaSAndroid Build Coastguard Worker return SkDQuad::RootsValidT(D, 2 * E, F, roots);
260*c8dee2aaSAndroid Build Coastguard Worker }
261*c8dee2aaSAndroid Build Coastguard Worker
verticalIntersect(double axisIntercept,double top,double bottom,bool flipped)262*c8dee2aaSAndroid Build Coastguard Worker int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
263*c8dee2aaSAndroid Build Coastguard Worker addExactVerticalEndPoints(top, bottom, axisIntercept);
264*c8dee2aaSAndroid Build Coastguard Worker if (fAllowNear) {
265*c8dee2aaSAndroid Build Coastguard Worker addNearVerticalEndPoints(top, bottom, axisIntercept);
266*c8dee2aaSAndroid Build Coastguard Worker }
267*c8dee2aaSAndroid Build Coastguard Worker double rootVals[2];
268*c8dee2aaSAndroid Build Coastguard Worker int roots = verticalIntersect(axisIntercept, rootVals);
269*c8dee2aaSAndroid Build Coastguard Worker for (int index = 0; index < roots; ++index) {
270*c8dee2aaSAndroid Build Coastguard Worker double quadT = rootVals[index];
271*c8dee2aaSAndroid Build Coastguard Worker SkDPoint pt = fQuad.ptAtT(quadT);
272*c8dee2aaSAndroid Build Coastguard Worker double lineT = (pt.fY - top) / (bottom - top);
273*c8dee2aaSAndroid Build Coastguard Worker if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
274*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, pt);
275*c8dee2aaSAndroid Build Coastguard Worker }
276*c8dee2aaSAndroid Build Coastguard Worker }
277*c8dee2aaSAndroid Build Coastguard Worker if (flipped) {
278*c8dee2aaSAndroid Build Coastguard Worker fIntersections->flip();
279*c8dee2aaSAndroid Build Coastguard Worker }
280*c8dee2aaSAndroid Build Coastguard Worker checkCoincident();
281*c8dee2aaSAndroid Build Coastguard Worker return fIntersections->used();
282*c8dee2aaSAndroid Build Coastguard Worker }
283*c8dee2aaSAndroid Build Coastguard Worker
284*c8dee2aaSAndroid Build Coastguard Worker protected:
285*c8dee2aaSAndroid Build Coastguard Worker // add endpoints first to get zero and one t values exactly
addExactEndPoints()286*c8dee2aaSAndroid Build Coastguard Worker void addExactEndPoints() {
287*c8dee2aaSAndroid Build Coastguard Worker for (int qIndex = 0; qIndex < 3; qIndex += 2) {
288*c8dee2aaSAndroid Build Coastguard Worker double lineT = fLine->exactPoint(fQuad[qIndex]);
289*c8dee2aaSAndroid Build Coastguard Worker if (lineT < 0) {
290*c8dee2aaSAndroid Build Coastguard Worker continue;
291*c8dee2aaSAndroid Build Coastguard Worker }
292*c8dee2aaSAndroid Build Coastguard Worker double quadT = (double) (qIndex >> 1);
293*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, fQuad[qIndex]);
294*c8dee2aaSAndroid Build Coastguard Worker }
295*c8dee2aaSAndroid Build Coastguard Worker }
296*c8dee2aaSAndroid Build Coastguard Worker
addNearEndPoints()297*c8dee2aaSAndroid Build Coastguard Worker void addNearEndPoints() {
298*c8dee2aaSAndroid Build Coastguard Worker for (int qIndex = 0; qIndex < 3; qIndex += 2) {
299*c8dee2aaSAndroid Build Coastguard Worker double quadT = (double) (qIndex >> 1);
300*c8dee2aaSAndroid Build Coastguard Worker if (fIntersections->hasT(quadT)) {
301*c8dee2aaSAndroid Build Coastguard Worker continue;
302*c8dee2aaSAndroid Build Coastguard Worker }
303*c8dee2aaSAndroid Build Coastguard Worker double lineT = fLine->nearPoint(fQuad[qIndex], nullptr);
304*c8dee2aaSAndroid Build Coastguard Worker if (lineT < 0) {
305*c8dee2aaSAndroid Build Coastguard Worker continue;
306*c8dee2aaSAndroid Build Coastguard Worker }
307*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, fQuad[qIndex]);
308*c8dee2aaSAndroid Build Coastguard Worker }
309*c8dee2aaSAndroid Build Coastguard Worker this->addLineNearEndPoints();
310*c8dee2aaSAndroid Build Coastguard Worker }
311*c8dee2aaSAndroid Build Coastguard Worker
addLineNearEndPoints()312*c8dee2aaSAndroid Build Coastguard Worker void addLineNearEndPoints() {
313*c8dee2aaSAndroid Build Coastguard Worker for (int lIndex = 0; lIndex < 2; ++lIndex) {
314*c8dee2aaSAndroid Build Coastguard Worker double lineT = (double) lIndex;
315*c8dee2aaSAndroid Build Coastguard Worker if (fIntersections->hasOppT(lineT)) {
316*c8dee2aaSAndroid Build Coastguard Worker continue;
317*c8dee2aaSAndroid Build Coastguard Worker }
318*c8dee2aaSAndroid Build Coastguard Worker double quadT = ((const SkDCurve*) &fQuad)->nearPoint(SkPath::kQuad_Verb,
319*c8dee2aaSAndroid Build Coastguard Worker (*fLine)[lIndex], (*fLine)[!lIndex]);
320*c8dee2aaSAndroid Build Coastguard Worker if (quadT < 0) {
321*c8dee2aaSAndroid Build Coastguard Worker continue;
322*c8dee2aaSAndroid Build Coastguard Worker }
323*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, (*fLine)[lIndex]);
324*c8dee2aaSAndroid Build Coastguard Worker }
325*c8dee2aaSAndroid Build Coastguard Worker }
326*c8dee2aaSAndroid Build Coastguard Worker
addExactHorizontalEndPoints(double left,double right,double y)327*c8dee2aaSAndroid Build Coastguard Worker void addExactHorizontalEndPoints(double left, double right, double y) {
328*c8dee2aaSAndroid Build Coastguard Worker for (int qIndex = 0; qIndex < 3; qIndex += 2) {
329*c8dee2aaSAndroid Build Coastguard Worker double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y);
330*c8dee2aaSAndroid Build Coastguard Worker if (lineT < 0) {
331*c8dee2aaSAndroid Build Coastguard Worker continue;
332*c8dee2aaSAndroid Build Coastguard Worker }
333*c8dee2aaSAndroid Build Coastguard Worker double quadT = (double) (qIndex >> 1);
334*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, fQuad[qIndex]);
335*c8dee2aaSAndroid Build Coastguard Worker }
336*c8dee2aaSAndroid Build Coastguard Worker }
337*c8dee2aaSAndroid Build Coastguard Worker
addNearHorizontalEndPoints(double left,double right,double y)338*c8dee2aaSAndroid Build Coastguard Worker void addNearHorizontalEndPoints(double left, double right, double y) {
339*c8dee2aaSAndroid Build Coastguard Worker for (int qIndex = 0; qIndex < 3; qIndex += 2) {
340*c8dee2aaSAndroid Build Coastguard Worker double quadT = (double) (qIndex >> 1);
341*c8dee2aaSAndroid Build Coastguard Worker if (fIntersections->hasT(quadT)) {
342*c8dee2aaSAndroid Build Coastguard Worker continue;
343*c8dee2aaSAndroid Build Coastguard Worker }
344*c8dee2aaSAndroid Build Coastguard Worker double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y);
345*c8dee2aaSAndroid Build Coastguard Worker if (lineT < 0) {
346*c8dee2aaSAndroid Build Coastguard Worker continue;
347*c8dee2aaSAndroid Build Coastguard Worker }
348*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, fQuad[qIndex]);
349*c8dee2aaSAndroid Build Coastguard Worker }
350*c8dee2aaSAndroid Build Coastguard Worker this->addLineNearEndPoints();
351*c8dee2aaSAndroid Build Coastguard Worker }
352*c8dee2aaSAndroid Build Coastguard Worker
addExactVerticalEndPoints(double top,double bottom,double x)353*c8dee2aaSAndroid Build Coastguard Worker void addExactVerticalEndPoints(double top, double bottom, double x) {
354*c8dee2aaSAndroid Build Coastguard Worker for (int qIndex = 0; qIndex < 3; qIndex += 2) {
355*c8dee2aaSAndroid Build Coastguard Worker double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x);
356*c8dee2aaSAndroid Build Coastguard Worker if (lineT < 0) {
357*c8dee2aaSAndroid Build Coastguard Worker continue;
358*c8dee2aaSAndroid Build Coastguard Worker }
359*c8dee2aaSAndroid Build Coastguard Worker double quadT = (double) (qIndex >> 1);
360*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, fQuad[qIndex]);
361*c8dee2aaSAndroid Build Coastguard Worker }
362*c8dee2aaSAndroid Build Coastguard Worker }
363*c8dee2aaSAndroid Build Coastguard Worker
addNearVerticalEndPoints(double top,double bottom,double x)364*c8dee2aaSAndroid Build Coastguard Worker void addNearVerticalEndPoints(double top, double bottom, double x) {
365*c8dee2aaSAndroid Build Coastguard Worker for (int qIndex = 0; qIndex < 3; qIndex += 2) {
366*c8dee2aaSAndroid Build Coastguard Worker double quadT = (double) (qIndex >> 1);
367*c8dee2aaSAndroid Build Coastguard Worker if (fIntersections->hasT(quadT)) {
368*c8dee2aaSAndroid Build Coastguard Worker continue;
369*c8dee2aaSAndroid Build Coastguard Worker }
370*c8dee2aaSAndroid Build Coastguard Worker double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x);
371*c8dee2aaSAndroid Build Coastguard Worker if (lineT < 0) {
372*c8dee2aaSAndroid Build Coastguard Worker continue;
373*c8dee2aaSAndroid Build Coastguard Worker }
374*c8dee2aaSAndroid Build Coastguard Worker fIntersections->insert(quadT, lineT, fQuad[qIndex]);
375*c8dee2aaSAndroid Build Coastguard Worker }
376*c8dee2aaSAndroid Build Coastguard Worker this->addLineNearEndPoints();
377*c8dee2aaSAndroid Build Coastguard Worker }
378*c8dee2aaSAndroid Build Coastguard Worker
findLineT(double t)379*c8dee2aaSAndroid Build Coastguard Worker double findLineT(double t) {
380*c8dee2aaSAndroid Build Coastguard Worker SkDPoint xy = fQuad.ptAtT(t);
381*c8dee2aaSAndroid Build Coastguard Worker double dx = (*fLine)[1].fX - (*fLine)[0].fX;
382*c8dee2aaSAndroid Build Coastguard Worker double dy = (*fLine)[1].fY - (*fLine)[0].fY;
383*c8dee2aaSAndroid Build Coastguard Worker if (fabs(dx) > fabs(dy)) {
384*c8dee2aaSAndroid Build Coastguard Worker return (xy.fX - (*fLine)[0].fX) / dx;
385*c8dee2aaSAndroid Build Coastguard Worker }
386*c8dee2aaSAndroid Build Coastguard Worker return (xy.fY - (*fLine)[0].fY) / dy;
387*c8dee2aaSAndroid Build Coastguard Worker }
388*c8dee2aaSAndroid Build Coastguard Worker
pinTs(double * quadT,double * lineT,SkDPoint * pt,PinTPoint ptSet)389*c8dee2aaSAndroid Build Coastguard Worker bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
390*c8dee2aaSAndroid Build Coastguard Worker if (!approximately_one_or_less_double(*lineT)) {
391*c8dee2aaSAndroid Build Coastguard Worker return false;
392*c8dee2aaSAndroid Build Coastguard Worker }
393*c8dee2aaSAndroid Build Coastguard Worker if (!approximately_zero_or_more_double(*lineT)) {
394*c8dee2aaSAndroid Build Coastguard Worker return false;
395*c8dee2aaSAndroid Build Coastguard Worker }
396*c8dee2aaSAndroid Build Coastguard Worker double qT = *quadT = SkPinT(*quadT);
397*c8dee2aaSAndroid Build Coastguard Worker double lT = *lineT = SkPinT(*lineT);
398*c8dee2aaSAndroid Build Coastguard Worker if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) {
399*c8dee2aaSAndroid Build Coastguard Worker *pt = (*fLine).ptAtT(lT);
400*c8dee2aaSAndroid Build Coastguard Worker } else if (ptSet == kPointUninitialized) {
401*c8dee2aaSAndroid Build Coastguard Worker *pt = fQuad.ptAtT(qT);
402*c8dee2aaSAndroid Build Coastguard Worker }
403*c8dee2aaSAndroid Build Coastguard Worker SkPoint gridPt = pt->asSkPoint();
404*c8dee2aaSAndroid Build Coastguard Worker if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[0].asSkPoint())) {
405*c8dee2aaSAndroid Build Coastguard Worker *pt = (*fLine)[0];
406*c8dee2aaSAndroid Build Coastguard Worker *lineT = 0;
407*c8dee2aaSAndroid Build Coastguard Worker } else if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[1].asSkPoint())) {
408*c8dee2aaSAndroid Build Coastguard Worker *pt = (*fLine)[1];
409*c8dee2aaSAndroid Build Coastguard Worker *lineT = 1;
410*c8dee2aaSAndroid Build Coastguard Worker }
411*c8dee2aaSAndroid Build Coastguard Worker if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) {
412*c8dee2aaSAndroid Build Coastguard Worker return false;
413*c8dee2aaSAndroid Build Coastguard Worker }
414*c8dee2aaSAndroid Build Coastguard Worker if (gridPt == fQuad[0].asSkPoint()) {
415*c8dee2aaSAndroid Build Coastguard Worker *pt = fQuad[0];
416*c8dee2aaSAndroid Build Coastguard Worker *quadT = 0;
417*c8dee2aaSAndroid Build Coastguard Worker } else if (gridPt == fQuad[2].asSkPoint()) {
418*c8dee2aaSAndroid Build Coastguard Worker *pt = fQuad[2];
419*c8dee2aaSAndroid Build Coastguard Worker *quadT = 1;
420*c8dee2aaSAndroid Build Coastguard Worker }
421*c8dee2aaSAndroid Build Coastguard Worker return true;
422*c8dee2aaSAndroid Build Coastguard Worker }
423*c8dee2aaSAndroid Build Coastguard Worker
424*c8dee2aaSAndroid Build Coastguard Worker private:
425*c8dee2aaSAndroid Build Coastguard Worker const SkDQuad& fQuad;
426*c8dee2aaSAndroid Build Coastguard Worker const SkDLine* fLine;
427*c8dee2aaSAndroid Build Coastguard Worker SkIntersections* fIntersections;
428*c8dee2aaSAndroid Build Coastguard Worker bool fAllowNear;
429*c8dee2aaSAndroid Build Coastguard Worker };
430*c8dee2aaSAndroid Build Coastguard Worker
horizontal(const SkDQuad & quad,double left,double right,double y,bool flipped)431*c8dee2aaSAndroid Build Coastguard Worker int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y,
432*c8dee2aaSAndroid Build Coastguard Worker bool flipped) {
433*c8dee2aaSAndroid Build Coastguard Worker SkDLine line = {{{ left, y }, { right, y }}};
434*c8dee2aaSAndroid Build Coastguard Worker LineQuadraticIntersections q(quad, line, this);
435*c8dee2aaSAndroid Build Coastguard Worker return q.horizontalIntersect(y, left, right, flipped);
436*c8dee2aaSAndroid Build Coastguard Worker }
437*c8dee2aaSAndroid Build Coastguard Worker
vertical(const SkDQuad & quad,double top,double bottom,double x,bool flipped)438*c8dee2aaSAndroid Build Coastguard Worker int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x,
439*c8dee2aaSAndroid Build Coastguard Worker bool flipped) {
440*c8dee2aaSAndroid Build Coastguard Worker SkDLine line = {{{ x, top }, { x, bottom }}};
441*c8dee2aaSAndroid Build Coastguard Worker LineQuadraticIntersections q(quad, line, this);
442*c8dee2aaSAndroid Build Coastguard Worker return q.verticalIntersect(x, top, bottom, flipped);
443*c8dee2aaSAndroid Build Coastguard Worker }
444*c8dee2aaSAndroid Build Coastguard Worker
intersect(const SkDQuad & quad,const SkDLine & line)445*c8dee2aaSAndroid Build Coastguard Worker int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) {
446*c8dee2aaSAndroid Build Coastguard Worker LineQuadraticIntersections q(quad, line, this);
447*c8dee2aaSAndroid Build Coastguard Worker q.allowNear(fAllowNear);
448*c8dee2aaSAndroid Build Coastguard Worker return q.intersect();
449*c8dee2aaSAndroid Build Coastguard Worker }
450*c8dee2aaSAndroid Build Coastguard Worker
intersectRay(const SkDQuad & quad,const SkDLine & line)451*c8dee2aaSAndroid Build Coastguard Worker int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) {
452*c8dee2aaSAndroid Build Coastguard Worker LineQuadraticIntersections q(quad, line, this);
453*c8dee2aaSAndroid Build Coastguard Worker fUsed = q.intersectRay(fT[0]);
454*c8dee2aaSAndroid Build Coastguard Worker for (int index = 0; index < fUsed; ++index) {
455*c8dee2aaSAndroid Build Coastguard Worker fPt[index] = quad.ptAtT(fT[0][index]);
456*c8dee2aaSAndroid Build Coastguard Worker }
457*c8dee2aaSAndroid Build Coastguard Worker return fUsed;
458*c8dee2aaSAndroid Build Coastguard Worker }
459*c8dee2aaSAndroid Build Coastguard Worker
HorizontalIntercept(const SkDQuad & quad,SkScalar y,double * roots)460*c8dee2aaSAndroid Build Coastguard Worker int SkIntersections::HorizontalIntercept(const SkDQuad& quad, SkScalar y, double* roots) {
461*c8dee2aaSAndroid Build Coastguard Worker LineQuadraticIntersections q(quad);
462*c8dee2aaSAndroid Build Coastguard Worker return q.horizontalIntersect(y, roots);
463*c8dee2aaSAndroid Build Coastguard Worker }
464*c8dee2aaSAndroid Build Coastguard Worker
VerticalIntercept(const SkDQuad & quad,SkScalar x,double * roots)465*c8dee2aaSAndroid Build Coastguard Worker int SkIntersections::VerticalIntercept(const SkDQuad& quad, SkScalar x, double* roots) {
466*c8dee2aaSAndroid Build Coastguard Worker LineQuadraticIntersections q(quad);
467*c8dee2aaSAndroid Build Coastguard Worker return q.verticalIntersect(x, roots);
468*c8dee2aaSAndroid Build Coastguard Worker }
469*c8dee2aaSAndroid Build Coastguard Worker
470*c8dee2aaSAndroid Build Coastguard Worker // SkDQuad accessors to Intersection utilities
471*c8dee2aaSAndroid Build Coastguard Worker
horizontalIntersect(double yIntercept,double roots[2]) const472*c8dee2aaSAndroid Build Coastguard Worker int SkDQuad::horizontalIntersect(double yIntercept, double roots[2]) const {
473*c8dee2aaSAndroid Build Coastguard Worker return SkIntersections::HorizontalIntercept(*this, yIntercept, roots);
474*c8dee2aaSAndroid Build Coastguard Worker }
475*c8dee2aaSAndroid Build Coastguard Worker
verticalIntersect(double xIntercept,double roots[2]) const476*c8dee2aaSAndroid Build Coastguard Worker int SkDQuad::verticalIntersect(double xIntercept, double roots[2]) const {
477*c8dee2aaSAndroid Build Coastguard Worker return SkIntersections::VerticalIntercept(*this, xIntercept, roots);
478*c8dee2aaSAndroid Build Coastguard Worker }
479