1*b2055c35SXin Li // Copyright 2011 Google Inc. All Rights Reserved.
2*b2055c35SXin Li //
3*b2055c35SXin Li // Use of this source code is governed by a BSD-style license
4*b2055c35SXin Li // that can be found in the COPYING file in the root of the source
5*b2055c35SXin Li // tree. An additional intellectual property rights grant can be found
6*b2055c35SXin Li // in the file PATENTS. All contributing project authors may
7*b2055c35SXin Li // be found in the AUTHORS file in the root of the source tree.
8*b2055c35SXin Li // -----------------------------------------------------------------------------
9*b2055c35SXin Li //
10*b2055c35SXin Li // SSE2 version of speed-critical encoding functions.
11*b2055c35SXin Li //
12*b2055c35SXin Li // Author: Christian Duvivier ([email protected])
13*b2055c35SXin Li
14*b2055c35SXin Li #include "src/dsp/dsp.h"
15*b2055c35SXin Li
16*b2055c35SXin Li #if defined(WEBP_USE_SSE2)
17*b2055c35SXin Li #include <assert.h>
18*b2055c35SXin Li #include <stdlib.h> // for abs()
19*b2055c35SXin Li #include <emmintrin.h>
20*b2055c35SXin Li
21*b2055c35SXin Li #include "src/dsp/common_sse2.h"
22*b2055c35SXin Li #include "src/enc/cost_enc.h"
23*b2055c35SXin Li #include "src/enc/vp8i_enc.h"
24*b2055c35SXin Li
25*b2055c35SXin Li //------------------------------------------------------------------------------
26*b2055c35SXin Li // Transforms (Paragraph 14.4)
27*b2055c35SXin Li
28*b2055c35SXin Li // Does one inverse transform.
ITransform_One_SSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst)29*b2055c35SXin Li static void ITransform_One_SSE2(const uint8_t* ref, const int16_t* in,
30*b2055c35SXin Li uint8_t* dst) {
31*b2055c35SXin Li // This implementation makes use of 16-bit fixed point versions of two
32*b2055c35SXin Li // multiply constants:
33*b2055c35SXin Li // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
34*b2055c35SXin Li // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
35*b2055c35SXin Li //
36*b2055c35SXin Li // To be able to use signed 16-bit integers, we use the following trick to
37*b2055c35SXin Li // have constants within range:
38*b2055c35SXin Li // - Associated constants are obtained by subtracting the 16-bit fixed point
39*b2055c35SXin Li // version of one:
40*b2055c35SXin Li // k = K - (1 << 16) => K = k + (1 << 16)
41*b2055c35SXin Li // K1 = 85267 => k1 = 20091
42*b2055c35SXin Li // K2 = 35468 => k2 = -30068
43*b2055c35SXin Li // - The multiplication of a variable by a constant become the sum of the
44*b2055c35SXin Li // variable and the multiplication of that variable by the associated
45*b2055c35SXin Li // constant:
46*b2055c35SXin Li // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
47*b2055c35SXin Li const __m128i k1k2 = _mm_set_epi16(-30068, -30068, -30068, -30068,
48*b2055c35SXin Li 20091, 20091, 20091, 20091);
49*b2055c35SXin Li const __m128i k2k1 = _mm_set_epi16(20091, 20091, 20091, 20091,
50*b2055c35SXin Li -30068, -30068, -30068, -30068);
51*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
52*b2055c35SXin Li const __m128i zero_four = _mm_set_epi16(0, 0, 0, 0, 4, 4, 4, 4);
53*b2055c35SXin Li __m128i T01, T23;
54*b2055c35SXin Li
55*b2055c35SXin Li // Load and concatenate the transform coefficients.
56*b2055c35SXin Li const __m128i in01 = _mm_loadu_si128((const __m128i*)&in[0]);
57*b2055c35SXin Li const __m128i in23 = _mm_loadu_si128((const __m128i*)&in[8]);
58*b2055c35SXin Li // a00 a10 a20 a30 a01 a11 a21 a31
59*b2055c35SXin Li // a02 a12 a22 a32 a03 a13 a23 a33
60*b2055c35SXin Li
61*b2055c35SXin Li // Vertical pass and subsequent transpose.
62*b2055c35SXin Li {
63*b2055c35SXin Li const __m128i in1 = _mm_unpackhi_epi64(in01, in01);
64*b2055c35SXin Li const __m128i in3 = _mm_unpackhi_epi64(in23, in23);
65*b2055c35SXin Li
66*b2055c35SXin Li // First pass, c and d calculations are longer because of the "trick"
67*b2055c35SXin Li // multiplications.
68*b2055c35SXin Li // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
69*b2055c35SXin Li // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
70*b2055c35SXin Li const __m128i a_d3 = _mm_add_epi16(in01, in23);
71*b2055c35SXin Li const __m128i b_c3 = _mm_sub_epi16(in01, in23);
72*b2055c35SXin Li const __m128i c1d1 = _mm_mulhi_epi16(in1, k2k1);
73*b2055c35SXin Li const __m128i c2d2 = _mm_mulhi_epi16(in3, k1k2);
74*b2055c35SXin Li const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
75*b2055c35SXin Li const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
76*b2055c35SXin Li const __m128i c = _mm_add_epi16(c3, c4);
77*b2055c35SXin Li const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
78*b2055c35SXin Li const __m128i du = _mm_add_epi16(a_d3, d4u);
79*b2055c35SXin Li const __m128i d = _mm_unpackhi_epi64(du, du);
80*b2055c35SXin Li
81*b2055c35SXin Li // Second pass.
82*b2055c35SXin Li const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
83*b2055c35SXin Li const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
84*b2055c35SXin Li
85*b2055c35SXin Li const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
86*b2055c35SXin Li const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
87*b2055c35SXin Li const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
88*b2055c35SXin Li
89*b2055c35SXin Li const __m128i transpose_0 = _mm_unpacklo_epi16(tmp01, tmp23);
90*b2055c35SXin Li const __m128i transpose_1 = _mm_unpackhi_epi16(tmp01, tmp23);
91*b2055c35SXin Li // a00 a20 a01 a21 a02 a22 a03 a23
92*b2055c35SXin Li // a10 a30 a11 a31 a12 a32 a13 a33
93*b2055c35SXin Li
94*b2055c35SXin Li T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
95*b2055c35SXin Li T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
96*b2055c35SXin Li // a00 a10 a20 a30 a01 a11 a21 a31
97*b2055c35SXin Li // a02 a12 a22 a32 a03 a13 a23 a33
98*b2055c35SXin Li }
99*b2055c35SXin Li
100*b2055c35SXin Li // Horizontal pass and subsequent transpose.
101*b2055c35SXin Li {
102*b2055c35SXin Li const __m128i T1 = _mm_unpackhi_epi64(T01, T01);
103*b2055c35SXin Li const __m128i T3 = _mm_unpackhi_epi64(T23, T23);
104*b2055c35SXin Li
105*b2055c35SXin Li // First pass, c and d calculations are longer because of the "trick"
106*b2055c35SXin Li // multiplications.
107*b2055c35SXin Li const __m128i dc = _mm_add_epi16(T01, zero_four);
108*b2055c35SXin Li
109*b2055c35SXin Li // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
110*b2055c35SXin Li // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
111*b2055c35SXin Li const __m128i a_d3 = _mm_add_epi16(dc, T23);
112*b2055c35SXin Li const __m128i b_c3 = _mm_sub_epi16(dc, T23);
113*b2055c35SXin Li const __m128i c1d1 = _mm_mulhi_epi16(T1, k2k1);
114*b2055c35SXin Li const __m128i c2d2 = _mm_mulhi_epi16(T3, k1k2);
115*b2055c35SXin Li const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
116*b2055c35SXin Li const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
117*b2055c35SXin Li const __m128i c = _mm_add_epi16(c3, c4);
118*b2055c35SXin Li const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
119*b2055c35SXin Li const __m128i du = _mm_add_epi16(a_d3, d4u);
120*b2055c35SXin Li const __m128i d = _mm_unpackhi_epi64(du, du);
121*b2055c35SXin Li
122*b2055c35SXin Li // Second pass.
123*b2055c35SXin Li const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
124*b2055c35SXin Li const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
125*b2055c35SXin Li
126*b2055c35SXin Li const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
127*b2055c35SXin Li const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
128*b2055c35SXin Li const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
129*b2055c35SXin Li
130*b2055c35SXin Li const __m128i shifted01 = _mm_srai_epi16(tmp01, 3);
131*b2055c35SXin Li const __m128i shifted23 = _mm_srai_epi16(tmp23, 3);
132*b2055c35SXin Li // a00 a01 a02 a03 a10 a11 a12 a13
133*b2055c35SXin Li // a20 a21 a22 a23 a30 a31 a32 a33
134*b2055c35SXin Li
135*b2055c35SXin Li const __m128i transpose_0 = _mm_unpacklo_epi16(shifted01, shifted23);
136*b2055c35SXin Li const __m128i transpose_1 = _mm_unpackhi_epi16(shifted01, shifted23);
137*b2055c35SXin Li // a00 a20 a01 a21 a02 a22 a03 a23
138*b2055c35SXin Li // a10 a30 a11 a31 a12 a32 a13 a33
139*b2055c35SXin Li
140*b2055c35SXin Li T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
141*b2055c35SXin Li T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
142*b2055c35SXin Li // a00 a10 a20 a30 a01 a11 a21 a31
143*b2055c35SXin Li // a02 a12 a22 a32 a03 a13 a23 a33
144*b2055c35SXin Li }
145*b2055c35SXin Li
146*b2055c35SXin Li // Add inverse transform to 'ref' and store.
147*b2055c35SXin Li {
148*b2055c35SXin Li // Load the reference(s).
149*b2055c35SXin Li __m128i ref01, ref23, ref0123;
150*b2055c35SXin Li int32_t buf[4];
151*b2055c35SXin Li
152*b2055c35SXin Li // Load four bytes/pixels per line.
153*b2055c35SXin Li const __m128i ref0 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[0 * BPS]));
154*b2055c35SXin Li const __m128i ref1 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[1 * BPS]));
155*b2055c35SXin Li const __m128i ref2 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[2 * BPS]));
156*b2055c35SXin Li const __m128i ref3 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[3 * BPS]));
157*b2055c35SXin Li ref01 = _mm_unpacklo_epi32(ref0, ref1);
158*b2055c35SXin Li ref23 = _mm_unpacklo_epi32(ref2, ref3);
159*b2055c35SXin Li
160*b2055c35SXin Li // Convert to 16b.
161*b2055c35SXin Li ref01 = _mm_unpacklo_epi8(ref01, zero);
162*b2055c35SXin Li ref23 = _mm_unpacklo_epi8(ref23, zero);
163*b2055c35SXin Li // Add the inverse transform(s).
164*b2055c35SXin Li ref01 = _mm_add_epi16(ref01, T01);
165*b2055c35SXin Li ref23 = _mm_add_epi16(ref23, T23);
166*b2055c35SXin Li // Unsigned saturate to 8b.
167*b2055c35SXin Li ref0123 = _mm_packus_epi16(ref01, ref23);
168*b2055c35SXin Li
169*b2055c35SXin Li _mm_storeu_si128((__m128i *)buf, ref0123);
170*b2055c35SXin Li
171*b2055c35SXin Li // Store four bytes/pixels per line.
172*b2055c35SXin Li WebPInt32ToMem(&dst[0 * BPS], buf[0]);
173*b2055c35SXin Li WebPInt32ToMem(&dst[1 * BPS], buf[1]);
174*b2055c35SXin Li WebPInt32ToMem(&dst[2 * BPS], buf[2]);
175*b2055c35SXin Li WebPInt32ToMem(&dst[3 * BPS], buf[3]);
176*b2055c35SXin Li }
177*b2055c35SXin Li }
178*b2055c35SXin Li
179*b2055c35SXin Li // Does two inverse transforms.
ITransform_Two_SSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst)180*b2055c35SXin Li static void ITransform_Two_SSE2(const uint8_t* ref, const int16_t* in,
181*b2055c35SXin Li uint8_t* dst) {
182*b2055c35SXin Li // This implementation makes use of 16-bit fixed point versions of two
183*b2055c35SXin Li // multiply constants:
184*b2055c35SXin Li // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
185*b2055c35SXin Li // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
186*b2055c35SXin Li //
187*b2055c35SXin Li // To be able to use signed 16-bit integers, we use the following trick to
188*b2055c35SXin Li // have constants within range:
189*b2055c35SXin Li // - Associated constants are obtained by subtracting the 16-bit fixed point
190*b2055c35SXin Li // version of one:
191*b2055c35SXin Li // k = K - (1 << 16) => K = k + (1 << 16)
192*b2055c35SXin Li // K1 = 85267 => k1 = 20091
193*b2055c35SXin Li // K2 = 35468 => k2 = -30068
194*b2055c35SXin Li // - The multiplication of a variable by a constant become the sum of the
195*b2055c35SXin Li // variable and the multiplication of that variable by the associated
196*b2055c35SXin Li // constant:
197*b2055c35SXin Li // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
198*b2055c35SXin Li const __m128i k1 = _mm_set1_epi16(20091);
199*b2055c35SXin Li const __m128i k2 = _mm_set1_epi16(-30068);
200*b2055c35SXin Li __m128i T0, T1, T2, T3;
201*b2055c35SXin Li
202*b2055c35SXin Li // Load and concatenate the transform coefficients (we'll do two inverse
203*b2055c35SXin Li // transforms in parallel).
204*b2055c35SXin Li __m128i in0, in1, in2, in3;
205*b2055c35SXin Li {
206*b2055c35SXin Li const __m128i tmp0 = _mm_loadu_si128((const __m128i*)&in[0]);
207*b2055c35SXin Li const __m128i tmp1 = _mm_loadu_si128((const __m128i*)&in[8]);
208*b2055c35SXin Li const __m128i tmp2 = _mm_loadu_si128((const __m128i*)&in[16]);
209*b2055c35SXin Li const __m128i tmp3 = _mm_loadu_si128((const __m128i*)&in[24]);
210*b2055c35SXin Li in0 = _mm_unpacklo_epi64(tmp0, tmp2);
211*b2055c35SXin Li in1 = _mm_unpackhi_epi64(tmp0, tmp2);
212*b2055c35SXin Li in2 = _mm_unpacklo_epi64(tmp1, tmp3);
213*b2055c35SXin Li in3 = _mm_unpackhi_epi64(tmp1, tmp3);
214*b2055c35SXin Li // a00 a10 a20 a30 b00 b10 b20 b30
215*b2055c35SXin Li // a01 a11 a21 a31 b01 b11 b21 b31
216*b2055c35SXin Li // a02 a12 a22 a32 b02 b12 b22 b32
217*b2055c35SXin Li // a03 a13 a23 a33 b03 b13 b23 b33
218*b2055c35SXin Li }
219*b2055c35SXin Li
220*b2055c35SXin Li // Vertical pass and subsequent transpose.
221*b2055c35SXin Li {
222*b2055c35SXin Li // First pass, c and d calculations are longer because of the "trick"
223*b2055c35SXin Li // multiplications.
224*b2055c35SXin Li const __m128i a = _mm_add_epi16(in0, in2);
225*b2055c35SXin Li const __m128i b = _mm_sub_epi16(in0, in2);
226*b2055c35SXin Li // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
227*b2055c35SXin Li const __m128i c1 = _mm_mulhi_epi16(in1, k2);
228*b2055c35SXin Li const __m128i c2 = _mm_mulhi_epi16(in3, k1);
229*b2055c35SXin Li const __m128i c3 = _mm_sub_epi16(in1, in3);
230*b2055c35SXin Li const __m128i c4 = _mm_sub_epi16(c1, c2);
231*b2055c35SXin Li const __m128i c = _mm_add_epi16(c3, c4);
232*b2055c35SXin Li // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
233*b2055c35SXin Li const __m128i d1 = _mm_mulhi_epi16(in1, k1);
234*b2055c35SXin Li const __m128i d2 = _mm_mulhi_epi16(in3, k2);
235*b2055c35SXin Li const __m128i d3 = _mm_add_epi16(in1, in3);
236*b2055c35SXin Li const __m128i d4 = _mm_add_epi16(d1, d2);
237*b2055c35SXin Li const __m128i d = _mm_add_epi16(d3, d4);
238*b2055c35SXin Li
239*b2055c35SXin Li // Second pass.
240*b2055c35SXin Li const __m128i tmp0 = _mm_add_epi16(a, d);
241*b2055c35SXin Li const __m128i tmp1 = _mm_add_epi16(b, c);
242*b2055c35SXin Li const __m128i tmp2 = _mm_sub_epi16(b, c);
243*b2055c35SXin Li const __m128i tmp3 = _mm_sub_epi16(a, d);
244*b2055c35SXin Li
245*b2055c35SXin Li // Transpose the two 4x4.
246*b2055c35SXin Li VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
247*b2055c35SXin Li }
248*b2055c35SXin Li
249*b2055c35SXin Li // Horizontal pass and subsequent transpose.
250*b2055c35SXin Li {
251*b2055c35SXin Li // First pass, c and d calculations are longer because of the "trick"
252*b2055c35SXin Li // multiplications.
253*b2055c35SXin Li const __m128i four = _mm_set1_epi16(4);
254*b2055c35SXin Li const __m128i dc = _mm_add_epi16(T0, four);
255*b2055c35SXin Li const __m128i a = _mm_add_epi16(dc, T2);
256*b2055c35SXin Li const __m128i b = _mm_sub_epi16(dc, T2);
257*b2055c35SXin Li // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
258*b2055c35SXin Li const __m128i c1 = _mm_mulhi_epi16(T1, k2);
259*b2055c35SXin Li const __m128i c2 = _mm_mulhi_epi16(T3, k1);
260*b2055c35SXin Li const __m128i c3 = _mm_sub_epi16(T1, T3);
261*b2055c35SXin Li const __m128i c4 = _mm_sub_epi16(c1, c2);
262*b2055c35SXin Li const __m128i c = _mm_add_epi16(c3, c4);
263*b2055c35SXin Li // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
264*b2055c35SXin Li const __m128i d1 = _mm_mulhi_epi16(T1, k1);
265*b2055c35SXin Li const __m128i d2 = _mm_mulhi_epi16(T3, k2);
266*b2055c35SXin Li const __m128i d3 = _mm_add_epi16(T1, T3);
267*b2055c35SXin Li const __m128i d4 = _mm_add_epi16(d1, d2);
268*b2055c35SXin Li const __m128i d = _mm_add_epi16(d3, d4);
269*b2055c35SXin Li
270*b2055c35SXin Li // Second pass.
271*b2055c35SXin Li const __m128i tmp0 = _mm_add_epi16(a, d);
272*b2055c35SXin Li const __m128i tmp1 = _mm_add_epi16(b, c);
273*b2055c35SXin Li const __m128i tmp2 = _mm_sub_epi16(b, c);
274*b2055c35SXin Li const __m128i tmp3 = _mm_sub_epi16(a, d);
275*b2055c35SXin Li const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
276*b2055c35SXin Li const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
277*b2055c35SXin Li const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
278*b2055c35SXin Li const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
279*b2055c35SXin Li
280*b2055c35SXin Li // Transpose the two 4x4.
281*b2055c35SXin Li VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
282*b2055c35SXin Li &T2, &T3);
283*b2055c35SXin Li }
284*b2055c35SXin Li
285*b2055c35SXin Li // Add inverse transform to 'ref' and store.
286*b2055c35SXin Li {
287*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
288*b2055c35SXin Li // Load the reference(s).
289*b2055c35SXin Li __m128i ref0, ref1, ref2, ref3;
290*b2055c35SXin Li // Load eight bytes/pixels per line.
291*b2055c35SXin Li ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
292*b2055c35SXin Li ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
293*b2055c35SXin Li ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
294*b2055c35SXin Li ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
295*b2055c35SXin Li // Convert to 16b.
296*b2055c35SXin Li ref0 = _mm_unpacklo_epi8(ref0, zero);
297*b2055c35SXin Li ref1 = _mm_unpacklo_epi8(ref1, zero);
298*b2055c35SXin Li ref2 = _mm_unpacklo_epi8(ref2, zero);
299*b2055c35SXin Li ref3 = _mm_unpacklo_epi8(ref3, zero);
300*b2055c35SXin Li // Add the inverse transform(s).
301*b2055c35SXin Li ref0 = _mm_add_epi16(ref0, T0);
302*b2055c35SXin Li ref1 = _mm_add_epi16(ref1, T1);
303*b2055c35SXin Li ref2 = _mm_add_epi16(ref2, T2);
304*b2055c35SXin Li ref3 = _mm_add_epi16(ref3, T3);
305*b2055c35SXin Li // Unsigned saturate to 8b.
306*b2055c35SXin Li ref0 = _mm_packus_epi16(ref0, ref0);
307*b2055c35SXin Li ref1 = _mm_packus_epi16(ref1, ref1);
308*b2055c35SXin Li ref2 = _mm_packus_epi16(ref2, ref2);
309*b2055c35SXin Li ref3 = _mm_packus_epi16(ref3, ref3);
310*b2055c35SXin Li // Store eight bytes/pixels per line.
311*b2055c35SXin Li _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
312*b2055c35SXin Li _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
313*b2055c35SXin Li _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
314*b2055c35SXin Li _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
315*b2055c35SXin Li }
316*b2055c35SXin Li }
317*b2055c35SXin Li
318*b2055c35SXin Li // Does one or two inverse transforms.
ITransform_SSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)319*b2055c35SXin Li static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
320*b2055c35SXin Li int do_two) {
321*b2055c35SXin Li if (do_two) {
322*b2055c35SXin Li ITransform_Two_SSE2(ref, in, dst);
323*b2055c35SXin Li } else {
324*b2055c35SXin Li ITransform_One_SSE2(ref, in, dst);
325*b2055c35SXin Li }
326*b2055c35SXin Li }
327*b2055c35SXin Li
FTransformPass1_SSE2(const __m128i * const in01,const __m128i * const in23,__m128i * const out01,__m128i * const out32)328*b2055c35SXin Li static void FTransformPass1_SSE2(const __m128i* const in01,
329*b2055c35SXin Li const __m128i* const in23,
330*b2055c35SXin Li __m128i* const out01,
331*b2055c35SXin Li __m128i* const out32) {
332*b2055c35SXin Li const __m128i k937 = _mm_set1_epi32(937);
333*b2055c35SXin Li const __m128i k1812 = _mm_set1_epi32(1812);
334*b2055c35SXin Li
335*b2055c35SXin Li const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
336*b2055c35SXin Li const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
337*b2055c35SXin Li const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
338*b2055c35SXin Li 2217, 5352, 2217, 5352);
339*b2055c35SXin Li const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
340*b2055c35SXin Li -5352, 2217, -5352, 2217);
341*b2055c35SXin Li
342*b2055c35SXin Li // *in01 = 00 01 10 11 02 03 12 13
343*b2055c35SXin Li // *in23 = 20 21 30 31 22 23 32 33
344*b2055c35SXin Li const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
345*b2055c35SXin Li const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
346*b2055c35SXin Li // 00 01 10 11 03 02 13 12
347*b2055c35SXin Li // 20 21 30 31 23 22 33 32
348*b2055c35SXin Li const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
349*b2055c35SXin Li const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
350*b2055c35SXin Li // 00 01 10 11 20 21 30 31
351*b2055c35SXin Li // 03 02 13 12 23 22 33 32
352*b2055c35SXin Li const __m128i a01 = _mm_add_epi16(s01, s32);
353*b2055c35SXin Li const __m128i a32 = _mm_sub_epi16(s01, s32);
354*b2055c35SXin Li // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
355*b2055c35SXin Li // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
356*b2055c35SXin Li
357*b2055c35SXin Li const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ]
358*b2055c35SXin Li const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ]
359*b2055c35SXin Li const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
360*b2055c35SXin Li const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
361*b2055c35SXin Li const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
362*b2055c35SXin Li const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
363*b2055c35SXin Li const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9);
364*b2055c35SXin Li const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9);
365*b2055c35SXin Li const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
366*b2055c35SXin Li const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
367*b2055c35SXin Li const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1...
368*b2055c35SXin Li const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3
369*b2055c35SXin Li const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
370*b2055c35SXin Li *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
371*b2055c35SXin Li *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2..
372*b2055c35SXin Li }
373*b2055c35SXin Li
FTransformPass2_SSE2(const __m128i * const v01,const __m128i * const v32,int16_t * out)374*b2055c35SXin Li static void FTransformPass2_SSE2(const __m128i* const v01,
375*b2055c35SXin Li const __m128i* const v32,
376*b2055c35SXin Li int16_t* out) {
377*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
378*b2055c35SXin Li const __m128i seven = _mm_set1_epi16(7);
379*b2055c35SXin Li const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
380*b2055c35SXin Li 5352, 2217, 5352, 2217);
381*b2055c35SXin Li const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
382*b2055c35SXin Li 2217, -5352, 2217, -5352);
383*b2055c35SXin Li const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
384*b2055c35SXin Li const __m128i k51000 = _mm_set1_epi32(51000);
385*b2055c35SXin Li
386*b2055c35SXin Li // Same operations are done on the (0,3) and (1,2) pairs.
387*b2055c35SXin Li // a3 = v0 - v3
388*b2055c35SXin Li // a2 = v1 - v2
389*b2055c35SXin Li const __m128i a32 = _mm_sub_epi16(*v01, *v32);
390*b2055c35SXin Li const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
391*b2055c35SXin Li
392*b2055c35SXin Li const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
393*b2055c35SXin Li const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
394*b2055c35SXin Li const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
395*b2055c35SXin Li const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
396*b2055c35SXin Li const __m128i d3 = _mm_add_epi32(c3, k51000);
397*b2055c35SXin Li const __m128i e1 = _mm_srai_epi32(d1, 16);
398*b2055c35SXin Li const __m128i e3 = _mm_srai_epi32(d3, 16);
399*b2055c35SXin Li // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
400*b2055c35SXin Li // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
401*b2055c35SXin Li const __m128i f1 = _mm_packs_epi32(e1, e1);
402*b2055c35SXin Li const __m128i f3 = _mm_packs_epi32(e3, e3);
403*b2055c35SXin Li // g1 = f1 + (a3 != 0);
404*b2055c35SXin Li // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
405*b2055c35SXin Li // desired (0, 1), we add one earlier through k12000_plus_one.
406*b2055c35SXin Li // -> g1 = f1 + 1 - (a3 == 0)
407*b2055c35SXin Li const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
408*b2055c35SXin Li
409*b2055c35SXin Li // a0 = v0 + v3
410*b2055c35SXin Li // a1 = v1 + v2
411*b2055c35SXin Li const __m128i a01 = _mm_add_epi16(*v01, *v32);
412*b2055c35SXin Li const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
413*b2055c35SXin Li const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
414*b2055c35SXin Li const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
415*b2055c35SXin Li const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
416*b2055c35SXin Li // d0 = (a0 + a1 + 7) >> 4;
417*b2055c35SXin Li // d2 = (a0 - a1 + 7) >> 4;
418*b2055c35SXin Li const __m128i d0 = _mm_srai_epi16(c0, 4);
419*b2055c35SXin Li const __m128i d2 = _mm_srai_epi16(c2, 4);
420*b2055c35SXin Li
421*b2055c35SXin Li const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
422*b2055c35SXin Li const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
423*b2055c35SXin Li _mm_storeu_si128((__m128i*)&out[0], d0_g1);
424*b2055c35SXin Li _mm_storeu_si128((__m128i*)&out[8], d2_f3);
425*b2055c35SXin Li }
426*b2055c35SXin Li
FTransform_SSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)427*b2055c35SXin Li static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref,
428*b2055c35SXin Li int16_t* out) {
429*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
430*b2055c35SXin Li // Load src.
431*b2055c35SXin Li const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
432*b2055c35SXin Li const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
433*b2055c35SXin Li const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
434*b2055c35SXin Li const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
435*b2055c35SXin Li // 00 01 02 03 *
436*b2055c35SXin Li // 10 11 12 13 *
437*b2055c35SXin Li // 20 21 22 23 *
438*b2055c35SXin Li // 30 31 32 33 *
439*b2055c35SXin Li // Shuffle.
440*b2055c35SXin Li const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
441*b2055c35SXin Li const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
442*b2055c35SXin Li // 00 01 10 11 02 03 12 13 * * ...
443*b2055c35SXin Li // 20 21 30 31 22 22 32 33 * * ...
444*b2055c35SXin Li
445*b2055c35SXin Li // Load ref.
446*b2055c35SXin Li const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
447*b2055c35SXin Li const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
448*b2055c35SXin Li const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
449*b2055c35SXin Li const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
450*b2055c35SXin Li const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
451*b2055c35SXin Li const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
452*b2055c35SXin Li
453*b2055c35SXin Li // Convert both to 16 bit.
454*b2055c35SXin Li const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
455*b2055c35SXin Li const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
456*b2055c35SXin Li const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
457*b2055c35SXin Li const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
458*b2055c35SXin Li
459*b2055c35SXin Li // Compute the difference.
460*b2055c35SXin Li const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
461*b2055c35SXin Li const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
462*b2055c35SXin Li __m128i v01, v32;
463*b2055c35SXin Li
464*b2055c35SXin Li // First pass
465*b2055c35SXin Li FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
466*b2055c35SXin Li
467*b2055c35SXin Li // Second pass
468*b2055c35SXin Li FTransformPass2_SSE2(&v01, &v32, out);
469*b2055c35SXin Li }
470*b2055c35SXin Li
FTransform2_SSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)471*b2055c35SXin Li static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref,
472*b2055c35SXin Li int16_t* out) {
473*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
474*b2055c35SXin Li
475*b2055c35SXin Li // Load src and convert to 16b.
476*b2055c35SXin Li const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
477*b2055c35SXin Li const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
478*b2055c35SXin Li const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
479*b2055c35SXin Li const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
480*b2055c35SXin Li const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
481*b2055c35SXin Li const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
482*b2055c35SXin Li const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
483*b2055c35SXin Li const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
484*b2055c35SXin Li // Load ref and convert to 16b.
485*b2055c35SXin Li const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
486*b2055c35SXin Li const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
487*b2055c35SXin Li const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
488*b2055c35SXin Li const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
489*b2055c35SXin Li const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
490*b2055c35SXin Li const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
491*b2055c35SXin Li const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
492*b2055c35SXin Li const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
493*b2055c35SXin Li // Compute difference. -> 00 01 02 03 00' 01' 02' 03'
494*b2055c35SXin Li const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
495*b2055c35SXin Li const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
496*b2055c35SXin Li const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
497*b2055c35SXin Li const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
498*b2055c35SXin Li
499*b2055c35SXin Li // Unpack and shuffle
500*b2055c35SXin Li // 00 01 02 03 0 0 0 0
501*b2055c35SXin Li // 10 11 12 13 0 0 0 0
502*b2055c35SXin Li // 20 21 22 23 0 0 0 0
503*b2055c35SXin Li // 30 31 32 33 0 0 0 0
504*b2055c35SXin Li const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
505*b2055c35SXin Li const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
506*b2055c35SXin Li const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
507*b2055c35SXin Li const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
508*b2055c35SXin Li __m128i v01l, v32l;
509*b2055c35SXin Li __m128i v01h, v32h;
510*b2055c35SXin Li
511*b2055c35SXin Li // First pass
512*b2055c35SXin Li FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
513*b2055c35SXin Li FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
514*b2055c35SXin Li
515*b2055c35SXin Li // Second pass
516*b2055c35SXin Li FTransformPass2_SSE2(&v01l, &v32l, out + 0);
517*b2055c35SXin Li FTransformPass2_SSE2(&v01h, &v32h, out + 16);
518*b2055c35SXin Li }
519*b2055c35SXin Li
FTransformWHTRow_SSE2(const int16_t * const in,__m128i * const out)520*b2055c35SXin Li static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) {
521*b2055c35SXin Li const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
522*b2055c35SXin Li const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
523*b2055c35SXin Li const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
524*b2055c35SXin Li const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
525*b2055c35SXin Li const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
526*b2055c35SXin Li const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ...
527*b2055c35SXin Li const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ...
528*b2055c35SXin Li const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ...
529*b2055c35SXin Li const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ...
530*b2055c35SXin Li const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ...
531*b2055c35SXin Li const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ...
532*b2055c35SXin Li const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1
533*b2055c35SXin Li *out = _mm_madd_epi16(D, kMult);
534*b2055c35SXin Li }
535*b2055c35SXin Li
FTransformWHT_SSE2(const int16_t * in,int16_t * out)536*b2055c35SXin Li static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) {
537*b2055c35SXin Li // Input is 12b signed.
538*b2055c35SXin Li __m128i row0, row1, row2, row3;
539*b2055c35SXin Li // Rows are 14b signed.
540*b2055c35SXin Li FTransformWHTRow_SSE2(in + 0 * 64, &row0);
541*b2055c35SXin Li FTransformWHTRow_SSE2(in + 1 * 64, &row1);
542*b2055c35SXin Li FTransformWHTRow_SSE2(in + 2 * 64, &row2);
543*b2055c35SXin Li FTransformWHTRow_SSE2(in + 3 * 64, &row3);
544*b2055c35SXin Li
545*b2055c35SXin Li {
546*b2055c35SXin Li // The a* are 15b signed.
547*b2055c35SXin Li const __m128i a0 = _mm_add_epi32(row0, row2);
548*b2055c35SXin Li const __m128i a1 = _mm_add_epi32(row1, row3);
549*b2055c35SXin Li const __m128i a2 = _mm_sub_epi32(row1, row3);
550*b2055c35SXin Li const __m128i a3 = _mm_sub_epi32(row0, row2);
551*b2055c35SXin Li const __m128i a0a3 = _mm_packs_epi32(a0, a3);
552*b2055c35SXin Li const __m128i a1a2 = _mm_packs_epi32(a1, a2);
553*b2055c35SXin Li
554*b2055c35SXin Li // The b* are 16b signed.
555*b2055c35SXin Li const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
556*b2055c35SXin Li const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
557*b2055c35SXin Li const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
558*b2055c35SXin Li const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
559*b2055c35SXin Li
560*b2055c35SXin Li _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
561*b2055c35SXin Li _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
562*b2055c35SXin Li }
563*b2055c35SXin Li }
564*b2055c35SXin Li
565*b2055c35SXin Li //------------------------------------------------------------------------------
566*b2055c35SXin Li // Compute susceptibility based on DCT-coeff histograms:
567*b2055c35SXin Li // the higher, the "easier" the macroblock is to compress.
568*b2055c35SXin Li
CollectHistogram_SSE2(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)569*b2055c35SXin Li static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred,
570*b2055c35SXin Li int start_block, int end_block,
571*b2055c35SXin Li VP8Histogram* const histo) {
572*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
573*b2055c35SXin Li const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
574*b2055c35SXin Li int j;
575*b2055c35SXin Li int distribution[MAX_COEFF_THRESH + 1] = { 0 };
576*b2055c35SXin Li for (j = start_block; j < end_block; ++j) {
577*b2055c35SXin Li int16_t out[16];
578*b2055c35SXin Li int k;
579*b2055c35SXin Li
580*b2055c35SXin Li FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
581*b2055c35SXin Li
582*b2055c35SXin Li // Convert coefficients to bin (within out[]).
583*b2055c35SXin Li {
584*b2055c35SXin Li // Load.
585*b2055c35SXin Li const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
586*b2055c35SXin Li const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
587*b2055c35SXin Li const __m128i d0 = _mm_sub_epi16(zero, out0);
588*b2055c35SXin Li const __m128i d1 = _mm_sub_epi16(zero, out1);
589*b2055c35SXin Li const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b
590*b2055c35SXin Li const __m128i abs1 = _mm_max_epi16(out1, d1);
591*b2055c35SXin Li // v = abs(out) >> 3
592*b2055c35SXin Li const __m128i v0 = _mm_srai_epi16(abs0, 3);
593*b2055c35SXin Li const __m128i v1 = _mm_srai_epi16(abs1, 3);
594*b2055c35SXin Li // bin = min(v, MAX_COEFF_THRESH)
595*b2055c35SXin Li const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
596*b2055c35SXin Li const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
597*b2055c35SXin Li // Store.
598*b2055c35SXin Li _mm_storeu_si128((__m128i*)&out[0], bin0);
599*b2055c35SXin Li _mm_storeu_si128((__m128i*)&out[8], bin1);
600*b2055c35SXin Li }
601*b2055c35SXin Li
602*b2055c35SXin Li // Convert coefficients to bin.
603*b2055c35SXin Li for (k = 0; k < 16; ++k) {
604*b2055c35SXin Li ++distribution[out[k]];
605*b2055c35SXin Li }
606*b2055c35SXin Li }
607*b2055c35SXin Li VP8SetHistogramData(distribution, histo);
608*b2055c35SXin Li }
609*b2055c35SXin Li
610*b2055c35SXin Li //------------------------------------------------------------------------------
611*b2055c35SXin Li // Intra predictions
612*b2055c35SXin Li
613*b2055c35SXin Li // helper for chroma-DC predictions
Put8x8uv_SSE2(uint8_t v,uint8_t * dst)614*b2055c35SXin Li static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
615*b2055c35SXin Li int j;
616*b2055c35SXin Li const __m128i values = _mm_set1_epi8((char)v);
617*b2055c35SXin Li for (j = 0; j < 8; ++j) {
618*b2055c35SXin Li _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
619*b2055c35SXin Li }
620*b2055c35SXin Li }
621*b2055c35SXin Li
Put16_SSE2(uint8_t v,uint8_t * dst)622*b2055c35SXin Li static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
623*b2055c35SXin Li int j;
624*b2055c35SXin Li const __m128i values = _mm_set1_epi8((char)v);
625*b2055c35SXin Li for (j = 0; j < 16; ++j) {
626*b2055c35SXin Li _mm_store_si128((__m128i*)(dst + j * BPS), values);
627*b2055c35SXin Li }
628*b2055c35SXin Li }
629*b2055c35SXin Li
Fill_SSE2(uint8_t * dst,int value,int size)630*b2055c35SXin Li static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
631*b2055c35SXin Li if (size == 4) {
632*b2055c35SXin Li int j;
633*b2055c35SXin Li for (j = 0; j < 4; ++j) {
634*b2055c35SXin Li memset(dst + j * BPS, value, 4);
635*b2055c35SXin Li }
636*b2055c35SXin Li } else if (size == 8) {
637*b2055c35SXin Li Put8x8uv_SSE2(value, dst);
638*b2055c35SXin Li } else {
639*b2055c35SXin Li Put16_SSE2(value, dst);
640*b2055c35SXin Li }
641*b2055c35SXin Li }
642*b2055c35SXin Li
VE8uv_SSE2(uint8_t * dst,const uint8_t * top)643*b2055c35SXin Li static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) {
644*b2055c35SXin Li int j;
645*b2055c35SXin Li const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
646*b2055c35SXin Li for (j = 0; j < 8; ++j) {
647*b2055c35SXin Li _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
648*b2055c35SXin Li }
649*b2055c35SXin Li }
650*b2055c35SXin Li
VE16_SSE2(uint8_t * dst,const uint8_t * top)651*b2055c35SXin Li static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) {
652*b2055c35SXin Li const __m128i top_values = _mm_load_si128((const __m128i*)top);
653*b2055c35SXin Li int j;
654*b2055c35SXin Li for (j = 0; j < 16; ++j) {
655*b2055c35SXin Li _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
656*b2055c35SXin Li }
657*b2055c35SXin Li }
658*b2055c35SXin Li
VerticalPred_SSE2(uint8_t * dst,const uint8_t * top,int size)659*b2055c35SXin Li static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst,
660*b2055c35SXin Li const uint8_t* top, int size) {
661*b2055c35SXin Li if (top != NULL) {
662*b2055c35SXin Li if (size == 8) {
663*b2055c35SXin Li VE8uv_SSE2(dst, top);
664*b2055c35SXin Li } else {
665*b2055c35SXin Li VE16_SSE2(dst, top);
666*b2055c35SXin Li }
667*b2055c35SXin Li } else {
668*b2055c35SXin Li Fill_SSE2(dst, 127, size);
669*b2055c35SXin Li }
670*b2055c35SXin Li }
671*b2055c35SXin Li
HE8uv_SSE2(uint8_t * dst,const uint8_t * left)672*b2055c35SXin Li static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) {
673*b2055c35SXin Li int j;
674*b2055c35SXin Li for (j = 0; j < 8; ++j) {
675*b2055c35SXin Li const __m128i values = _mm_set1_epi8((char)left[j]);
676*b2055c35SXin Li _mm_storel_epi64((__m128i*)dst, values);
677*b2055c35SXin Li dst += BPS;
678*b2055c35SXin Li }
679*b2055c35SXin Li }
680*b2055c35SXin Li
HE16_SSE2(uint8_t * dst,const uint8_t * left)681*b2055c35SXin Li static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) {
682*b2055c35SXin Li int j;
683*b2055c35SXin Li for (j = 0; j < 16; ++j) {
684*b2055c35SXin Li const __m128i values = _mm_set1_epi8((char)left[j]);
685*b2055c35SXin Li _mm_store_si128((__m128i*)dst, values);
686*b2055c35SXin Li dst += BPS;
687*b2055c35SXin Li }
688*b2055c35SXin Li }
689*b2055c35SXin Li
HorizontalPred_SSE2(uint8_t * dst,const uint8_t * left,int size)690*b2055c35SXin Li static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst,
691*b2055c35SXin Li const uint8_t* left, int size) {
692*b2055c35SXin Li if (left != NULL) {
693*b2055c35SXin Li if (size == 8) {
694*b2055c35SXin Li HE8uv_SSE2(dst, left);
695*b2055c35SXin Li } else {
696*b2055c35SXin Li HE16_SSE2(dst, left);
697*b2055c35SXin Li }
698*b2055c35SXin Li } else {
699*b2055c35SXin Li Fill_SSE2(dst, 129, size);
700*b2055c35SXin Li }
701*b2055c35SXin Li }
702*b2055c35SXin Li
TM_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)703*b2055c35SXin Li static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left,
704*b2055c35SXin Li const uint8_t* top, int size) {
705*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
706*b2055c35SXin Li int y;
707*b2055c35SXin Li if (size == 8) {
708*b2055c35SXin Li const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
709*b2055c35SXin Li const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
710*b2055c35SXin Li for (y = 0; y < 8; ++y, dst += BPS) {
711*b2055c35SXin Li const int val = left[y] - left[-1];
712*b2055c35SXin Li const __m128i base = _mm_set1_epi16(val);
713*b2055c35SXin Li const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
714*b2055c35SXin Li _mm_storel_epi64((__m128i*)dst, out);
715*b2055c35SXin Li }
716*b2055c35SXin Li } else {
717*b2055c35SXin Li const __m128i top_values = _mm_load_si128((const __m128i*)top);
718*b2055c35SXin Li const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
719*b2055c35SXin Li const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
720*b2055c35SXin Li for (y = 0; y < 16; ++y, dst += BPS) {
721*b2055c35SXin Li const int val = left[y] - left[-1];
722*b2055c35SXin Li const __m128i base = _mm_set1_epi16(val);
723*b2055c35SXin Li const __m128i out_0 = _mm_add_epi16(base, top_base_0);
724*b2055c35SXin Li const __m128i out_1 = _mm_add_epi16(base, top_base_1);
725*b2055c35SXin Li const __m128i out = _mm_packus_epi16(out_0, out_1);
726*b2055c35SXin Li _mm_store_si128((__m128i*)dst, out);
727*b2055c35SXin Li }
728*b2055c35SXin Li }
729*b2055c35SXin Li }
730*b2055c35SXin Li
TrueMotion_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)731*b2055c35SXin Li static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left,
732*b2055c35SXin Li const uint8_t* top, int size) {
733*b2055c35SXin Li if (left != NULL) {
734*b2055c35SXin Li if (top != NULL) {
735*b2055c35SXin Li TM_SSE2(dst, left, top, size);
736*b2055c35SXin Li } else {
737*b2055c35SXin Li HorizontalPred_SSE2(dst, left, size);
738*b2055c35SXin Li }
739*b2055c35SXin Li } else {
740*b2055c35SXin Li // true motion without left samples (hence: with default 129 value)
741*b2055c35SXin Li // is equivalent to VE prediction where you just copy the top samples.
742*b2055c35SXin Li // Note that if top samples are not available, the default value is
743*b2055c35SXin Li // then 129, and not 127 as in the VerticalPred case.
744*b2055c35SXin Li if (top != NULL) {
745*b2055c35SXin Li VerticalPred_SSE2(dst, top, size);
746*b2055c35SXin Li } else {
747*b2055c35SXin Li Fill_SSE2(dst, 129, size);
748*b2055c35SXin Li }
749*b2055c35SXin Li }
750*b2055c35SXin Li }
751*b2055c35SXin Li
DC8uv_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)752*b2055c35SXin Li static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left,
753*b2055c35SXin Li const uint8_t* top) {
754*b2055c35SXin Li const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
755*b2055c35SXin Li const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
756*b2055c35SXin Li const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
757*b2055c35SXin Li const int DC = VP8HorizontalAdd8b(&combined) + 8;
758*b2055c35SXin Li Put8x8uv_SSE2(DC >> 4, dst);
759*b2055c35SXin Li }
760*b2055c35SXin Li
DC8uvNoLeft_SSE2(uint8_t * dst,const uint8_t * top)761*b2055c35SXin Li static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
762*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
763*b2055c35SXin Li const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
764*b2055c35SXin Li const __m128i sum = _mm_sad_epu8(top_values, zero);
765*b2055c35SXin Li const int DC = _mm_cvtsi128_si32(sum) + 4;
766*b2055c35SXin Li Put8x8uv_SSE2(DC >> 3, dst);
767*b2055c35SXin Li }
768*b2055c35SXin Li
DC8uvNoTop_SSE2(uint8_t * dst,const uint8_t * left)769*b2055c35SXin Li static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) {
770*b2055c35SXin Li // 'left' is contiguous so we can reuse the top summation.
771*b2055c35SXin Li DC8uvNoLeft_SSE2(dst, left);
772*b2055c35SXin Li }
773*b2055c35SXin Li
DC8uvNoTopLeft_SSE2(uint8_t * dst)774*b2055c35SXin Li static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
775*b2055c35SXin Li Put8x8uv_SSE2(0x80, dst);
776*b2055c35SXin Li }
777*b2055c35SXin Li
DC8uvMode_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)778*b2055c35SXin Li static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left,
779*b2055c35SXin Li const uint8_t* top) {
780*b2055c35SXin Li if (top != NULL) {
781*b2055c35SXin Li if (left != NULL) { // top and left present
782*b2055c35SXin Li DC8uv_SSE2(dst, left, top);
783*b2055c35SXin Li } else { // top, but no left
784*b2055c35SXin Li DC8uvNoLeft_SSE2(dst, top);
785*b2055c35SXin Li }
786*b2055c35SXin Li } else if (left != NULL) { // left but no top
787*b2055c35SXin Li DC8uvNoTop_SSE2(dst, left);
788*b2055c35SXin Li } else { // no top, no left, nothing.
789*b2055c35SXin Li DC8uvNoTopLeft_SSE2(dst);
790*b2055c35SXin Li }
791*b2055c35SXin Li }
792*b2055c35SXin Li
DC16_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)793*b2055c35SXin Li static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left,
794*b2055c35SXin Li const uint8_t* top) {
795*b2055c35SXin Li const __m128i top_row = _mm_load_si128((const __m128i*)top);
796*b2055c35SXin Li const __m128i left_row = _mm_load_si128((const __m128i*)left);
797*b2055c35SXin Li const int DC =
798*b2055c35SXin Li VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
799*b2055c35SXin Li Put16_SSE2(DC >> 5, dst);
800*b2055c35SXin Li }
801*b2055c35SXin Li
DC16NoLeft_SSE2(uint8_t * dst,const uint8_t * top)802*b2055c35SXin Li static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
803*b2055c35SXin Li const __m128i top_row = _mm_load_si128((const __m128i*)top);
804*b2055c35SXin Li const int DC = VP8HorizontalAdd8b(&top_row) + 8;
805*b2055c35SXin Li Put16_SSE2(DC >> 4, dst);
806*b2055c35SXin Li }
807*b2055c35SXin Li
DC16NoTop_SSE2(uint8_t * dst,const uint8_t * left)808*b2055c35SXin Li static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) {
809*b2055c35SXin Li // 'left' is contiguous so we can reuse the top summation.
810*b2055c35SXin Li DC16NoLeft_SSE2(dst, left);
811*b2055c35SXin Li }
812*b2055c35SXin Li
DC16NoTopLeft_SSE2(uint8_t * dst)813*b2055c35SXin Li static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
814*b2055c35SXin Li Put16_SSE2(0x80, dst);
815*b2055c35SXin Li }
816*b2055c35SXin Li
DC16Mode_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)817*b2055c35SXin Li static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left,
818*b2055c35SXin Li const uint8_t* top) {
819*b2055c35SXin Li if (top != NULL) {
820*b2055c35SXin Li if (left != NULL) { // top and left present
821*b2055c35SXin Li DC16_SSE2(dst, left, top);
822*b2055c35SXin Li } else { // top, but no left
823*b2055c35SXin Li DC16NoLeft_SSE2(dst, top);
824*b2055c35SXin Li }
825*b2055c35SXin Li } else if (left != NULL) { // left but no top
826*b2055c35SXin Li DC16NoTop_SSE2(dst, left);
827*b2055c35SXin Li } else { // no top, no left, nothing.
828*b2055c35SXin Li DC16NoTopLeft_SSE2(dst);
829*b2055c35SXin Li }
830*b2055c35SXin Li }
831*b2055c35SXin Li
832*b2055c35SXin Li //------------------------------------------------------------------------------
833*b2055c35SXin Li // 4x4 predictions
834*b2055c35SXin Li
835*b2055c35SXin Li #define DST(x, y) dst[(x) + (y) * BPS]
836*b2055c35SXin Li #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
837*b2055c35SXin Li #define AVG2(a, b) (((a) + (b) + 1) >> 1)
838*b2055c35SXin Li
839*b2055c35SXin Li // We use the following 8b-arithmetic tricks:
840*b2055c35SXin Li // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
841*b2055c35SXin Li // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
842*b2055c35SXin Li // and:
843*b2055c35SXin Li // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
844*b2055c35SXin Li // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1
845*b2055c35SXin Li // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
846*b2055c35SXin Li
VE4_SSE2(uint8_t * dst,const uint8_t * top)847*b2055c35SXin Li static WEBP_INLINE void VE4_SSE2(uint8_t* dst,
848*b2055c35SXin Li const uint8_t* top) { // vertical
849*b2055c35SXin Li const __m128i one = _mm_set1_epi8(1);
850*b2055c35SXin Li const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
851*b2055c35SXin Li const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
852*b2055c35SXin Li const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
853*b2055c35SXin Li const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
854*b2055c35SXin Li const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
855*b2055c35SXin Li const __m128i b = _mm_subs_epu8(a, lsb);
856*b2055c35SXin Li const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
857*b2055c35SXin Li const int vals = _mm_cvtsi128_si32(avg);
858*b2055c35SXin Li int i;
859*b2055c35SXin Li for (i = 0; i < 4; ++i) {
860*b2055c35SXin Li WebPInt32ToMem(dst + i * BPS, vals);
861*b2055c35SXin Li }
862*b2055c35SXin Li }
863*b2055c35SXin Li
HE4_SSE2(uint8_t * dst,const uint8_t * top)864*b2055c35SXin Li static WEBP_INLINE void HE4_SSE2(uint8_t* dst,
865*b2055c35SXin Li const uint8_t* top) { // horizontal
866*b2055c35SXin Li const int X = top[-1];
867*b2055c35SXin Li const int I = top[-2];
868*b2055c35SXin Li const int J = top[-3];
869*b2055c35SXin Li const int K = top[-4];
870*b2055c35SXin Li const int L = top[-5];
871*b2055c35SXin Li WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
872*b2055c35SXin Li WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
873*b2055c35SXin Li WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
874*b2055c35SXin Li WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
875*b2055c35SXin Li }
876*b2055c35SXin Li
DC4_SSE2(uint8_t * dst,const uint8_t * top)877*b2055c35SXin Li static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) {
878*b2055c35SXin Li uint32_t dc = 4;
879*b2055c35SXin Li int i;
880*b2055c35SXin Li for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
881*b2055c35SXin Li Fill_SSE2(dst, dc >> 3, 4);
882*b2055c35SXin Li }
883*b2055c35SXin Li
LD4_SSE2(uint8_t * dst,const uint8_t * top)884*b2055c35SXin Li static WEBP_INLINE void LD4_SSE2(uint8_t* dst,
885*b2055c35SXin Li const uint8_t* top) { // Down-Left
886*b2055c35SXin Li const __m128i one = _mm_set1_epi8(1);
887*b2055c35SXin Li const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
888*b2055c35SXin Li const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
889*b2055c35SXin Li const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
890*b2055c35SXin Li const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
891*b2055c35SXin Li const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
892*b2055c35SXin Li const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
893*b2055c35SXin Li const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
894*b2055c35SXin Li const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
895*b2055c35SXin Li WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg ));
896*b2055c35SXin Li WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
897*b2055c35SXin Li WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
898*b2055c35SXin Li WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
899*b2055c35SXin Li }
900*b2055c35SXin Li
VR4_SSE2(uint8_t * dst,const uint8_t * top)901*b2055c35SXin Li static WEBP_INLINE void VR4_SSE2(uint8_t* dst,
902*b2055c35SXin Li const uint8_t* top) { // Vertical-Right
903*b2055c35SXin Li const __m128i one = _mm_set1_epi8(1);
904*b2055c35SXin Li const int I = top[-2];
905*b2055c35SXin Li const int J = top[-3];
906*b2055c35SXin Li const int K = top[-4];
907*b2055c35SXin Li const int X = top[-1];
908*b2055c35SXin Li const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
909*b2055c35SXin Li const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
910*b2055c35SXin Li const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
911*b2055c35SXin Li const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
912*b2055c35SXin Li const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
913*b2055c35SXin Li const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
914*b2055c35SXin Li const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
915*b2055c35SXin Li const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
916*b2055c35SXin Li const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
917*b2055c35SXin Li WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd ));
918*b2055c35SXin Li WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh ));
919*b2055c35SXin Li WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
920*b2055c35SXin Li WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
921*b2055c35SXin Li
922*b2055c35SXin Li // these two are hard to implement in SSE2, so we keep the C-version:
923*b2055c35SXin Li DST(0, 2) = AVG3(J, I, X);
924*b2055c35SXin Li DST(0, 3) = AVG3(K, J, I);
925*b2055c35SXin Li }
926*b2055c35SXin Li
VL4_SSE2(uint8_t * dst,const uint8_t * top)927*b2055c35SXin Li static WEBP_INLINE void VL4_SSE2(uint8_t* dst,
928*b2055c35SXin Li const uint8_t* top) { // Vertical-Left
929*b2055c35SXin Li const __m128i one = _mm_set1_epi8(1);
930*b2055c35SXin Li const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
931*b2055c35SXin Li const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
932*b2055c35SXin Li const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
933*b2055c35SXin Li const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
934*b2055c35SXin Li const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
935*b2055c35SXin Li const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
936*b2055c35SXin Li const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
937*b2055c35SXin Li const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
938*b2055c35SXin Li const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
939*b2055c35SXin Li const __m128i abbc = _mm_or_si128(ab, bc);
940*b2055c35SXin Li const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
941*b2055c35SXin Li const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
942*b2055c35SXin Li const uint32_t extra_out =
943*b2055c35SXin Li (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
944*b2055c35SXin Li WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 ));
945*b2055c35SXin Li WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 ));
946*b2055c35SXin Li WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
947*b2055c35SXin Li WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
948*b2055c35SXin Li
949*b2055c35SXin Li // these two are hard to get and irregular
950*b2055c35SXin Li DST(3, 2) = (extra_out >> 0) & 0xff;
951*b2055c35SXin Li DST(3, 3) = (extra_out >> 8) & 0xff;
952*b2055c35SXin Li }
953*b2055c35SXin Li
RD4_SSE2(uint8_t * dst,const uint8_t * top)954*b2055c35SXin Li static WEBP_INLINE void RD4_SSE2(uint8_t* dst,
955*b2055c35SXin Li const uint8_t* top) { // Down-right
956*b2055c35SXin Li const __m128i one = _mm_set1_epi8(1);
957*b2055c35SXin Li const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
958*b2055c35SXin Li const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
959*b2055c35SXin Li const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
960*b2055c35SXin Li const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
961*b2055c35SXin Li const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
962*b2055c35SXin Li const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
963*b2055c35SXin Li const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
964*b2055c35SXin Li const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
965*b2055c35SXin Li WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg ));
966*b2055c35SXin Li WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
967*b2055c35SXin Li WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
968*b2055c35SXin Li WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
969*b2055c35SXin Li }
970*b2055c35SXin Li
HU4_SSE2(uint8_t * dst,const uint8_t * top)971*b2055c35SXin Li static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) {
972*b2055c35SXin Li const int I = top[-2];
973*b2055c35SXin Li const int J = top[-3];
974*b2055c35SXin Li const int K = top[-4];
975*b2055c35SXin Li const int L = top[-5];
976*b2055c35SXin Li DST(0, 0) = AVG2(I, J);
977*b2055c35SXin Li DST(2, 0) = DST(0, 1) = AVG2(J, K);
978*b2055c35SXin Li DST(2, 1) = DST(0, 2) = AVG2(K, L);
979*b2055c35SXin Li DST(1, 0) = AVG3(I, J, K);
980*b2055c35SXin Li DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
981*b2055c35SXin Li DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
982*b2055c35SXin Li DST(3, 2) = DST(2, 2) =
983*b2055c35SXin Li DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
984*b2055c35SXin Li }
985*b2055c35SXin Li
HD4_SSE2(uint8_t * dst,const uint8_t * top)986*b2055c35SXin Li static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) {
987*b2055c35SXin Li const int X = top[-1];
988*b2055c35SXin Li const int I = top[-2];
989*b2055c35SXin Li const int J = top[-3];
990*b2055c35SXin Li const int K = top[-4];
991*b2055c35SXin Li const int L = top[-5];
992*b2055c35SXin Li const int A = top[0];
993*b2055c35SXin Li const int B = top[1];
994*b2055c35SXin Li const int C = top[2];
995*b2055c35SXin Li
996*b2055c35SXin Li DST(0, 0) = DST(2, 1) = AVG2(I, X);
997*b2055c35SXin Li DST(0, 1) = DST(2, 2) = AVG2(J, I);
998*b2055c35SXin Li DST(0, 2) = DST(2, 3) = AVG2(K, J);
999*b2055c35SXin Li DST(0, 3) = AVG2(L, K);
1000*b2055c35SXin Li
1001*b2055c35SXin Li DST(3, 0) = AVG3(A, B, C);
1002*b2055c35SXin Li DST(2, 0) = AVG3(X, A, B);
1003*b2055c35SXin Li DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
1004*b2055c35SXin Li DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
1005*b2055c35SXin Li DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
1006*b2055c35SXin Li DST(1, 3) = AVG3(L, K, J);
1007*b2055c35SXin Li }
1008*b2055c35SXin Li
TM4_SSE2(uint8_t * dst,const uint8_t * top)1009*b2055c35SXin Li static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) {
1010*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
1011*b2055c35SXin Li const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1012*b2055c35SXin Li const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1013*b2055c35SXin Li int y;
1014*b2055c35SXin Li for (y = 0; y < 4; ++y, dst += BPS) {
1015*b2055c35SXin Li const int val = top[-2 - y] - top[-1];
1016*b2055c35SXin Li const __m128i base = _mm_set1_epi16(val);
1017*b2055c35SXin Li const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1018*b2055c35SXin Li WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1019*b2055c35SXin Li }
1020*b2055c35SXin Li }
1021*b2055c35SXin Li
1022*b2055c35SXin Li #undef DST
1023*b2055c35SXin Li #undef AVG3
1024*b2055c35SXin Li #undef AVG2
1025*b2055c35SXin Li
1026*b2055c35SXin Li //------------------------------------------------------------------------------
1027*b2055c35SXin Li // luma 4x4 prediction
1028*b2055c35SXin Li
1029*b2055c35SXin Li // Left samples are top[-5 .. -2], top_left is top[-1], top are
1030*b2055c35SXin Li // located at top[0..3], and top right is top[4..7]
Intra4Preds_SSE2(uint8_t * dst,const uint8_t * top)1031*b2055c35SXin Li static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) {
1032*b2055c35SXin Li DC4_SSE2(I4DC4 + dst, top);
1033*b2055c35SXin Li TM4_SSE2(I4TM4 + dst, top);
1034*b2055c35SXin Li VE4_SSE2(I4VE4 + dst, top);
1035*b2055c35SXin Li HE4_SSE2(I4HE4 + dst, top);
1036*b2055c35SXin Li RD4_SSE2(I4RD4 + dst, top);
1037*b2055c35SXin Li VR4_SSE2(I4VR4 + dst, top);
1038*b2055c35SXin Li LD4_SSE2(I4LD4 + dst, top);
1039*b2055c35SXin Li VL4_SSE2(I4VL4 + dst, top);
1040*b2055c35SXin Li HD4_SSE2(I4HD4 + dst, top);
1041*b2055c35SXin Li HU4_SSE2(I4HU4 + dst, top);
1042*b2055c35SXin Li }
1043*b2055c35SXin Li
1044*b2055c35SXin Li //------------------------------------------------------------------------------
1045*b2055c35SXin Li // Chroma 8x8 prediction (paragraph 12.2)
1046*b2055c35SXin Li
IntraChromaPreds_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)1047*b2055c35SXin Li static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left,
1048*b2055c35SXin Li const uint8_t* top) {
1049*b2055c35SXin Li // U block
1050*b2055c35SXin Li DC8uvMode_SSE2(C8DC8 + dst, left, top);
1051*b2055c35SXin Li VerticalPred_SSE2(C8VE8 + dst, top, 8);
1052*b2055c35SXin Li HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1053*b2055c35SXin Li TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1054*b2055c35SXin Li // V block
1055*b2055c35SXin Li dst += 8;
1056*b2055c35SXin Li if (top != NULL) top += 8;
1057*b2055c35SXin Li if (left != NULL) left += 16;
1058*b2055c35SXin Li DC8uvMode_SSE2(C8DC8 + dst, left, top);
1059*b2055c35SXin Li VerticalPred_SSE2(C8VE8 + dst, top, 8);
1060*b2055c35SXin Li HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1061*b2055c35SXin Li TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1062*b2055c35SXin Li }
1063*b2055c35SXin Li
1064*b2055c35SXin Li //------------------------------------------------------------------------------
1065*b2055c35SXin Li // luma 16x16 prediction (paragraph 12.3)
1066*b2055c35SXin Li
Intra16Preds_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)1067*b2055c35SXin Li static void Intra16Preds_SSE2(uint8_t* dst,
1068*b2055c35SXin Li const uint8_t* left, const uint8_t* top) {
1069*b2055c35SXin Li DC16Mode_SSE2(I16DC16 + dst, left, top);
1070*b2055c35SXin Li VerticalPred_SSE2(I16VE16 + dst, top, 16);
1071*b2055c35SXin Li HorizontalPred_SSE2(I16HE16 + dst, left, 16);
1072*b2055c35SXin Li TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
1073*b2055c35SXin Li }
1074*b2055c35SXin Li
1075*b2055c35SXin Li //------------------------------------------------------------------------------
1076*b2055c35SXin Li // Metric
1077*b2055c35SXin Li
SubtractAndAccumulate_SSE2(const __m128i a,const __m128i b,__m128i * const sum)1078*b2055c35SXin Li static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
1079*b2055c35SXin Li const __m128i b,
1080*b2055c35SXin Li __m128i* const sum) {
1081*b2055c35SXin Li // take abs(a-b) in 8b
1082*b2055c35SXin Li const __m128i a_b = _mm_subs_epu8(a, b);
1083*b2055c35SXin Li const __m128i b_a = _mm_subs_epu8(b, a);
1084*b2055c35SXin Li const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
1085*b2055c35SXin Li // zero-extend to 16b
1086*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
1087*b2055c35SXin Li const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
1088*b2055c35SXin Li const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
1089*b2055c35SXin Li // multiply with self
1090*b2055c35SXin Li const __m128i sum1 = _mm_madd_epi16(C0, C0);
1091*b2055c35SXin Li const __m128i sum2 = _mm_madd_epi16(C1, C1);
1092*b2055c35SXin Li *sum = _mm_add_epi32(sum1, sum2);
1093*b2055c35SXin Li }
1094*b2055c35SXin Li
SSE_16xN_SSE2(const uint8_t * a,const uint8_t * b,int num_pairs)1095*b2055c35SXin Li static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b,
1096*b2055c35SXin Li int num_pairs) {
1097*b2055c35SXin Li __m128i sum = _mm_setzero_si128();
1098*b2055c35SXin Li int32_t tmp[4];
1099*b2055c35SXin Li int i;
1100*b2055c35SXin Li
1101*b2055c35SXin Li for (i = 0; i < num_pairs; ++i) {
1102*b2055c35SXin Li const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
1103*b2055c35SXin Li const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
1104*b2055c35SXin Li const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
1105*b2055c35SXin Li const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
1106*b2055c35SXin Li __m128i sum1, sum2;
1107*b2055c35SXin Li SubtractAndAccumulate_SSE2(a0, b0, &sum1);
1108*b2055c35SXin Li SubtractAndAccumulate_SSE2(a1, b1, &sum2);
1109*b2055c35SXin Li sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
1110*b2055c35SXin Li a += 2 * BPS;
1111*b2055c35SXin Li b += 2 * BPS;
1112*b2055c35SXin Li }
1113*b2055c35SXin Li _mm_storeu_si128((__m128i*)tmp, sum);
1114*b2055c35SXin Li return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1115*b2055c35SXin Li }
1116*b2055c35SXin Li
SSE16x16_SSE2(const uint8_t * a,const uint8_t * b)1117*b2055c35SXin Li static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) {
1118*b2055c35SXin Li return SSE_16xN_SSE2(a, b, 8);
1119*b2055c35SXin Li }
1120*b2055c35SXin Li
SSE16x8_SSE2(const uint8_t * a,const uint8_t * b)1121*b2055c35SXin Li static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) {
1122*b2055c35SXin Li return SSE_16xN_SSE2(a, b, 4);
1123*b2055c35SXin Li }
1124*b2055c35SXin Li
1125*b2055c35SXin Li #define LOAD_8x16b(ptr) \
1126*b2055c35SXin Li _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
1127*b2055c35SXin Li
SSE8x8_SSE2(const uint8_t * a,const uint8_t * b)1128*b2055c35SXin Li static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) {
1129*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
1130*b2055c35SXin Li int num_pairs = 4;
1131*b2055c35SXin Li __m128i sum = zero;
1132*b2055c35SXin Li int32_t tmp[4];
1133*b2055c35SXin Li while (num_pairs-- > 0) {
1134*b2055c35SXin Li const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1135*b2055c35SXin Li const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1136*b2055c35SXin Li const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1137*b2055c35SXin Li const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1138*b2055c35SXin Li // subtract
1139*b2055c35SXin Li const __m128i c0 = _mm_subs_epi16(a0, b0);
1140*b2055c35SXin Li const __m128i c1 = _mm_subs_epi16(a1, b1);
1141*b2055c35SXin Li // multiply/accumulate with self
1142*b2055c35SXin Li const __m128i d0 = _mm_madd_epi16(c0, c0);
1143*b2055c35SXin Li const __m128i d1 = _mm_madd_epi16(c1, c1);
1144*b2055c35SXin Li // collect
1145*b2055c35SXin Li const __m128i sum01 = _mm_add_epi32(d0, d1);
1146*b2055c35SXin Li sum = _mm_add_epi32(sum, sum01);
1147*b2055c35SXin Li a += 2 * BPS;
1148*b2055c35SXin Li b += 2 * BPS;
1149*b2055c35SXin Li }
1150*b2055c35SXin Li _mm_storeu_si128((__m128i*)tmp, sum);
1151*b2055c35SXin Li return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1152*b2055c35SXin Li }
1153*b2055c35SXin Li #undef LOAD_8x16b
1154*b2055c35SXin Li
SSE4x4_SSE2(const uint8_t * a,const uint8_t * b)1155*b2055c35SXin Li static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) {
1156*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
1157*b2055c35SXin Li
1158*b2055c35SXin Li // Load values. Note that we read 8 pixels instead of 4,
1159*b2055c35SXin Li // but the a/b buffers are over-allocated to that effect.
1160*b2055c35SXin Li const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1161*b2055c35SXin Li const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1162*b2055c35SXin Li const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1163*b2055c35SXin Li const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1164*b2055c35SXin Li const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1165*b2055c35SXin Li const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1166*b2055c35SXin Li const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1167*b2055c35SXin Li const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1168*b2055c35SXin Li // Combine pair of lines.
1169*b2055c35SXin Li const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1170*b2055c35SXin Li const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1171*b2055c35SXin Li const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1172*b2055c35SXin Li const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1173*b2055c35SXin Li // Convert to 16b.
1174*b2055c35SXin Li const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1175*b2055c35SXin Li const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1176*b2055c35SXin Li const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1177*b2055c35SXin Li const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1178*b2055c35SXin Li // subtract, square and accumulate
1179*b2055c35SXin Li const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1180*b2055c35SXin Li const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1181*b2055c35SXin Li const __m128i e0 = _mm_madd_epi16(d0, d0);
1182*b2055c35SXin Li const __m128i e1 = _mm_madd_epi16(d1, d1);
1183*b2055c35SXin Li const __m128i sum = _mm_add_epi32(e0, e1);
1184*b2055c35SXin Li
1185*b2055c35SXin Li int32_t tmp[4];
1186*b2055c35SXin Li _mm_storeu_si128((__m128i*)tmp, sum);
1187*b2055c35SXin Li return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1188*b2055c35SXin Li }
1189*b2055c35SXin Li
1190*b2055c35SXin Li //------------------------------------------------------------------------------
1191*b2055c35SXin Li
Mean16x4_SSE2(const uint8_t * ref,uint32_t dc[4])1192*b2055c35SXin Li static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) {
1193*b2055c35SXin Li const __m128i mask = _mm_set1_epi16(0x00ff);
1194*b2055c35SXin Li const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1195*b2055c35SXin Li const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1196*b2055c35SXin Li const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1197*b2055c35SXin Li const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1198*b2055c35SXin Li const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte
1199*b2055c35SXin Li const __m128i b1 = _mm_srli_epi16(a1, 8);
1200*b2055c35SXin Li const __m128i b2 = _mm_srli_epi16(a2, 8);
1201*b2055c35SXin Li const __m128i b3 = _mm_srli_epi16(a3, 8);
1202*b2055c35SXin Li const __m128i c0 = _mm_and_si128(a0, mask); // lo byte
1203*b2055c35SXin Li const __m128i c1 = _mm_and_si128(a1, mask);
1204*b2055c35SXin Li const __m128i c2 = _mm_and_si128(a2, mask);
1205*b2055c35SXin Li const __m128i c3 = _mm_and_si128(a3, mask);
1206*b2055c35SXin Li const __m128i d0 = _mm_add_epi32(b0, c0);
1207*b2055c35SXin Li const __m128i d1 = _mm_add_epi32(b1, c1);
1208*b2055c35SXin Li const __m128i d2 = _mm_add_epi32(b2, c2);
1209*b2055c35SXin Li const __m128i d3 = _mm_add_epi32(b3, c3);
1210*b2055c35SXin Li const __m128i e0 = _mm_add_epi32(d0, d1);
1211*b2055c35SXin Li const __m128i e1 = _mm_add_epi32(d2, d3);
1212*b2055c35SXin Li const __m128i f0 = _mm_add_epi32(e0, e1);
1213*b2055c35SXin Li uint16_t tmp[8];
1214*b2055c35SXin Li _mm_storeu_si128((__m128i*)tmp, f0);
1215*b2055c35SXin Li dc[0] = tmp[0] + tmp[1];
1216*b2055c35SXin Li dc[1] = tmp[2] + tmp[3];
1217*b2055c35SXin Li dc[2] = tmp[4] + tmp[5];
1218*b2055c35SXin Li dc[3] = tmp[6] + tmp[7];
1219*b2055c35SXin Li }
1220*b2055c35SXin Li
1221*b2055c35SXin Li //------------------------------------------------------------------------------
1222*b2055c35SXin Li // Texture distortion
1223*b2055c35SXin Li //
1224*b2055c35SXin Li // We try to match the spectral content (weighted) between source and
1225*b2055c35SXin Li // reconstructed samples.
1226*b2055c35SXin Li
1227*b2055c35SXin Li // Hadamard transform
1228*b2055c35SXin Li // Returns the weighted sum of the absolute value of transformed coefficients.
1229*b2055c35SXin Li // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform_SSE2(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)1230*b2055c35SXin Li static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB,
1231*b2055c35SXin Li const uint16_t* const w) {
1232*b2055c35SXin Li int32_t sum[4];
1233*b2055c35SXin Li __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1234*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
1235*b2055c35SXin Li
1236*b2055c35SXin Li // Load and combine inputs.
1237*b2055c35SXin Li {
1238*b2055c35SXin Li const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1239*b2055c35SXin Li const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1240*b2055c35SXin Li const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1241*b2055c35SXin Li const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1242*b2055c35SXin Li const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1243*b2055c35SXin Li const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1244*b2055c35SXin Li const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1245*b2055c35SXin Li const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1246*b2055c35SXin Li
1247*b2055c35SXin Li // Combine inA and inB (we'll do two transforms in parallel).
1248*b2055c35SXin Li const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1249*b2055c35SXin Li const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1250*b2055c35SXin Li const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1251*b2055c35SXin Li const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1252*b2055c35SXin Li tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1253*b2055c35SXin Li tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1254*b2055c35SXin Li tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1255*b2055c35SXin Li tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1256*b2055c35SXin Li // a00 a01 a02 a03 b00 b01 b02 b03
1257*b2055c35SXin Li // a10 a11 a12 a13 b10 b11 b12 b13
1258*b2055c35SXin Li // a20 a21 a22 a23 b20 b21 b22 b23
1259*b2055c35SXin Li // a30 a31 a32 a33 b30 b31 b32 b33
1260*b2055c35SXin Li }
1261*b2055c35SXin Li
1262*b2055c35SXin Li // Vertical pass first to avoid a transpose (vertical and horizontal passes
1263*b2055c35SXin Li // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1264*b2055c35SXin Li {
1265*b2055c35SXin Li // Calculate a and b (two 4x4 at once).
1266*b2055c35SXin Li const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1267*b2055c35SXin Li const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1268*b2055c35SXin Li const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1269*b2055c35SXin Li const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1270*b2055c35SXin Li const __m128i b0 = _mm_add_epi16(a0, a1);
1271*b2055c35SXin Li const __m128i b1 = _mm_add_epi16(a3, a2);
1272*b2055c35SXin Li const __m128i b2 = _mm_sub_epi16(a3, a2);
1273*b2055c35SXin Li const __m128i b3 = _mm_sub_epi16(a0, a1);
1274*b2055c35SXin Li // a00 a01 a02 a03 b00 b01 b02 b03
1275*b2055c35SXin Li // a10 a11 a12 a13 b10 b11 b12 b13
1276*b2055c35SXin Li // a20 a21 a22 a23 b20 b21 b22 b23
1277*b2055c35SXin Li // a30 a31 a32 a33 b30 b31 b32 b33
1278*b2055c35SXin Li
1279*b2055c35SXin Li // Transpose the two 4x4.
1280*b2055c35SXin Li VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1281*b2055c35SXin Li }
1282*b2055c35SXin Li
1283*b2055c35SXin Li // Horizontal pass and difference of weighted sums.
1284*b2055c35SXin Li {
1285*b2055c35SXin Li // Load all inputs.
1286*b2055c35SXin Li const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1287*b2055c35SXin Li const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1288*b2055c35SXin Li
1289*b2055c35SXin Li // Calculate a and b (two 4x4 at once).
1290*b2055c35SXin Li const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1291*b2055c35SXin Li const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1292*b2055c35SXin Li const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1293*b2055c35SXin Li const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1294*b2055c35SXin Li const __m128i b0 = _mm_add_epi16(a0, a1);
1295*b2055c35SXin Li const __m128i b1 = _mm_add_epi16(a3, a2);
1296*b2055c35SXin Li const __m128i b2 = _mm_sub_epi16(a3, a2);
1297*b2055c35SXin Li const __m128i b3 = _mm_sub_epi16(a0, a1);
1298*b2055c35SXin Li
1299*b2055c35SXin Li // Separate the transforms of inA and inB.
1300*b2055c35SXin Li __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1301*b2055c35SXin Li __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1302*b2055c35SXin Li __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1303*b2055c35SXin Li __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1304*b2055c35SXin Li
1305*b2055c35SXin Li {
1306*b2055c35SXin Li const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1307*b2055c35SXin Li const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1308*b2055c35SXin Li const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1309*b2055c35SXin Li const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1310*b2055c35SXin Li A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b
1311*b2055c35SXin Li A_b2 = _mm_max_epi16(A_b2, d1);
1312*b2055c35SXin Li B_b0 = _mm_max_epi16(B_b0, d2);
1313*b2055c35SXin Li B_b2 = _mm_max_epi16(B_b2, d3);
1314*b2055c35SXin Li }
1315*b2055c35SXin Li
1316*b2055c35SXin Li // weighted sums
1317*b2055c35SXin Li A_b0 = _mm_madd_epi16(A_b0, w_0);
1318*b2055c35SXin Li A_b2 = _mm_madd_epi16(A_b2, w_8);
1319*b2055c35SXin Li B_b0 = _mm_madd_epi16(B_b0, w_0);
1320*b2055c35SXin Li B_b2 = _mm_madd_epi16(B_b2, w_8);
1321*b2055c35SXin Li A_b0 = _mm_add_epi32(A_b0, A_b2);
1322*b2055c35SXin Li B_b0 = _mm_add_epi32(B_b0, B_b2);
1323*b2055c35SXin Li
1324*b2055c35SXin Li // difference of weighted sums
1325*b2055c35SXin Li A_b0 = _mm_sub_epi32(A_b0, B_b0);
1326*b2055c35SXin Li _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1327*b2055c35SXin Li }
1328*b2055c35SXin Li return sum[0] + sum[1] + sum[2] + sum[3];
1329*b2055c35SXin Li }
1330*b2055c35SXin Li
Disto4x4_SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1331*b2055c35SXin Li static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b,
1332*b2055c35SXin Li const uint16_t* const w) {
1333*b2055c35SXin Li const int diff_sum = TTransform_SSE2(a, b, w);
1334*b2055c35SXin Li return abs(diff_sum) >> 5;
1335*b2055c35SXin Li }
1336*b2055c35SXin Li
Disto16x16_SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1337*b2055c35SXin Li static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b,
1338*b2055c35SXin Li const uint16_t* const w) {
1339*b2055c35SXin Li int D = 0;
1340*b2055c35SXin Li int x, y;
1341*b2055c35SXin Li for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1342*b2055c35SXin Li for (x = 0; x < 16; x += 4) {
1343*b2055c35SXin Li D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1344*b2055c35SXin Li }
1345*b2055c35SXin Li }
1346*b2055c35SXin Li return D;
1347*b2055c35SXin Li }
1348*b2055c35SXin Li
1349*b2055c35SXin Li //------------------------------------------------------------------------------
1350*b2055c35SXin Li // Quantization
1351*b2055c35SXin Li //
1352*b2055c35SXin Li
DoQuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)1353*b2055c35SXin Li static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1354*b2055c35SXin Li const uint16_t* const sharpen,
1355*b2055c35SXin Li const VP8Matrix* const mtx) {
1356*b2055c35SXin Li const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1357*b2055c35SXin Li const __m128i zero = _mm_setzero_si128();
1358*b2055c35SXin Li __m128i coeff0, coeff8;
1359*b2055c35SXin Li __m128i out0, out8;
1360*b2055c35SXin Li __m128i packed_out;
1361*b2055c35SXin Li
1362*b2055c35SXin Li // Load all inputs.
1363*b2055c35SXin Li __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1364*b2055c35SXin Li __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1365*b2055c35SXin Li const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1366*b2055c35SXin Li const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1367*b2055c35SXin Li const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1368*b2055c35SXin Li const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1369*b2055c35SXin Li
1370*b2055c35SXin Li // extract sign(in) (0x0000 if positive, 0xffff if negative)
1371*b2055c35SXin Li const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1372*b2055c35SXin Li const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1373*b2055c35SXin Li
1374*b2055c35SXin Li // coeff = abs(in) = (in ^ sign) - sign
1375*b2055c35SXin Li coeff0 = _mm_xor_si128(in0, sign0);
1376*b2055c35SXin Li coeff8 = _mm_xor_si128(in8, sign8);
1377*b2055c35SXin Li coeff0 = _mm_sub_epi16(coeff0, sign0);
1378*b2055c35SXin Li coeff8 = _mm_sub_epi16(coeff8, sign8);
1379*b2055c35SXin Li
1380*b2055c35SXin Li // coeff = abs(in) + sharpen
1381*b2055c35SXin Li if (sharpen != NULL) {
1382*b2055c35SXin Li const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1383*b2055c35SXin Li const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1384*b2055c35SXin Li coeff0 = _mm_add_epi16(coeff0, sharpen0);
1385*b2055c35SXin Li coeff8 = _mm_add_epi16(coeff8, sharpen8);
1386*b2055c35SXin Li }
1387*b2055c35SXin Li
1388*b2055c35SXin Li // out = (coeff * iQ + B) >> QFIX
1389*b2055c35SXin Li {
1390*b2055c35SXin Li // doing calculations with 32b precision (QFIX=17)
1391*b2055c35SXin Li // out = (coeff * iQ)
1392*b2055c35SXin Li const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1393*b2055c35SXin Li const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1394*b2055c35SXin Li const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1395*b2055c35SXin Li const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1396*b2055c35SXin Li __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1397*b2055c35SXin Li __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1398*b2055c35SXin Li __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1399*b2055c35SXin Li __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1400*b2055c35SXin Li // out = (coeff * iQ + B)
1401*b2055c35SXin Li const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1402*b2055c35SXin Li const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1403*b2055c35SXin Li const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1404*b2055c35SXin Li const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1405*b2055c35SXin Li out_00 = _mm_add_epi32(out_00, bias_00);
1406*b2055c35SXin Li out_04 = _mm_add_epi32(out_04, bias_04);
1407*b2055c35SXin Li out_08 = _mm_add_epi32(out_08, bias_08);
1408*b2055c35SXin Li out_12 = _mm_add_epi32(out_12, bias_12);
1409*b2055c35SXin Li // out = QUANTDIV(coeff, iQ, B, QFIX)
1410*b2055c35SXin Li out_00 = _mm_srai_epi32(out_00, QFIX);
1411*b2055c35SXin Li out_04 = _mm_srai_epi32(out_04, QFIX);
1412*b2055c35SXin Li out_08 = _mm_srai_epi32(out_08, QFIX);
1413*b2055c35SXin Li out_12 = _mm_srai_epi32(out_12, QFIX);
1414*b2055c35SXin Li
1415*b2055c35SXin Li // pack result as 16b
1416*b2055c35SXin Li out0 = _mm_packs_epi32(out_00, out_04);
1417*b2055c35SXin Li out8 = _mm_packs_epi32(out_08, out_12);
1418*b2055c35SXin Li
1419*b2055c35SXin Li // if (coeff > 2047) coeff = 2047
1420*b2055c35SXin Li out0 = _mm_min_epi16(out0, max_coeff_2047);
1421*b2055c35SXin Li out8 = _mm_min_epi16(out8, max_coeff_2047);
1422*b2055c35SXin Li }
1423*b2055c35SXin Li
1424*b2055c35SXin Li // get sign back (if (sign[j]) out_n = -out_n)
1425*b2055c35SXin Li out0 = _mm_xor_si128(out0, sign0);
1426*b2055c35SXin Li out8 = _mm_xor_si128(out8, sign8);
1427*b2055c35SXin Li out0 = _mm_sub_epi16(out0, sign0);
1428*b2055c35SXin Li out8 = _mm_sub_epi16(out8, sign8);
1429*b2055c35SXin Li
1430*b2055c35SXin Li // in = out * Q
1431*b2055c35SXin Li in0 = _mm_mullo_epi16(out0, q0);
1432*b2055c35SXin Li in8 = _mm_mullo_epi16(out8, q8);
1433*b2055c35SXin Li
1434*b2055c35SXin Li _mm_storeu_si128((__m128i*)&in[0], in0);
1435*b2055c35SXin Li _mm_storeu_si128((__m128i*)&in[8], in8);
1436*b2055c35SXin Li
1437*b2055c35SXin Li // zigzag the output before storing it.
1438*b2055c35SXin Li //
1439*b2055c35SXin Li // The zigzag pattern can almost be reproduced with a small sequence of
1440*b2055c35SXin Li // shuffles. After it, we only need to swap the 7th (ending up in third
1441*b2055c35SXin Li // position instead of twelfth) and 8th values.
1442*b2055c35SXin Li {
1443*b2055c35SXin Li __m128i outZ0, outZ8;
1444*b2055c35SXin Li outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
1445*b2055c35SXin Li outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1446*b2055c35SXin Li outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1447*b2055c35SXin Li outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
1448*b2055c35SXin Li outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1449*b2055c35SXin Li outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1450*b2055c35SXin Li _mm_storeu_si128((__m128i*)&out[0], outZ0);
1451*b2055c35SXin Li _mm_storeu_si128((__m128i*)&out[8], outZ8);
1452*b2055c35SXin Li packed_out = _mm_packs_epi16(outZ0, outZ8);
1453*b2055c35SXin Li }
1454*b2055c35SXin Li {
1455*b2055c35SXin Li const int16_t outZ_12 = out[12];
1456*b2055c35SXin Li const int16_t outZ_3 = out[3];
1457*b2055c35SXin Li out[3] = outZ_12;
1458*b2055c35SXin Li out[12] = outZ_3;
1459*b2055c35SXin Li }
1460*b2055c35SXin Li
1461*b2055c35SXin Li // detect if all 'out' values are zeroes or not
1462*b2055c35SXin Li return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1463*b2055c35SXin Li }
1464*b2055c35SXin Li
QuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1465*b2055c35SXin Li static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1466*b2055c35SXin Li const VP8Matrix* const mtx) {
1467*b2055c35SXin Li return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
1468*b2055c35SXin Li }
1469*b2055c35SXin Li
QuantizeBlockWHT_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1470*b2055c35SXin Li static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1471*b2055c35SXin Li const VP8Matrix* const mtx) {
1472*b2055c35SXin Li return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1473*b2055c35SXin Li }
1474*b2055c35SXin Li
Quantize2Blocks_SSE2(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)1475*b2055c35SXin Li static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1476*b2055c35SXin Li const VP8Matrix* const mtx) {
1477*b2055c35SXin Li int nz;
1478*b2055c35SXin Li const uint16_t* const sharpen = &mtx->sharpen_[0];
1479*b2055c35SXin Li nz = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1480*b2055c35SXin Li nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1481*b2055c35SXin Li return nz;
1482*b2055c35SXin Li }
1483*b2055c35SXin Li
1484*b2055c35SXin Li //------------------------------------------------------------------------------
1485*b2055c35SXin Li // Entry point
1486*b2055c35SXin Li
1487*b2055c35SXin Li extern void VP8EncDspInitSSE2(void);
1488*b2055c35SXin Li
VP8EncDspInitSSE2(void)1489*b2055c35SXin Li WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1490*b2055c35SXin Li VP8CollectHistogram = CollectHistogram_SSE2;
1491*b2055c35SXin Li VP8EncPredLuma16 = Intra16Preds_SSE2;
1492*b2055c35SXin Li VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1493*b2055c35SXin Li VP8EncPredLuma4 = Intra4Preds_SSE2;
1494*b2055c35SXin Li VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1495*b2055c35SXin Li VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1496*b2055c35SXin Li VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1497*b2055c35SXin Li VP8ITransform = ITransform_SSE2;
1498*b2055c35SXin Li VP8FTransform = FTransform_SSE2;
1499*b2055c35SXin Li VP8FTransform2 = FTransform2_SSE2;
1500*b2055c35SXin Li VP8FTransformWHT = FTransformWHT_SSE2;
1501*b2055c35SXin Li VP8SSE16x16 = SSE16x16_SSE2;
1502*b2055c35SXin Li VP8SSE16x8 = SSE16x8_SSE2;
1503*b2055c35SXin Li VP8SSE8x8 = SSE8x8_SSE2;
1504*b2055c35SXin Li VP8SSE4x4 = SSE4x4_SSE2;
1505*b2055c35SXin Li VP8TDisto4x4 = Disto4x4_SSE2;
1506*b2055c35SXin Li VP8TDisto16x16 = Disto16x16_SSE2;
1507*b2055c35SXin Li VP8Mean16x4 = Mean16x4_SSE2;
1508*b2055c35SXin Li }
1509*b2055c35SXin Li
1510*b2055c35SXin Li #else // !WEBP_USE_SSE2
1511*b2055c35SXin Li
1512*b2055c35SXin Li WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1513*b2055c35SXin Li
1514*b2055c35SXin Li #endif // WEBP_USE_SSE2
1515