1*b2055c35SXin Li // Copyright 2010 Google Inc. All Rights Reserved.
2*b2055c35SXin Li //
3*b2055c35SXin Li // Use of this source code is governed by a BSD-style license
4*b2055c35SXin Li // that can be found in the COPYING file in the root of the source
5*b2055c35SXin Li // tree. An additional intellectual property rights grant can be found
6*b2055c35SXin Li // in the file PATENTS. All contributing project authors may
7*b2055c35SXin Li // be found in the AUTHORS file in the root of the source tree.
8*b2055c35SXin Li // -----------------------------------------------------------------------------
9*b2055c35SXin Li //
10*b2055c35SXin Li // inline YUV<->RGB conversion function
11*b2055c35SXin Li //
12*b2055c35SXin Li // The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
13*b2055c35SXin Li // More information at: https://en.wikipedia.org/wiki/YCbCr
14*b2055c35SXin Li // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
15*b2055c35SXin Li // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
16*b2055c35SXin Li // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
17*b2055c35SXin Li // We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
18*b2055c35SXin Li //
19*b2055c35SXin Li // For the Y'CbCr to RGB conversion, the BT.601 specification reads:
20*b2055c35SXin Li // R = 1.164 * (Y-16) + 1.596 * (V-128)
21*b2055c35SXin Li // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
22*b2055c35SXin Li // B = 1.164 * (Y-16) + 2.018 * (U-128)
23*b2055c35SXin Li // where Y is in the [16,235] range, and U/V in the [16,240] range.
24*b2055c35SXin Li //
25*b2055c35SXin Li // The fixed-point implementation used here is:
26*b2055c35SXin Li // R = (19077 . y + 26149 . v - 14234) >> 6
27*b2055c35SXin Li // G = (19077 . y - 6419 . u - 13320 . v + 8708) >> 6
28*b2055c35SXin Li // B = (19077 . y + 33050 . u - 17685) >> 6
29*b2055c35SXin Li // where the '.' operator is the mulhi_epu16 variant:
30*b2055c35SXin Li // a . b = ((a << 8) * b) >> 16
31*b2055c35SXin Li // that preserves 8 bits of fractional precision before final descaling.
32*b2055c35SXin Li
33*b2055c35SXin Li // Author: Skal ([email protected])
34*b2055c35SXin Li
35*b2055c35SXin Li #ifndef WEBP_DSP_YUV_H_
36*b2055c35SXin Li #define WEBP_DSP_YUV_H_
37*b2055c35SXin Li
38*b2055c35SXin Li #include "src/dsp/dsp.h"
39*b2055c35SXin Li #include "src/dec/vp8_dec.h"
40*b2055c35SXin Li
41*b2055c35SXin Li //------------------------------------------------------------------------------
42*b2055c35SXin Li // YUV -> RGB conversion
43*b2055c35SXin Li
44*b2055c35SXin Li #ifdef __cplusplus
45*b2055c35SXin Li extern "C" {
46*b2055c35SXin Li #endif
47*b2055c35SXin Li
48*b2055c35SXin Li enum {
49*b2055c35SXin Li YUV_FIX = 16, // fixed-point precision for RGB->YUV
50*b2055c35SXin Li YUV_HALF = 1 << (YUV_FIX - 1),
51*b2055c35SXin Li
52*b2055c35SXin Li YUV_FIX2 = 6, // fixed-point precision for YUV->RGB
53*b2055c35SXin Li YUV_MASK2 = (256 << YUV_FIX2) - 1
54*b2055c35SXin Li };
55*b2055c35SXin Li
56*b2055c35SXin Li //------------------------------------------------------------------------------
57*b2055c35SXin Li // slower on x86 by ~7-8%, but bit-exact with the SSE2/NEON version
58*b2055c35SXin Li
MultHi(int v,int coeff)59*b2055c35SXin Li static WEBP_INLINE int MultHi(int v, int coeff) { // _mm_mulhi_epu16 emulation
60*b2055c35SXin Li return (v * coeff) >> 8;
61*b2055c35SXin Li }
62*b2055c35SXin Li
VP8Clip8(int v)63*b2055c35SXin Li static WEBP_INLINE int VP8Clip8(int v) {
64*b2055c35SXin Li return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
65*b2055c35SXin Li }
66*b2055c35SXin Li
VP8YUVToR(int y,int v)67*b2055c35SXin Li static WEBP_INLINE int VP8YUVToR(int y, int v) {
68*b2055c35SXin Li return VP8Clip8(MultHi(y, 19077) + MultHi(v, 26149) - 14234);
69*b2055c35SXin Li }
70*b2055c35SXin Li
VP8YUVToG(int y,int u,int v)71*b2055c35SXin Li static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
72*b2055c35SXin Li return VP8Clip8(MultHi(y, 19077) - MultHi(u, 6419) - MultHi(v, 13320) + 8708);
73*b2055c35SXin Li }
74*b2055c35SXin Li
VP8YUVToB(int y,int u)75*b2055c35SXin Li static WEBP_INLINE int VP8YUVToB(int y, int u) {
76*b2055c35SXin Li return VP8Clip8(MultHi(y, 19077) + MultHi(u, 33050) - 17685);
77*b2055c35SXin Li }
78*b2055c35SXin Li
VP8YuvToRgb(int y,int u,int v,uint8_t * const rgb)79*b2055c35SXin Li static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
80*b2055c35SXin Li uint8_t* const rgb) {
81*b2055c35SXin Li rgb[0] = VP8YUVToR(y, v);
82*b2055c35SXin Li rgb[1] = VP8YUVToG(y, u, v);
83*b2055c35SXin Li rgb[2] = VP8YUVToB(y, u);
84*b2055c35SXin Li }
85*b2055c35SXin Li
VP8YuvToBgr(int y,int u,int v,uint8_t * const bgr)86*b2055c35SXin Li static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
87*b2055c35SXin Li uint8_t* const bgr) {
88*b2055c35SXin Li bgr[0] = VP8YUVToB(y, u);
89*b2055c35SXin Li bgr[1] = VP8YUVToG(y, u, v);
90*b2055c35SXin Li bgr[2] = VP8YUVToR(y, v);
91*b2055c35SXin Li }
92*b2055c35SXin Li
VP8YuvToRgb565(int y,int u,int v,uint8_t * const rgb)93*b2055c35SXin Li static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
94*b2055c35SXin Li uint8_t* const rgb) {
95*b2055c35SXin Li const int r = VP8YUVToR(y, v); // 5 usable bits
96*b2055c35SXin Li const int g = VP8YUVToG(y, u, v); // 6 usable bits
97*b2055c35SXin Li const int b = VP8YUVToB(y, u); // 5 usable bits
98*b2055c35SXin Li const int rg = (r & 0xf8) | (g >> 5);
99*b2055c35SXin Li const int gb = ((g << 3) & 0xe0) | (b >> 3);
100*b2055c35SXin Li #if (WEBP_SWAP_16BIT_CSP == 1)
101*b2055c35SXin Li rgb[0] = gb;
102*b2055c35SXin Li rgb[1] = rg;
103*b2055c35SXin Li #else
104*b2055c35SXin Li rgb[0] = rg;
105*b2055c35SXin Li rgb[1] = gb;
106*b2055c35SXin Li #endif
107*b2055c35SXin Li }
108*b2055c35SXin Li
VP8YuvToRgba4444(int y,int u,int v,uint8_t * const argb)109*b2055c35SXin Li static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
110*b2055c35SXin Li uint8_t* const argb) {
111*b2055c35SXin Li const int r = VP8YUVToR(y, v); // 4 usable bits
112*b2055c35SXin Li const int g = VP8YUVToG(y, u, v); // 4 usable bits
113*b2055c35SXin Li const int b = VP8YUVToB(y, u); // 4 usable bits
114*b2055c35SXin Li const int rg = (r & 0xf0) | (g >> 4);
115*b2055c35SXin Li const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits
116*b2055c35SXin Li #if (WEBP_SWAP_16BIT_CSP == 1)
117*b2055c35SXin Li argb[0] = ba;
118*b2055c35SXin Li argb[1] = rg;
119*b2055c35SXin Li #else
120*b2055c35SXin Li argb[0] = rg;
121*b2055c35SXin Li argb[1] = ba;
122*b2055c35SXin Li #endif
123*b2055c35SXin Li }
124*b2055c35SXin Li
125*b2055c35SXin Li //-----------------------------------------------------------------------------
126*b2055c35SXin Li // Alpha handling variants
127*b2055c35SXin Li
VP8YuvToArgb(uint8_t y,uint8_t u,uint8_t v,uint8_t * const argb)128*b2055c35SXin Li static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
129*b2055c35SXin Li uint8_t* const argb) {
130*b2055c35SXin Li argb[0] = 0xff;
131*b2055c35SXin Li VP8YuvToRgb(y, u, v, argb + 1);
132*b2055c35SXin Li }
133*b2055c35SXin Li
VP8YuvToBgra(uint8_t y,uint8_t u,uint8_t v,uint8_t * const bgra)134*b2055c35SXin Li static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
135*b2055c35SXin Li uint8_t* const bgra) {
136*b2055c35SXin Li VP8YuvToBgr(y, u, v, bgra);
137*b2055c35SXin Li bgra[3] = 0xff;
138*b2055c35SXin Li }
139*b2055c35SXin Li
VP8YuvToRgba(uint8_t y,uint8_t u,uint8_t v,uint8_t * const rgba)140*b2055c35SXin Li static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
141*b2055c35SXin Li uint8_t* const rgba) {
142*b2055c35SXin Li VP8YuvToRgb(y, u, v, rgba);
143*b2055c35SXin Li rgba[3] = 0xff;
144*b2055c35SXin Li }
145*b2055c35SXin Li
146*b2055c35SXin Li //-----------------------------------------------------------------------------
147*b2055c35SXin Li // SSE2 extra functions (mostly for upsampling_sse2.c)
148*b2055c35SXin Li
149*b2055c35SXin Li #if defined(WEBP_USE_SSE2)
150*b2055c35SXin Li
151*b2055c35SXin Li // Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst.
152*b2055c35SXin Li void VP8YuvToRgba32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
153*b2055c35SXin Li uint8_t* dst);
154*b2055c35SXin Li void VP8YuvToRgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
155*b2055c35SXin Li uint8_t* dst);
156*b2055c35SXin Li void VP8YuvToBgra32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
157*b2055c35SXin Li uint8_t* dst);
158*b2055c35SXin Li void VP8YuvToBgr32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
159*b2055c35SXin Li uint8_t* dst);
160*b2055c35SXin Li void VP8YuvToArgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
161*b2055c35SXin Li uint8_t* dst);
162*b2055c35SXin Li void VP8YuvToRgba444432_SSE2(const uint8_t* y, const uint8_t* u,
163*b2055c35SXin Li const uint8_t* v, uint8_t* dst);
164*b2055c35SXin Li void VP8YuvToRgb56532_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v,
165*b2055c35SXin Li uint8_t* dst);
166*b2055c35SXin Li
167*b2055c35SXin Li #endif // WEBP_USE_SSE2
168*b2055c35SXin Li
169*b2055c35SXin Li //-----------------------------------------------------------------------------
170*b2055c35SXin Li // SSE41 extra functions (mostly for upsampling_sse41.c)
171*b2055c35SXin Li
172*b2055c35SXin Li #if defined(WEBP_USE_SSE41)
173*b2055c35SXin Li
174*b2055c35SXin Li // Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst.
175*b2055c35SXin Li void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
176*b2055c35SXin Li uint8_t* dst);
177*b2055c35SXin Li void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v,
178*b2055c35SXin Li uint8_t* dst);
179*b2055c35SXin Li
180*b2055c35SXin Li #endif // WEBP_USE_SSE41
181*b2055c35SXin Li
182*b2055c35SXin Li //------------------------------------------------------------------------------
183*b2055c35SXin Li // RGB -> YUV conversion
184*b2055c35SXin Li
185*b2055c35SXin Li // Stub functions that can be called with various rounding values:
VP8ClipUV(int uv,int rounding)186*b2055c35SXin Li static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
187*b2055c35SXin Li uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
188*b2055c35SXin Li return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
189*b2055c35SXin Li }
190*b2055c35SXin Li
VP8RGBToY(int r,int g,int b,int rounding)191*b2055c35SXin Li static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
192*b2055c35SXin Li const int luma = 16839 * r + 33059 * g + 6420 * b;
193*b2055c35SXin Li return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip
194*b2055c35SXin Li }
195*b2055c35SXin Li
VP8RGBToU(int r,int g,int b,int rounding)196*b2055c35SXin Li static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
197*b2055c35SXin Li const int u = -9719 * r - 19081 * g + 28800 * b;
198*b2055c35SXin Li return VP8ClipUV(u, rounding);
199*b2055c35SXin Li }
200*b2055c35SXin Li
VP8RGBToV(int r,int g,int b,int rounding)201*b2055c35SXin Li static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
202*b2055c35SXin Li const int v = +28800 * r - 24116 * g - 4684 * b;
203*b2055c35SXin Li return VP8ClipUV(v, rounding);
204*b2055c35SXin Li }
205*b2055c35SXin Li
206*b2055c35SXin Li #ifdef __cplusplus
207*b2055c35SXin Li } // extern "C"
208*b2055c35SXin Li #endif
209*b2055c35SXin Li
210*b2055c35SXin Li #endif // WEBP_DSP_YUV_H_
211