xref: /btstack/port/samv71-xplained-atwilc3000/ASF/thirdparty/CMSIS/Include/arm_math.h (revision 1b2596b5303dd8caeea8565532c93cca8dab8cc4)
1*1b2596b5SMatthias Ringwald /* ----------------------------------------------------------------------
2*1b2596b5SMatthias Ringwald * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3*1b2596b5SMatthias Ringwald *
4*1b2596b5SMatthias Ringwald * $Date:        12. March 2014
5*1b2596b5SMatthias Ringwald * $Revision: 	V1.4.4
6*1b2596b5SMatthias Ringwald *
7*1b2596b5SMatthias Ringwald * Project: 	    CMSIS DSP Library
8*1b2596b5SMatthias Ringwald * Title:	    arm_math.h
9*1b2596b5SMatthias Ringwald *
10*1b2596b5SMatthias Ringwald * Description:	Public header file for CMSIS DSP Library
11*1b2596b5SMatthias Ringwald *
12*1b2596b5SMatthias Ringwald * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
13*1b2596b5SMatthias Ringwald *
14*1b2596b5SMatthias Ringwald * Redistribution and use in source and binary forms, with or without
15*1b2596b5SMatthias Ringwald * modification, are permitted provided that the following conditions
16*1b2596b5SMatthias Ringwald * are met:
17*1b2596b5SMatthias Ringwald *   - Redistributions of source code must retain the above copyright
18*1b2596b5SMatthias Ringwald *     notice, this list of conditions and the following disclaimer.
19*1b2596b5SMatthias Ringwald *   - Redistributions in binary form must reproduce the above copyright
20*1b2596b5SMatthias Ringwald *     notice, this list of conditions and the following disclaimer in
21*1b2596b5SMatthias Ringwald *     the documentation and/or other materials provided with the
22*1b2596b5SMatthias Ringwald *     distribution.
23*1b2596b5SMatthias Ringwald *   - Neither the name of ARM LIMITED nor the names of its contributors
24*1b2596b5SMatthias Ringwald *     may be used to endorse or promote products derived from this
25*1b2596b5SMatthias Ringwald *     software without specific prior written permission.
26*1b2596b5SMatthias Ringwald *
27*1b2596b5SMatthias Ringwald * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28*1b2596b5SMatthias Ringwald * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29*1b2596b5SMatthias Ringwald * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30*1b2596b5SMatthias Ringwald * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31*1b2596b5SMatthias Ringwald * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32*1b2596b5SMatthias Ringwald * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33*1b2596b5SMatthias Ringwald * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34*1b2596b5SMatthias Ringwald * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35*1b2596b5SMatthias Ringwald * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36*1b2596b5SMatthias Ringwald * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37*1b2596b5SMatthias Ringwald * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38*1b2596b5SMatthias Ringwald * POSSIBILITY OF SUCH DAMAGE.
39*1b2596b5SMatthias Ringwald  * -------------------------------------------------------------------- */
40*1b2596b5SMatthias Ringwald 
41*1b2596b5SMatthias Ringwald /**
42*1b2596b5SMatthias Ringwald    \mainpage CMSIS DSP Software Library
43*1b2596b5SMatthias Ringwald    *
44*1b2596b5SMatthias Ringwald    * Introduction
45*1b2596b5SMatthias Ringwald    * ------------
46*1b2596b5SMatthias Ringwald    *
47*1b2596b5SMatthias Ringwald    * This user manual describes the CMSIS DSP software library,
48*1b2596b5SMatthias Ringwald    * a suite of common signal processing functions for use on Cortex-M processor based devices.
49*1b2596b5SMatthias Ringwald    *
50*1b2596b5SMatthias Ringwald    * The library is divided into a number of functions each covering a specific category:
51*1b2596b5SMatthias Ringwald    * - Basic math functions
52*1b2596b5SMatthias Ringwald    * - Fast math functions
53*1b2596b5SMatthias Ringwald    * - Complex math functions
54*1b2596b5SMatthias Ringwald    * - Filters
55*1b2596b5SMatthias Ringwald    * - Matrix functions
56*1b2596b5SMatthias Ringwald    * - Transforms
57*1b2596b5SMatthias Ringwald    * - Motor control functions
58*1b2596b5SMatthias Ringwald    * - Statistical functions
59*1b2596b5SMatthias Ringwald    * - Support functions
60*1b2596b5SMatthias Ringwald    * - Interpolation functions
61*1b2596b5SMatthias Ringwald    *
62*1b2596b5SMatthias Ringwald    * The library has separate functions for operating on 8-bit integers, 16-bit integers,
63*1b2596b5SMatthias Ringwald    * 32-bit integer and 32-bit floating-point values.
64*1b2596b5SMatthias Ringwald    *
65*1b2596b5SMatthias Ringwald    * Using the Library
66*1b2596b5SMatthias Ringwald    * ------------
67*1b2596b5SMatthias Ringwald    *
68*1b2596b5SMatthias Ringwald    * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
69*1b2596b5SMatthias Ringwald    * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
70*1b2596b5SMatthias Ringwald    * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
71*1b2596b5SMatthias Ringwald    * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
72*1b2596b5SMatthias Ringwald    * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
73*1b2596b5SMatthias Ringwald    * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
74*1b2596b5SMatthias Ringwald    * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
75*1b2596b5SMatthias Ringwald    * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
76*1b2596b5SMatthias Ringwald    * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
77*1b2596b5SMatthias Ringwald    *
78*1b2596b5SMatthias Ringwald    * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
79*1b2596b5SMatthias Ringwald    * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
80*1b2596b5SMatthias Ringwald    * public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
81*1b2596b5SMatthias Ringwald    * Define the appropriate pre processor MACRO ARM_MATH_CM4 or  ARM_MATH_CM3 or
82*1b2596b5SMatthias Ringwald    * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
83*1b2596b5SMatthias Ringwald    *
84*1b2596b5SMatthias Ringwald    * Examples
85*1b2596b5SMatthias Ringwald    * --------
86*1b2596b5SMatthias Ringwald    *
87*1b2596b5SMatthias Ringwald    * The library ships with a number of examples which demonstrate how to use the library functions.
88*1b2596b5SMatthias Ringwald    *
89*1b2596b5SMatthias Ringwald    * Toolchain Support
90*1b2596b5SMatthias Ringwald    * ------------
91*1b2596b5SMatthias Ringwald    *
92*1b2596b5SMatthias Ringwald    * The library has been developed and tested with MDK-ARM version 4.60.
93*1b2596b5SMatthias Ringwald    * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
94*1b2596b5SMatthias Ringwald    *
95*1b2596b5SMatthias Ringwald    * Building the Library
96*1b2596b5SMatthias Ringwald    * ------------
97*1b2596b5SMatthias Ringwald    *
98*1b2596b5SMatthias Ringwald    * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
99*1b2596b5SMatthias Ringwald    * - arm_cortexM_math.uvproj
100*1b2596b5SMatthias Ringwald    *
101*1b2596b5SMatthias Ringwald    *
102*1b2596b5SMatthias Ringwald    * The libraries can be built by opening the arm_cortexM_math.uvproj project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
103*1b2596b5SMatthias Ringwald    *
104*1b2596b5SMatthias Ringwald    * Pre-processor Macros
105*1b2596b5SMatthias Ringwald    * ------------
106*1b2596b5SMatthias Ringwald    *
107*1b2596b5SMatthias Ringwald    * Each library project have differant pre-processor macros.
108*1b2596b5SMatthias Ringwald    *
109*1b2596b5SMatthias Ringwald    * - UNALIGNED_SUPPORT_DISABLE:
110*1b2596b5SMatthias Ringwald    *
111*1b2596b5SMatthias Ringwald    * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
112*1b2596b5SMatthias Ringwald    *
113*1b2596b5SMatthias Ringwald    * - ARM_MATH_BIG_ENDIAN:
114*1b2596b5SMatthias Ringwald    *
115*1b2596b5SMatthias Ringwald    * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
116*1b2596b5SMatthias Ringwald    *
117*1b2596b5SMatthias Ringwald    * - ARM_MATH_MATRIX_CHECK:
118*1b2596b5SMatthias Ringwald    *
119*1b2596b5SMatthias Ringwald    * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
120*1b2596b5SMatthias Ringwald    *
121*1b2596b5SMatthias Ringwald    * - ARM_MATH_ROUNDING:
122*1b2596b5SMatthias Ringwald    *
123*1b2596b5SMatthias Ringwald    * Define macro ARM_MATH_ROUNDING for rounding on support functions
124*1b2596b5SMatthias Ringwald    *
125*1b2596b5SMatthias Ringwald    * - ARM_MATH_CMx:
126*1b2596b5SMatthias Ringwald    *
127*1b2596b5SMatthias Ringwald    * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
128*1b2596b5SMatthias Ringwald    * and ARM_MATH_CM0 for building library on cortex-M0 target, ARM_MATH_CM0PLUS for building library on cortex-M0+ target.
129*1b2596b5SMatthias Ringwald    *
130*1b2596b5SMatthias Ringwald    * - __FPU_PRESENT:
131*1b2596b5SMatthias Ringwald    *
132*1b2596b5SMatthias Ringwald    * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
133*1b2596b5SMatthias Ringwald    *
134*1b2596b5SMatthias Ringwald    * <hr>
135*1b2596b5SMatthias Ringwald    * CMSIS-DSP in ARM::CMSIS Pack
136*1b2596b5SMatthias Ringwald    * -----------------------------
137*1b2596b5SMatthias Ringwald    *
138*1b2596b5SMatthias Ringwald    * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
139*1b2596b5SMatthias Ringwald    * |File/Folder                   |Content                                                                 |
140*1b2596b5SMatthias Ringwald    * |------------------------------|------------------------------------------------------------------------|
141*1b2596b5SMatthias Ringwald    * |\b CMSIS\\Documentation\\DSP  | This documentation                                                     |
142*1b2596b5SMatthias Ringwald    * |\b CMSIS\\DSP_Lib             | Software license agreement (license.txt)                               |
143*1b2596b5SMatthias Ringwald    * |\b CMSIS\\DSP_Lib\\Examples   | Example projects demonstrating the usage of the library functions      |
144*1b2596b5SMatthias Ringwald    * |\b CMSIS\\DSP_Lib\\Source     | Source files for rebuilding the library                                |
145*1b2596b5SMatthias Ringwald    *
146*1b2596b5SMatthias Ringwald    * <hr>
147*1b2596b5SMatthias Ringwald    * Revision History of CMSIS-DSP
148*1b2596b5SMatthias Ringwald    * ------------
149*1b2596b5SMatthias Ringwald    * Please refer to \ref ChangeLog_pg.
150*1b2596b5SMatthias Ringwald    *
151*1b2596b5SMatthias Ringwald    * Copyright Notice
152*1b2596b5SMatthias Ringwald    * ------------
153*1b2596b5SMatthias Ringwald    *
154*1b2596b5SMatthias Ringwald    * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
155*1b2596b5SMatthias Ringwald    */
156*1b2596b5SMatthias Ringwald 
157*1b2596b5SMatthias Ringwald 
158*1b2596b5SMatthias Ringwald /**
159*1b2596b5SMatthias Ringwald  * @defgroup groupMath Basic Math Functions
160*1b2596b5SMatthias Ringwald  */
161*1b2596b5SMatthias Ringwald 
162*1b2596b5SMatthias Ringwald /**
163*1b2596b5SMatthias Ringwald  * @defgroup groupFastMath Fast Math Functions
164*1b2596b5SMatthias Ringwald  * This set of functions provides a fast approximation to sine, cosine, and square root.
165*1b2596b5SMatthias Ringwald  * As compared to most of the other functions in the CMSIS math library, the fast math functions
166*1b2596b5SMatthias Ringwald  * operate on individual values and not arrays.
167*1b2596b5SMatthias Ringwald  * There are separate functions for Q15, Q31, and floating-point data.
168*1b2596b5SMatthias Ringwald  *
169*1b2596b5SMatthias Ringwald  */
170*1b2596b5SMatthias Ringwald 
171*1b2596b5SMatthias Ringwald /**
172*1b2596b5SMatthias Ringwald  * @defgroup groupCmplxMath Complex Math Functions
173*1b2596b5SMatthias Ringwald  * This set of functions operates on complex data vectors.
174*1b2596b5SMatthias Ringwald  * The data in the complex arrays is stored in an interleaved fashion
175*1b2596b5SMatthias Ringwald  * (real, imag, real, imag, ...).
176*1b2596b5SMatthias Ringwald  * In the API functions, the number of samples in a complex array refers
177*1b2596b5SMatthias Ringwald  * to the number of complex values; the array contains twice this number of
178*1b2596b5SMatthias Ringwald  * real values.
179*1b2596b5SMatthias Ringwald  */
180*1b2596b5SMatthias Ringwald 
181*1b2596b5SMatthias Ringwald /**
182*1b2596b5SMatthias Ringwald  * @defgroup groupFilters Filtering Functions
183*1b2596b5SMatthias Ringwald  */
184*1b2596b5SMatthias Ringwald 
185*1b2596b5SMatthias Ringwald /**
186*1b2596b5SMatthias Ringwald  * @defgroup groupMatrix Matrix Functions
187*1b2596b5SMatthias Ringwald  *
188*1b2596b5SMatthias Ringwald  * This set of functions provides basic matrix math operations.
189*1b2596b5SMatthias Ringwald  * The functions operate on matrix data structures.  For example,
190*1b2596b5SMatthias Ringwald  * the type
191*1b2596b5SMatthias Ringwald  * definition for the floating-point matrix structure is shown
192*1b2596b5SMatthias Ringwald  * below:
193*1b2596b5SMatthias Ringwald  * <pre>
194*1b2596b5SMatthias Ringwald  *     typedef struct
195*1b2596b5SMatthias Ringwald  *     {
196*1b2596b5SMatthias Ringwald  *       uint16_t numRows;     // number of rows of the matrix.
197*1b2596b5SMatthias Ringwald  *       uint16_t numCols;     // number of columns of the matrix.
198*1b2596b5SMatthias Ringwald  *       float32_t *pData;     // points to the data of the matrix.
199*1b2596b5SMatthias Ringwald  *     } arm_matrix_instance_f32;
200*1b2596b5SMatthias Ringwald  * </pre>
201*1b2596b5SMatthias Ringwald  * There are similar definitions for Q15 and Q31 data types.
202*1b2596b5SMatthias Ringwald  *
203*1b2596b5SMatthias Ringwald  * The structure specifies the size of the matrix and then points to
204*1b2596b5SMatthias Ringwald  * an array of data.  The array is of size <code>numRows X numCols</code>
205*1b2596b5SMatthias Ringwald  * and the values are arranged in row order.  That is, the
206*1b2596b5SMatthias Ringwald  * matrix element (i, j) is stored at:
207*1b2596b5SMatthias Ringwald  * <pre>
208*1b2596b5SMatthias Ringwald  *     pData[i*numCols + j]
209*1b2596b5SMatthias Ringwald  * </pre>
210*1b2596b5SMatthias Ringwald  *
211*1b2596b5SMatthias Ringwald  * \par Init Functions
212*1b2596b5SMatthias Ringwald  * There is an associated initialization function for each type of matrix
213*1b2596b5SMatthias Ringwald  * data structure.
214*1b2596b5SMatthias Ringwald  * The initialization function sets the values of the internal structure fields.
215*1b2596b5SMatthias Ringwald  * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
216*1b2596b5SMatthias Ringwald  * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types,  respectively.
217*1b2596b5SMatthias Ringwald  *
218*1b2596b5SMatthias Ringwald  * \par
219*1b2596b5SMatthias Ringwald  * Use of the initialization function is optional. However, if initialization function is used
220*1b2596b5SMatthias Ringwald  * then the instance structure cannot be placed into a const data section.
221*1b2596b5SMatthias Ringwald  * To place the instance structure in a const data
222*1b2596b5SMatthias Ringwald  * section, manually initialize the data structure.  For example:
223*1b2596b5SMatthias Ringwald  * <pre>
224*1b2596b5SMatthias Ringwald  * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
225*1b2596b5SMatthias Ringwald  * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
226*1b2596b5SMatthias Ringwald  * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
227*1b2596b5SMatthias Ringwald  * </pre>
228*1b2596b5SMatthias Ringwald  * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
229*1b2596b5SMatthias Ringwald  * specifies the number of columns, and <code>pData</code> points to the
230*1b2596b5SMatthias Ringwald  * data array.
231*1b2596b5SMatthias Ringwald  *
232*1b2596b5SMatthias Ringwald  * \par Size Checking
233*1b2596b5SMatthias Ringwald  * By default all of the matrix functions perform size checking on the input and
234*1b2596b5SMatthias Ringwald  * output matrices.  For example, the matrix addition function verifies that the
235*1b2596b5SMatthias Ringwald  * two input matrices and the output matrix all have the same number of rows and
236*1b2596b5SMatthias Ringwald  * columns.  If the size check fails the functions return:
237*1b2596b5SMatthias Ringwald  * <pre>
238*1b2596b5SMatthias Ringwald  *     ARM_MATH_SIZE_MISMATCH
239*1b2596b5SMatthias Ringwald  * </pre>
240*1b2596b5SMatthias Ringwald  * Otherwise the functions return
241*1b2596b5SMatthias Ringwald  * <pre>
242*1b2596b5SMatthias Ringwald  *     ARM_MATH_SUCCESS
243*1b2596b5SMatthias Ringwald  * </pre>
244*1b2596b5SMatthias Ringwald  * There is some overhead associated with this matrix size checking.
245*1b2596b5SMatthias Ringwald  * The matrix size checking is enabled via the \#define
246*1b2596b5SMatthias Ringwald  * <pre>
247*1b2596b5SMatthias Ringwald  *     ARM_MATH_MATRIX_CHECK
248*1b2596b5SMatthias Ringwald  * </pre>
249*1b2596b5SMatthias Ringwald  * within the library project settings.  By default this macro is defined
250*1b2596b5SMatthias Ringwald  * and size checking is enabled.  By changing the project settings and
251*1b2596b5SMatthias Ringwald  * undefining this macro size checking is eliminated and the functions
252*1b2596b5SMatthias Ringwald  * run a bit faster.  With size checking disabled the functions always
253*1b2596b5SMatthias Ringwald  * return <code>ARM_MATH_SUCCESS</code>.
254*1b2596b5SMatthias Ringwald  */
255*1b2596b5SMatthias Ringwald 
256*1b2596b5SMatthias Ringwald /**
257*1b2596b5SMatthias Ringwald  * @defgroup groupTransforms Transform Functions
258*1b2596b5SMatthias Ringwald  */
259*1b2596b5SMatthias Ringwald 
260*1b2596b5SMatthias Ringwald /**
261*1b2596b5SMatthias Ringwald  * @defgroup groupController Controller Functions
262*1b2596b5SMatthias Ringwald  */
263*1b2596b5SMatthias Ringwald 
264*1b2596b5SMatthias Ringwald /**
265*1b2596b5SMatthias Ringwald  * @defgroup groupStats Statistics Functions
266*1b2596b5SMatthias Ringwald  */
267*1b2596b5SMatthias Ringwald /**
268*1b2596b5SMatthias Ringwald  * @defgroup groupSupport Support Functions
269*1b2596b5SMatthias Ringwald  */
270*1b2596b5SMatthias Ringwald 
271*1b2596b5SMatthias Ringwald /**
272*1b2596b5SMatthias Ringwald  * @defgroup groupInterpolation Interpolation Functions
273*1b2596b5SMatthias Ringwald  * These functions perform 1- and 2-dimensional interpolation of data.
274*1b2596b5SMatthias Ringwald  * Linear interpolation is used for 1-dimensional data and
275*1b2596b5SMatthias Ringwald  * bilinear interpolation is used for 2-dimensional data.
276*1b2596b5SMatthias Ringwald  */
277*1b2596b5SMatthias Ringwald 
278*1b2596b5SMatthias Ringwald /**
279*1b2596b5SMatthias Ringwald  * @defgroup groupExamples Examples
280*1b2596b5SMatthias Ringwald  */
281*1b2596b5SMatthias Ringwald #ifndef _ARM_MATH_H
282*1b2596b5SMatthias Ringwald #define _ARM_MATH_H
283*1b2596b5SMatthias Ringwald 
284*1b2596b5SMatthias Ringwald #define __CMSIS_GENERIC         /* disable NVIC and Systick functions */
285*1b2596b5SMatthias Ringwald 
286*1b2596b5SMatthias Ringwald #if defined(ARM_MATH_CM7)
287*1b2596b5SMatthias Ringwald   #include "core_cm7.h"
288*1b2596b5SMatthias Ringwald #elif defined (ARM_MATH_CM4)
289*1b2596b5SMatthias Ringwald   #include "core_cm4.h"
290*1b2596b5SMatthias Ringwald #elif defined (ARM_MATH_CM3)
291*1b2596b5SMatthias Ringwald   #include "core_cm3.h"
292*1b2596b5SMatthias Ringwald #elif defined (ARM_MATH_CM0)
293*1b2596b5SMatthias Ringwald   #include "core_cm0.h"
294*1b2596b5SMatthias Ringwald #define ARM_MATH_CM0_FAMILY
295*1b2596b5SMatthias Ringwald   #elif defined (ARM_MATH_CM0PLUS)
296*1b2596b5SMatthias Ringwald #include "core_cm0plus.h"
297*1b2596b5SMatthias Ringwald   #define ARM_MATH_CM0_FAMILY
298*1b2596b5SMatthias Ringwald #else
299*1b2596b5SMatthias Ringwald   #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
300*1b2596b5SMatthias Ringwald #endif
301*1b2596b5SMatthias Ringwald 
302*1b2596b5SMatthias Ringwald #undef  __CMSIS_GENERIC         /* enable NVIC and Systick functions */
303*1b2596b5SMatthias Ringwald #include "string.h"
304*1b2596b5SMatthias Ringwald #include "math.h"
305*1b2596b5SMatthias Ringwald #ifdef	__cplusplus
306*1b2596b5SMatthias Ringwald extern "C"
307*1b2596b5SMatthias Ringwald {
308*1b2596b5SMatthias Ringwald #endif
309*1b2596b5SMatthias Ringwald 
310*1b2596b5SMatthias Ringwald 
311*1b2596b5SMatthias Ringwald   /**
312*1b2596b5SMatthias Ringwald    * @brief Macros required for reciprocal calculation in Normalized LMS
313*1b2596b5SMatthias Ringwald    */
314*1b2596b5SMatthias Ringwald 
315*1b2596b5SMatthias Ringwald #define DELTA_Q31 			(0x100)
316*1b2596b5SMatthias Ringwald #define DELTA_Q15 			0x5
317*1b2596b5SMatthias Ringwald #define INDEX_MASK 			0x0000003F
318*1b2596b5SMatthias Ringwald #ifndef PI
319*1b2596b5SMatthias Ringwald #define PI					3.14159265358979f
320*1b2596b5SMatthias Ringwald #endif
321*1b2596b5SMatthias Ringwald 
322*1b2596b5SMatthias Ringwald   /**
323*1b2596b5SMatthias Ringwald    * @brief Macros required for SINE and COSINE Fast math approximations
324*1b2596b5SMatthias Ringwald    */
325*1b2596b5SMatthias Ringwald 
326*1b2596b5SMatthias Ringwald #define FAST_MATH_TABLE_SIZE  512
327*1b2596b5SMatthias Ringwald #define FAST_MATH_Q31_SHIFT   (32 - 10)
328*1b2596b5SMatthias Ringwald #define FAST_MATH_Q15_SHIFT   (16 - 10)
329*1b2596b5SMatthias Ringwald #define CONTROLLER_Q31_SHIFT  (32 - 9)
330*1b2596b5SMatthias Ringwald #define TABLE_SIZE  256
331*1b2596b5SMatthias Ringwald #define TABLE_SPACING_Q31	   0x400000
332*1b2596b5SMatthias Ringwald #define TABLE_SPACING_Q15	   0x80
333*1b2596b5SMatthias Ringwald 
334*1b2596b5SMatthias Ringwald   /**
335*1b2596b5SMatthias Ringwald    * @brief Macros required for SINE and COSINE Controller functions
336*1b2596b5SMatthias Ringwald    */
337*1b2596b5SMatthias Ringwald   /* 1.31(q31) Fixed value of 2/360 */
338*1b2596b5SMatthias Ringwald   /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
339*1b2596b5SMatthias Ringwald #define INPUT_SPACING			0xB60B61
340*1b2596b5SMatthias Ringwald 
341*1b2596b5SMatthias Ringwald   /**
342*1b2596b5SMatthias Ringwald    * @brief Macro for Unaligned Support
343*1b2596b5SMatthias Ringwald    */
344*1b2596b5SMatthias Ringwald #ifndef UNALIGNED_SUPPORT_DISABLE
345*1b2596b5SMatthias Ringwald     #define ALIGN4
346*1b2596b5SMatthias Ringwald #else
347*1b2596b5SMatthias Ringwald   #if defined  (__GNUC__)
348*1b2596b5SMatthias Ringwald     #define ALIGN4 __attribute__((aligned(4)))
349*1b2596b5SMatthias Ringwald   #else
350*1b2596b5SMatthias Ringwald     #define ALIGN4 __align(4)
351*1b2596b5SMatthias Ringwald   #endif
352*1b2596b5SMatthias Ringwald #endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
353*1b2596b5SMatthias Ringwald 
354*1b2596b5SMatthias Ringwald   /**
355*1b2596b5SMatthias Ringwald    * @brief Error status returned by some functions in the library.
356*1b2596b5SMatthias Ringwald    */
357*1b2596b5SMatthias Ringwald 
358*1b2596b5SMatthias Ringwald   typedef enum
359*1b2596b5SMatthias Ringwald   {
360*1b2596b5SMatthias Ringwald     ARM_MATH_SUCCESS = 0,                /**< No error */
361*1b2596b5SMatthias Ringwald     ARM_MATH_ARGUMENT_ERROR = -1,        /**< One or more arguments are incorrect */
362*1b2596b5SMatthias Ringwald     ARM_MATH_LENGTH_ERROR = -2,          /**< Length of data buffer is incorrect */
363*1b2596b5SMatthias Ringwald     ARM_MATH_SIZE_MISMATCH = -3,         /**< Size of matrices is not compatible with the operation. */
364*1b2596b5SMatthias Ringwald     ARM_MATH_NANINF = -4,                /**< Not-a-number (NaN) or infinity is generated */
365*1b2596b5SMatthias Ringwald     ARM_MATH_SINGULAR = -5,              /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
366*1b2596b5SMatthias Ringwald     ARM_MATH_TEST_FAILURE = -6           /**< Test Failed  */
367*1b2596b5SMatthias Ringwald   } arm_status;
368*1b2596b5SMatthias Ringwald 
369*1b2596b5SMatthias Ringwald   /**
370*1b2596b5SMatthias Ringwald    * @brief 8-bit fractional data type in 1.7 format.
371*1b2596b5SMatthias Ringwald    */
372*1b2596b5SMatthias Ringwald   typedef int8_t q7_t;
373*1b2596b5SMatthias Ringwald 
374*1b2596b5SMatthias Ringwald   /**
375*1b2596b5SMatthias Ringwald    * @brief 16-bit fractional data type in 1.15 format.
376*1b2596b5SMatthias Ringwald    */
377*1b2596b5SMatthias Ringwald   typedef int16_t q15_t;
378*1b2596b5SMatthias Ringwald 
379*1b2596b5SMatthias Ringwald   /**
380*1b2596b5SMatthias Ringwald    * @brief 32-bit fractional data type in 1.31 format.
381*1b2596b5SMatthias Ringwald    */
382*1b2596b5SMatthias Ringwald   typedef int32_t q31_t;
383*1b2596b5SMatthias Ringwald 
384*1b2596b5SMatthias Ringwald   /**
385*1b2596b5SMatthias Ringwald    * @brief 64-bit fractional data type in 1.63 format.
386*1b2596b5SMatthias Ringwald    */
387*1b2596b5SMatthias Ringwald   typedef int64_t q63_t;
388*1b2596b5SMatthias Ringwald 
389*1b2596b5SMatthias Ringwald   /**
390*1b2596b5SMatthias Ringwald    * @brief 32-bit floating-point type definition.
391*1b2596b5SMatthias Ringwald    */
392*1b2596b5SMatthias Ringwald   typedef float float32_t;
393*1b2596b5SMatthias Ringwald 
394*1b2596b5SMatthias Ringwald   /**
395*1b2596b5SMatthias Ringwald    * @brief 64-bit floating-point type definition.
396*1b2596b5SMatthias Ringwald    */
397*1b2596b5SMatthias Ringwald   typedef double float64_t;
398*1b2596b5SMatthias Ringwald 
399*1b2596b5SMatthias Ringwald   /**
400*1b2596b5SMatthias Ringwald    * @brief definition to read/write two 16 bit values.
401*1b2596b5SMatthias Ringwald    */
402*1b2596b5SMatthias Ringwald #if defined __CC_ARM
403*1b2596b5SMatthias Ringwald #define __SIMD32_TYPE int32_t __packed
404*1b2596b5SMatthias Ringwald #define CMSIS_UNUSED __attribute__((unused))
405*1b2596b5SMatthias Ringwald #elif defined __ICCARM__
406*1b2596b5SMatthias Ringwald #define CMSIS_UNUSED
407*1b2596b5SMatthias Ringwald #define __SIMD32_TYPE int32_t __packed
408*1b2596b5SMatthias Ringwald #elif defined __GNUC__
409*1b2596b5SMatthias Ringwald #define __SIMD32_TYPE int32_t
410*1b2596b5SMatthias Ringwald #define CMSIS_UNUSED __attribute__((unused))
411*1b2596b5SMatthias Ringwald #elif defined __CSMC__			/* Cosmic */
412*1b2596b5SMatthias Ringwald #define CMSIS_UNUSED
413*1b2596b5SMatthias Ringwald #define __SIMD32_TYPE int32_t
414*1b2596b5SMatthias Ringwald #else
415*1b2596b5SMatthias Ringwald #error Unknown compiler
416*1b2596b5SMatthias Ringwald #endif
417*1b2596b5SMatthias Ringwald 
418*1b2596b5SMatthias Ringwald #define __SIMD32(addr)  (*(__SIMD32_TYPE **) & (addr))
419*1b2596b5SMatthias Ringwald #define __SIMD32_CONST(addr)  ((__SIMD32_TYPE *)(addr))
420*1b2596b5SMatthias Ringwald 
421*1b2596b5SMatthias Ringwald #define _SIMD32_OFFSET(addr)  (*(__SIMD32_TYPE *)  (addr))
422*1b2596b5SMatthias Ringwald 
423*1b2596b5SMatthias Ringwald #define __SIMD64(addr)  (*(int64_t **) & (addr))
424*1b2596b5SMatthias Ringwald 
425*1b2596b5SMatthias Ringwald #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
426*1b2596b5SMatthias Ringwald   /**
427*1b2596b5SMatthias Ringwald    * @brief definition to pack two 16 bit values.
428*1b2596b5SMatthias Ringwald    */
429*1b2596b5SMatthias Ringwald #define __PKHBT(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0x0000FFFF) | \
430*1b2596b5SMatthias Ringwald                                          (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000)  )
431*1b2596b5SMatthias Ringwald #define __PKHTB(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0xFFFF0000) | \
432*1b2596b5SMatthias Ringwald                                          (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF)  )
433*1b2596b5SMatthias Ringwald 
434*1b2596b5SMatthias Ringwald #endif
435*1b2596b5SMatthias Ringwald 
436*1b2596b5SMatthias Ringwald 
437*1b2596b5SMatthias Ringwald    /**
438*1b2596b5SMatthias Ringwald    * @brief definition to pack four 8 bit values.
439*1b2596b5SMatthias Ringwald    */
440*1b2596b5SMatthias Ringwald #ifndef ARM_MATH_BIG_ENDIAN
441*1b2596b5SMatthias Ringwald 
442*1b2596b5SMatthias Ringwald #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) <<  0) & (int32_t)0x000000FF) |	\
443*1b2596b5SMatthias Ringwald                                 (((int32_t)(v1) <<  8) & (int32_t)0x0000FF00) |	\
444*1b2596b5SMatthias Ringwald 							    (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) |	\
445*1b2596b5SMatthias Ringwald 							    (((int32_t)(v3) << 24) & (int32_t)0xFF000000)  )
446*1b2596b5SMatthias Ringwald #else
447*1b2596b5SMatthias Ringwald 
448*1b2596b5SMatthias Ringwald #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) <<  0) & (int32_t)0x000000FF) |	\
449*1b2596b5SMatthias Ringwald                                 (((int32_t)(v2) <<  8) & (int32_t)0x0000FF00) |	\
450*1b2596b5SMatthias Ringwald 							    (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) |	\
451*1b2596b5SMatthias Ringwald 							    (((int32_t)(v0) << 24) & (int32_t)0xFF000000)  )
452*1b2596b5SMatthias Ringwald 
453*1b2596b5SMatthias Ringwald #endif
454*1b2596b5SMatthias Ringwald 
455*1b2596b5SMatthias Ringwald 
456*1b2596b5SMatthias Ringwald   /**
457*1b2596b5SMatthias Ringwald    * @brief Clips Q63 to Q31 values.
458*1b2596b5SMatthias Ringwald    */
clip_q63_to_q31(q63_t x)459*1b2596b5SMatthias Ringwald   static __INLINE q31_t clip_q63_to_q31(
460*1b2596b5SMatthias Ringwald   q63_t x)
461*1b2596b5SMatthias Ringwald   {
462*1b2596b5SMatthias Ringwald     return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
463*1b2596b5SMatthias Ringwald       ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
464*1b2596b5SMatthias Ringwald   }
465*1b2596b5SMatthias Ringwald 
466*1b2596b5SMatthias Ringwald   /**
467*1b2596b5SMatthias Ringwald    * @brief Clips Q63 to Q15 values.
468*1b2596b5SMatthias Ringwald    */
clip_q63_to_q15(q63_t x)469*1b2596b5SMatthias Ringwald   static __INLINE q15_t clip_q63_to_q15(
470*1b2596b5SMatthias Ringwald   q63_t x)
471*1b2596b5SMatthias Ringwald   {
472*1b2596b5SMatthias Ringwald     return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
473*1b2596b5SMatthias Ringwald       ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
474*1b2596b5SMatthias Ringwald   }
475*1b2596b5SMatthias Ringwald 
476*1b2596b5SMatthias Ringwald   /**
477*1b2596b5SMatthias Ringwald    * @brief Clips Q31 to Q7 values.
478*1b2596b5SMatthias Ringwald    */
clip_q31_to_q7(q31_t x)479*1b2596b5SMatthias Ringwald   static __INLINE q7_t clip_q31_to_q7(
480*1b2596b5SMatthias Ringwald   q31_t x)
481*1b2596b5SMatthias Ringwald   {
482*1b2596b5SMatthias Ringwald     return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
483*1b2596b5SMatthias Ringwald       ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
484*1b2596b5SMatthias Ringwald   }
485*1b2596b5SMatthias Ringwald 
486*1b2596b5SMatthias Ringwald   /**
487*1b2596b5SMatthias Ringwald    * @brief Clips Q31 to Q15 values.
488*1b2596b5SMatthias Ringwald    */
clip_q31_to_q15(q31_t x)489*1b2596b5SMatthias Ringwald   static __INLINE q15_t clip_q31_to_q15(
490*1b2596b5SMatthias Ringwald   q31_t x)
491*1b2596b5SMatthias Ringwald   {
492*1b2596b5SMatthias Ringwald     return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
493*1b2596b5SMatthias Ringwald       ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
494*1b2596b5SMatthias Ringwald   }
495*1b2596b5SMatthias Ringwald 
496*1b2596b5SMatthias Ringwald   /**
497*1b2596b5SMatthias Ringwald    * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
498*1b2596b5SMatthias Ringwald    */
499*1b2596b5SMatthias Ringwald 
mult32x64(q63_t x,q31_t y)500*1b2596b5SMatthias Ringwald   static __INLINE q63_t mult32x64(
501*1b2596b5SMatthias Ringwald   q63_t x,
502*1b2596b5SMatthias Ringwald   q31_t y)
503*1b2596b5SMatthias Ringwald   {
504*1b2596b5SMatthias Ringwald     return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
505*1b2596b5SMatthias Ringwald             (((q63_t) (x >> 32) * y)));
506*1b2596b5SMatthias Ringwald   }
507*1b2596b5SMatthias Ringwald 
508*1b2596b5SMatthias Ringwald 
509*1b2596b5SMatthias Ringwald #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM   )
510*1b2596b5SMatthias Ringwald #define __CLZ __clz
511*1b2596b5SMatthias Ringwald #endif
512*1b2596b5SMatthias Ringwald 
513*1b2596b5SMatthias Ringwald #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) )
514*1b2596b5SMatthias Ringwald 
515*1b2596b5SMatthias Ringwald   static __INLINE uint32_t __CLZ(
516*1b2596b5SMatthias Ringwald   q31_t data);
517*1b2596b5SMatthias Ringwald 
518*1b2596b5SMatthias Ringwald 
__CLZ(q31_t data)519*1b2596b5SMatthias Ringwald   static __INLINE uint32_t __CLZ(
520*1b2596b5SMatthias Ringwald   q31_t data)
521*1b2596b5SMatthias Ringwald   {
522*1b2596b5SMatthias Ringwald     uint32_t count = 0;
523*1b2596b5SMatthias Ringwald     uint32_t mask = 0x80000000;
524*1b2596b5SMatthias Ringwald 
525*1b2596b5SMatthias Ringwald     while((data & mask) == 0)
526*1b2596b5SMatthias Ringwald     {
527*1b2596b5SMatthias Ringwald       count += 1u;
528*1b2596b5SMatthias Ringwald       mask = mask >> 1u;
529*1b2596b5SMatthias Ringwald     }
530*1b2596b5SMatthias Ringwald 
531*1b2596b5SMatthias Ringwald     return (count);
532*1b2596b5SMatthias Ringwald 
533*1b2596b5SMatthias Ringwald   }
534*1b2596b5SMatthias Ringwald 
535*1b2596b5SMatthias Ringwald #endif
536*1b2596b5SMatthias Ringwald 
537*1b2596b5SMatthias Ringwald   /**
538*1b2596b5SMatthias Ringwald    * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
539*1b2596b5SMatthias Ringwald    */
540*1b2596b5SMatthias Ringwald 
arm_recip_q31(q31_t in,q31_t * dst,q31_t * pRecipTable)541*1b2596b5SMatthias Ringwald   static __INLINE uint32_t arm_recip_q31(
542*1b2596b5SMatthias Ringwald   q31_t in,
543*1b2596b5SMatthias Ringwald   q31_t * dst,
544*1b2596b5SMatthias Ringwald   q31_t * pRecipTable)
545*1b2596b5SMatthias Ringwald   {
546*1b2596b5SMatthias Ringwald 
547*1b2596b5SMatthias Ringwald     uint32_t out, tempVal;
548*1b2596b5SMatthias Ringwald     uint32_t index, i;
549*1b2596b5SMatthias Ringwald     uint32_t signBits;
550*1b2596b5SMatthias Ringwald 
551*1b2596b5SMatthias Ringwald     if(in > 0)
552*1b2596b5SMatthias Ringwald     {
553*1b2596b5SMatthias Ringwald       signBits = __CLZ(in) - 1;
554*1b2596b5SMatthias Ringwald     }
555*1b2596b5SMatthias Ringwald     else
556*1b2596b5SMatthias Ringwald     {
557*1b2596b5SMatthias Ringwald       signBits = __CLZ(-in) - 1;
558*1b2596b5SMatthias Ringwald     }
559*1b2596b5SMatthias Ringwald 
560*1b2596b5SMatthias Ringwald     /* Convert input sample to 1.31 format */
561*1b2596b5SMatthias Ringwald     in = in << signBits;
562*1b2596b5SMatthias Ringwald 
563*1b2596b5SMatthias Ringwald     /* calculation of index for initial approximated Val */
564*1b2596b5SMatthias Ringwald     index = (uint32_t) (in >> 24u);
565*1b2596b5SMatthias Ringwald     index = (index & INDEX_MASK);
566*1b2596b5SMatthias Ringwald 
567*1b2596b5SMatthias Ringwald     /* 1.31 with exp 1 */
568*1b2596b5SMatthias Ringwald     out = pRecipTable[index];
569*1b2596b5SMatthias Ringwald 
570*1b2596b5SMatthias Ringwald     /* calculation of reciprocal value */
571*1b2596b5SMatthias Ringwald     /* running approximation for two iterations */
572*1b2596b5SMatthias Ringwald     for (i = 0u; i < 2u; i++)
573*1b2596b5SMatthias Ringwald     {
574*1b2596b5SMatthias Ringwald       tempVal = (q31_t) (((q63_t) in * out) >> 31u);
575*1b2596b5SMatthias Ringwald       tempVal = 0x7FFFFFFF - tempVal;
576*1b2596b5SMatthias Ringwald       /*      1.31 with exp 1 */
577*1b2596b5SMatthias Ringwald       //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
578*1b2596b5SMatthias Ringwald       out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
579*1b2596b5SMatthias Ringwald     }
580*1b2596b5SMatthias Ringwald 
581*1b2596b5SMatthias Ringwald     /* write output */
582*1b2596b5SMatthias Ringwald     *dst = out;
583*1b2596b5SMatthias Ringwald 
584*1b2596b5SMatthias Ringwald     /* return num of signbits of out = 1/in value */
585*1b2596b5SMatthias Ringwald     return (signBits + 1u);
586*1b2596b5SMatthias Ringwald 
587*1b2596b5SMatthias Ringwald   }
588*1b2596b5SMatthias Ringwald 
589*1b2596b5SMatthias Ringwald   /**
590*1b2596b5SMatthias Ringwald    * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
591*1b2596b5SMatthias Ringwald    */
arm_recip_q15(q15_t in,q15_t * dst,q15_t * pRecipTable)592*1b2596b5SMatthias Ringwald   static __INLINE uint32_t arm_recip_q15(
593*1b2596b5SMatthias Ringwald   q15_t in,
594*1b2596b5SMatthias Ringwald   q15_t * dst,
595*1b2596b5SMatthias Ringwald   q15_t * pRecipTable)
596*1b2596b5SMatthias Ringwald   {
597*1b2596b5SMatthias Ringwald 
598*1b2596b5SMatthias Ringwald     uint32_t out = 0, tempVal = 0;
599*1b2596b5SMatthias Ringwald     uint32_t index = 0, i = 0;
600*1b2596b5SMatthias Ringwald     uint32_t signBits = 0;
601*1b2596b5SMatthias Ringwald 
602*1b2596b5SMatthias Ringwald     if(in > 0)
603*1b2596b5SMatthias Ringwald     {
604*1b2596b5SMatthias Ringwald       signBits = __CLZ(in) - 17;
605*1b2596b5SMatthias Ringwald     }
606*1b2596b5SMatthias Ringwald     else
607*1b2596b5SMatthias Ringwald     {
608*1b2596b5SMatthias Ringwald       signBits = __CLZ(-in) - 17;
609*1b2596b5SMatthias Ringwald     }
610*1b2596b5SMatthias Ringwald 
611*1b2596b5SMatthias Ringwald     /* Convert input sample to 1.15 format */
612*1b2596b5SMatthias Ringwald     in = in << signBits;
613*1b2596b5SMatthias Ringwald 
614*1b2596b5SMatthias Ringwald     /* calculation of index for initial approximated Val */
615*1b2596b5SMatthias Ringwald     index = in >> 8;
616*1b2596b5SMatthias Ringwald     index = (index & INDEX_MASK);
617*1b2596b5SMatthias Ringwald 
618*1b2596b5SMatthias Ringwald     /*      1.15 with exp 1  */
619*1b2596b5SMatthias Ringwald     out = pRecipTable[index];
620*1b2596b5SMatthias Ringwald 
621*1b2596b5SMatthias Ringwald     /* calculation of reciprocal value */
622*1b2596b5SMatthias Ringwald     /* running approximation for two iterations */
623*1b2596b5SMatthias Ringwald     for (i = 0; i < 2; i++)
624*1b2596b5SMatthias Ringwald     {
625*1b2596b5SMatthias Ringwald       tempVal = (q15_t) (((q31_t) in * out) >> 15);
626*1b2596b5SMatthias Ringwald       tempVal = 0x7FFF - tempVal;
627*1b2596b5SMatthias Ringwald       /*      1.15 with exp 1 */
628*1b2596b5SMatthias Ringwald       out = (q15_t) (((q31_t) out * tempVal) >> 14);
629*1b2596b5SMatthias Ringwald     }
630*1b2596b5SMatthias Ringwald 
631*1b2596b5SMatthias Ringwald     /* write output */
632*1b2596b5SMatthias Ringwald     *dst = out;
633*1b2596b5SMatthias Ringwald 
634*1b2596b5SMatthias Ringwald     /* return num of signbits of out = 1/in value */
635*1b2596b5SMatthias Ringwald     return (signBits + 1);
636*1b2596b5SMatthias Ringwald 
637*1b2596b5SMatthias Ringwald   }
638*1b2596b5SMatthias Ringwald 
639*1b2596b5SMatthias Ringwald 
640*1b2596b5SMatthias Ringwald   /*
641*1b2596b5SMatthias Ringwald    * @brief C custom defined intrinisic function for only M0 processors
642*1b2596b5SMatthias Ringwald    */
643*1b2596b5SMatthias Ringwald #if defined(ARM_MATH_CM0_FAMILY)
644*1b2596b5SMatthias Ringwald 
__SSAT(q31_t x,uint32_t y)645*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SSAT(
646*1b2596b5SMatthias Ringwald   q31_t x,
647*1b2596b5SMatthias Ringwald   uint32_t y)
648*1b2596b5SMatthias Ringwald   {
649*1b2596b5SMatthias Ringwald     int32_t posMax, negMin;
650*1b2596b5SMatthias Ringwald     uint32_t i;
651*1b2596b5SMatthias Ringwald 
652*1b2596b5SMatthias Ringwald     posMax = 1;
653*1b2596b5SMatthias Ringwald     for (i = 0; i < (y - 1); i++)
654*1b2596b5SMatthias Ringwald     {
655*1b2596b5SMatthias Ringwald       posMax = posMax * 2;
656*1b2596b5SMatthias Ringwald     }
657*1b2596b5SMatthias Ringwald 
658*1b2596b5SMatthias Ringwald     if(x > 0)
659*1b2596b5SMatthias Ringwald     {
660*1b2596b5SMatthias Ringwald       posMax = (posMax - 1);
661*1b2596b5SMatthias Ringwald 
662*1b2596b5SMatthias Ringwald       if(x > posMax)
663*1b2596b5SMatthias Ringwald       {
664*1b2596b5SMatthias Ringwald         x = posMax;
665*1b2596b5SMatthias Ringwald       }
666*1b2596b5SMatthias Ringwald     }
667*1b2596b5SMatthias Ringwald     else
668*1b2596b5SMatthias Ringwald     {
669*1b2596b5SMatthias Ringwald       negMin = -posMax;
670*1b2596b5SMatthias Ringwald 
671*1b2596b5SMatthias Ringwald       if(x < negMin)
672*1b2596b5SMatthias Ringwald       {
673*1b2596b5SMatthias Ringwald         x = negMin;
674*1b2596b5SMatthias Ringwald       }
675*1b2596b5SMatthias Ringwald     }
676*1b2596b5SMatthias Ringwald     return (x);
677*1b2596b5SMatthias Ringwald 
678*1b2596b5SMatthias Ringwald 
679*1b2596b5SMatthias Ringwald   }
680*1b2596b5SMatthias Ringwald 
681*1b2596b5SMatthias Ringwald #endif /* end of ARM_MATH_CM0_FAMILY */
682*1b2596b5SMatthias Ringwald 
683*1b2596b5SMatthias Ringwald 
684*1b2596b5SMatthias Ringwald 
685*1b2596b5SMatthias Ringwald   /*
686*1b2596b5SMatthias Ringwald    * @brief C custom defined intrinsic function for M3 and M0 processors
687*1b2596b5SMatthias Ringwald    */
688*1b2596b5SMatthias Ringwald #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
689*1b2596b5SMatthias Ringwald 
690*1b2596b5SMatthias Ringwald   /*
691*1b2596b5SMatthias Ringwald    * @brief C custom defined QADD8 for M3 and M0 processors
692*1b2596b5SMatthias Ringwald    */
__QADD8(q31_t x,q31_t y)693*1b2596b5SMatthias Ringwald   static __INLINE q31_t __QADD8(
694*1b2596b5SMatthias Ringwald   q31_t x,
695*1b2596b5SMatthias Ringwald   q31_t y)
696*1b2596b5SMatthias Ringwald   {
697*1b2596b5SMatthias Ringwald 
698*1b2596b5SMatthias Ringwald     q31_t sum;
699*1b2596b5SMatthias Ringwald     q7_t r, s, t, u;
700*1b2596b5SMatthias Ringwald 
701*1b2596b5SMatthias Ringwald     r = (q7_t) x;
702*1b2596b5SMatthias Ringwald     s = (q7_t) y;
703*1b2596b5SMatthias Ringwald 
704*1b2596b5SMatthias Ringwald     r = __SSAT((q31_t) (r + s), 8);
705*1b2596b5SMatthias Ringwald     s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
706*1b2596b5SMatthias Ringwald     t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
707*1b2596b5SMatthias Ringwald     u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
708*1b2596b5SMatthias Ringwald 
709*1b2596b5SMatthias Ringwald     sum =
710*1b2596b5SMatthias Ringwald       (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
711*1b2596b5SMatthias Ringwald       (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
712*1b2596b5SMatthias Ringwald 
713*1b2596b5SMatthias Ringwald     return sum;
714*1b2596b5SMatthias Ringwald 
715*1b2596b5SMatthias Ringwald   }
716*1b2596b5SMatthias Ringwald 
717*1b2596b5SMatthias Ringwald   /*
718*1b2596b5SMatthias Ringwald    * @brief C custom defined QSUB8 for M3 and M0 processors
719*1b2596b5SMatthias Ringwald    */
__QSUB8(q31_t x,q31_t y)720*1b2596b5SMatthias Ringwald   static __INLINE q31_t __QSUB8(
721*1b2596b5SMatthias Ringwald   q31_t x,
722*1b2596b5SMatthias Ringwald   q31_t y)
723*1b2596b5SMatthias Ringwald   {
724*1b2596b5SMatthias Ringwald 
725*1b2596b5SMatthias Ringwald     q31_t sum;
726*1b2596b5SMatthias Ringwald     q31_t r, s, t, u;
727*1b2596b5SMatthias Ringwald 
728*1b2596b5SMatthias Ringwald     r = (q7_t) x;
729*1b2596b5SMatthias Ringwald     s = (q7_t) y;
730*1b2596b5SMatthias Ringwald 
731*1b2596b5SMatthias Ringwald     r = __SSAT((r - s), 8);
732*1b2596b5SMatthias Ringwald     s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
733*1b2596b5SMatthias Ringwald     t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
734*1b2596b5SMatthias Ringwald     u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
735*1b2596b5SMatthias Ringwald 
736*1b2596b5SMatthias Ringwald     sum =
737*1b2596b5SMatthias Ringwald       (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
738*1b2596b5SMatthias Ringwald                                                                 0x000000FF);
739*1b2596b5SMatthias Ringwald 
740*1b2596b5SMatthias Ringwald     return sum;
741*1b2596b5SMatthias Ringwald   }
742*1b2596b5SMatthias Ringwald 
743*1b2596b5SMatthias Ringwald   /*
744*1b2596b5SMatthias Ringwald    * @brief C custom defined QADD16 for M3 and M0 processors
745*1b2596b5SMatthias Ringwald    */
746*1b2596b5SMatthias Ringwald 
747*1b2596b5SMatthias Ringwald   /*
748*1b2596b5SMatthias Ringwald    * @brief C custom defined QADD16 for M3 and M0 processors
749*1b2596b5SMatthias Ringwald    */
__QADD16(q31_t x,q31_t y)750*1b2596b5SMatthias Ringwald   static __INLINE q31_t __QADD16(
751*1b2596b5SMatthias Ringwald   q31_t x,
752*1b2596b5SMatthias Ringwald   q31_t y)
753*1b2596b5SMatthias Ringwald   {
754*1b2596b5SMatthias Ringwald 
755*1b2596b5SMatthias Ringwald     q31_t sum;
756*1b2596b5SMatthias Ringwald     q31_t r, s;
757*1b2596b5SMatthias Ringwald 
758*1b2596b5SMatthias Ringwald     r = (q15_t) x;
759*1b2596b5SMatthias Ringwald     s = (q15_t) y;
760*1b2596b5SMatthias Ringwald 
761*1b2596b5SMatthias Ringwald     r = __SSAT(r + s, 16);
762*1b2596b5SMatthias Ringwald     s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
763*1b2596b5SMatthias Ringwald 
764*1b2596b5SMatthias Ringwald     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
765*1b2596b5SMatthias Ringwald 
766*1b2596b5SMatthias Ringwald     return sum;
767*1b2596b5SMatthias Ringwald 
768*1b2596b5SMatthias Ringwald   }
769*1b2596b5SMatthias Ringwald 
770*1b2596b5SMatthias Ringwald   /*
771*1b2596b5SMatthias Ringwald    * @brief C custom defined SHADD16 for M3 and M0 processors
772*1b2596b5SMatthias Ringwald    */
__SHADD16(q31_t x,q31_t y)773*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SHADD16(
774*1b2596b5SMatthias Ringwald   q31_t x,
775*1b2596b5SMatthias Ringwald   q31_t y)
776*1b2596b5SMatthias Ringwald   {
777*1b2596b5SMatthias Ringwald 
778*1b2596b5SMatthias Ringwald     q31_t sum;
779*1b2596b5SMatthias Ringwald     q31_t r, s;
780*1b2596b5SMatthias Ringwald 
781*1b2596b5SMatthias Ringwald     r = (q15_t) x;
782*1b2596b5SMatthias Ringwald     s = (q15_t) y;
783*1b2596b5SMatthias Ringwald 
784*1b2596b5SMatthias Ringwald     r = ((r >> 1) + (s >> 1));
785*1b2596b5SMatthias Ringwald     s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
786*1b2596b5SMatthias Ringwald 
787*1b2596b5SMatthias Ringwald     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
788*1b2596b5SMatthias Ringwald 
789*1b2596b5SMatthias Ringwald     return sum;
790*1b2596b5SMatthias Ringwald 
791*1b2596b5SMatthias Ringwald   }
792*1b2596b5SMatthias Ringwald 
793*1b2596b5SMatthias Ringwald   /*
794*1b2596b5SMatthias Ringwald    * @brief C custom defined QSUB16 for M3 and M0 processors
795*1b2596b5SMatthias Ringwald    */
__QSUB16(q31_t x,q31_t y)796*1b2596b5SMatthias Ringwald   static __INLINE q31_t __QSUB16(
797*1b2596b5SMatthias Ringwald   q31_t x,
798*1b2596b5SMatthias Ringwald   q31_t y)
799*1b2596b5SMatthias Ringwald   {
800*1b2596b5SMatthias Ringwald 
801*1b2596b5SMatthias Ringwald     q31_t sum;
802*1b2596b5SMatthias Ringwald     q31_t r, s;
803*1b2596b5SMatthias Ringwald 
804*1b2596b5SMatthias Ringwald     r = (q15_t) x;
805*1b2596b5SMatthias Ringwald     s = (q15_t) y;
806*1b2596b5SMatthias Ringwald 
807*1b2596b5SMatthias Ringwald     r = __SSAT(r - s, 16);
808*1b2596b5SMatthias Ringwald     s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
809*1b2596b5SMatthias Ringwald 
810*1b2596b5SMatthias Ringwald     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
811*1b2596b5SMatthias Ringwald 
812*1b2596b5SMatthias Ringwald     return sum;
813*1b2596b5SMatthias Ringwald   }
814*1b2596b5SMatthias Ringwald 
815*1b2596b5SMatthias Ringwald   /*
816*1b2596b5SMatthias Ringwald    * @brief C custom defined SHSUB16 for M3 and M0 processors
817*1b2596b5SMatthias Ringwald    */
__SHSUB16(q31_t x,q31_t y)818*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SHSUB16(
819*1b2596b5SMatthias Ringwald   q31_t x,
820*1b2596b5SMatthias Ringwald   q31_t y)
821*1b2596b5SMatthias Ringwald   {
822*1b2596b5SMatthias Ringwald 
823*1b2596b5SMatthias Ringwald     q31_t diff;
824*1b2596b5SMatthias Ringwald     q31_t r, s;
825*1b2596b5SMatthias Ringwald 
826*1b2596b5SMatthias Ringwald     r = (q15_t) x;
827*1b2596b5SMatthias Ringwald     s = (q15_t) y;
828*1b2596b5SMatthias Ringwald 
829*1b2596b5SMatthias Ringwald     r = ((r >> 1) - (s >> 1));
830*1b2596b5SMatthias Ringwald     s = (((x >> 17) - (y >> 17)) << 16);
831*1b2596b5SMatthias Ringwald 
832*1b2596b5SMatthias Ringwald     diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
833*1b2596b5SMatthias Ringwald 
834*1b2596b5SMatthias Ringwald     return diff;
835*1b2596b5SMatthias Ringwald   }
836*1b2596b5SMatthias Ringwald 
837*1b2596b5SMatthias Ringwald   /*
838*1b2596b5SMatthias Ringwald    * @brief C custom defined QASX for M3 and M0 processors
839*1b2596b5SMatthias Ringwald    */
__QASX(q31_t x,q31_t y)840*1b2596b5SMatthias Ringwald   static __INLINE q31_t __QASX(
841*1b2596b5SMatthias Ringwald   q31_t x,
842*1b2596b5SMatthias Ringwald   q31_t y)
843*1b2596b5SMatthias Ringwald   {
844*1b2596b5SMatthias Ringwald 
845*1b2596b5SMatthias Ringwald     q31_t sum = 0;
846*1b2596b5SMatthias Ringwald 
847*1b2596b5SMatthias Ringwald     sum =
848*1b2596b5SMatthias Ringwald       ((sum +
849*1b2596b5SMatthias Ringwald         clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
850*1b2596b5SMatthias Ringwald       clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
851*1b2596b5SMatthias Ringwald 
852*1b2596b5SMatthias Ringwald     return sum;
853*1b2596b5SMatthias Ringwald   }
854*1b2596b5SMatthias Ringwald 
855*1b2596b5SMatthias Ringwald   /*
856*1b2596b5SMatthias Ringwald    * @brief C custom defined SHASX for M3 and M0 processors
857*1b2596b5SMatthias Ringwald    */
__SHASX(q31_t x,q31_t y)858*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SHASX(
859*1b2596b5SMatthias Ringwald   q31_t x,
860*1b2596b5SMatthias Ringwald   q31_t y)
861*1b2596b5SMatthias Ringwald   {
862*1b2596b5SMatthias Ringwald 
863*1b2596b5SMatthias Ringwald     q31_t sum;
864*1b2596b5SMatthias Ringwald     q31_t r, s;
865*1b2596b5SMatthias Ringwald 
866*1b2596b5SMatthias Ringwald     r = (q15_t) x;
867*1b2596b5SMatthias Ringwald     s = (q15_t) y;
868*1b2596b5SMatthias Ringwald 
869*1b2596b5SMatthias Ringwald     r = ((r >> 1) - (y >> 17));
870*1b2596b5SMatthias Ringwald     s = (((x >> 17) + (s >> 1)) << 16);
871*1b2596b5SMatthias Ringwald 
872*1b2596b5SMatthias Ringwald     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
873*1b2596b5SMatthias Ringwald 
874*1b2596b5SMatthias Ringwald     return sum;
875*1b2596b5SMatthias Ringwald   }
876*1b2596b5SMatthias Ringwald 
877*1b2596b5SMatthias Ringwald 
878*1b2596b5SMatthias Ringwald   /*
879*1b2596b5SMatthias Ringwald    * @brief C custom defined QSAX for M3 and M0 processors
880*1b2596b5SMatthias Ringwald    */
__QSAX(q31_t x,q31_t y)881*1b2596b5SMatthias Ringwald   static __INLINE q31_t __QSAX(
882*1b2596b5SMatthias Ringwald   q31_t x,
883*1b2596b5SMatthias Ringwald   q31_t y)
884*1b2596b5SMatthias Ringwald   {
885*1b2596b5SMatthias Ringwald 
886*1b2596b5SMatthias Ringwald     q31_t sum = 0;
887*1b2596b5SMatthias Ringwald 
888*1b2596b5SMatthias Ringwald     sum =
889*1b2596b5SMatthias Ringwald       ((sum +
890*1b2596b5SMatthias Ringwald         clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
891*1b2596b5SMatthias Ringwald       clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
892*1b2596b5SMatthias Ringwald 
893*1b2596b5SMatthias Ringwald     return sum;
894*1b2596b5SMatthias Ringwald   }
895*1b2596b5SMatthias Ringwald 
896*1b2596b5SMatthias Ringwald   /*
897*1b2596b5SMatthias Ringwald    * @brief C custom defined SHSAX for M3 and M0 processors
898*1b2596b5SMatthias Ringwald    */
__SHSAX(q31_t x,q31_t y)899*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SHSAX(
900*1b2596b5SMatthias Ringwald   q31_t x,
901*1b2596b5SMatthias Ringwald   q31_t y)
902*1b2596b5SMatthias Ringwald   {
903*1b2596b5SMatthias Ringwald 
904*1b2596b5SMatthias Ringwald     q31_t sum;
905*1b2596b5SMatthias Ringwald     q31_t r, s;
906*1b2596b5SMatthias Ringwald 
907*1b2596b5SMatthias Ringwald     r = (q15_t) x;
908*1b2596b5SMatthias Ringwald     s = (q15_t) y;
909*1b2596b5SMatthias Ringwald 
910*1b2596b5SMatthias Ringwald     r = ((r >> 1) + (y >> 17));
911*1b2596b5SMatthias Ringwald     s = (((x >> 17) - (s >> 1)) << 16);
912*1b2596b5SMatthias Ringwald 
913*1b2596b5SMatthias Ringwald     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
914*1b2596b5SMatthias Ringwald 
915*1b2596b5SMatthias Ringwald     return sum;
916*1b2596b5SMatthias Ringwald   }
917*1b2596b5SMatthias Ringwald 
918*1b2596b5SMatthias Ringwald   /*
919*1b2596b5SMatthias Ringwald    * @brief C custom defined SMUSDX for M3 and M0 processors
920*1b2596b5SMatthias Ringwald    */
__SMUSDX(q31_t x,q31_t y)921*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SMUSDX(
922*1b2596b5SMatthias Ringwald   q31_t x,
923*1b2596b5SMatthias Ringwald   q31_t y)
924*1b2596b5SMatthias Ringwald   {
925*1b2596b5SMatthias Ringwald 
926*1b2596b5SMatthias Ringwald     return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
927*1b2596b5SMatthias Ringwald                      ((q15_t) (x >> 16) * (q15_t) y)));
928*1b2596b5SMatthias Ringwald   }
929*1b2596b5SMatthias Ringwald 
930*1b2596b5SMatthias Ringwald   /*
931*1b2596b5SMatthias Ringwald    * @brief C custom defined SMUADX for M3 and M0 processors
932*1b2596b5SMatthias Ringwald    */
__SMUADX(q31_t x,q31_t y)933*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SMUADX(
934*1b2596b5SMatthias Ringwald   q31_t x,
935*1b2596b5SMatthias Ringwald   q31_t y)
936*1b2596b5SMatthias Ringwald   {
937*1b2596b5SMatthias Ringwald 
938*1b2596b5SMatthias Ringwald     return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
939*1b2596b5SMatthias Ringwald                      ((q15_t) (x >> 16) * (q15_t) y)));
940*1b2596b5SMatthias Ringwald   }
941*1b2596b5SMatthias Ringwald 
942*1b2596b5SMatthias Ringwald   /*
943*1b2596b5SMatthias Ringwald    * @brief C custom defined QADD for M3 and M0 processors
944*1b2596b5SMatthias Ringwald    */
__QADD(q31_t x,q31_t y)945*1b2596b5SMatthias Ringwald   static __INLINE q31_t __QADD(
946*1b2596b5SMatthias Ringwald   q31_t x,
947*1b2596b5SMatthias Ringwald   q31_t y)
948*1b2596b5SMatthias Ringwald   {
949*1b2596b5SMatthias Ringwald     return clip_q63_to_q31((q63_t) x + y);
950*1b2596b5SMatthias Ringwald   }
951*1b2596b5SMatthias Ringwald 
952*1b2596b5SMatthias Ringwald   /*
953*1b2596b5SMatthias Ringwald    * @brief C custom defined QSUB for M3 and M0 processors
954*1b2596b5SMatthias Ringwald    */
__QSUB(q31_t x,q31_t y)955*1b2596b5SMatthias Ringwald   static __INLINE q31_t __QSUB(
956*1b2596b5SMatthias Ringwald   q31_t x,
957*1b2596b5SMatthias Ringwald   q31_t y)
958*1b2596b5SMatthias Ringwald   {
959*1b2596b5SMatthias Ringwald     return clip_q63_to_q31((q63_t) x - y);
960*1b2596b5SMatthias Ringwald   }
961*1b2596b5SMatthias Ringwald 
962*1b2596b5SMatthias Ringwald   /*
963*1b2596b5SMatthias Ringwald    * @brief C custom defined SMLAD for M3 and M0 processors
964*1b2596b5SMatthias Ringwald    */
__SMLAD(q31_t x,q31_t y,q31_t sum)965*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SMLAD(
966*1b2596b5SMatthias Ringwald   q31_t x,
967*1b2596b5SMatthias Ringwald   q31_t y,
968*1b2596b5SMatthias Ringwald   q31_t sum)
969*1b2596b5SMatthias Ringwald   {
970*1b2596b5SMatthias Ringwald 
971*1b2596b5SMatthias Ringwald     return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
972*1b2596b5SMatthias Ringwald             ((q15_t) x * (q15_t) y));
973*1b2596b5SMatthias Ringwald   }
974*1b2596b5SMatthias Ringwald 
975*1b2596b5SMatthias Ringwald   /*
976*1b2596b5SMatthias Ringwald    * @brief C custom defined SMLADX for M3 and M0 processors
977*1b2596b5SMatthias Ringwald    */
__SMLADX(q31_t x,q31_t y,q31_t sum)978*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SMLADX(
979*1b2596b5SMatthias Ringwald   q31_t x,
980*1b2596b5SMatthias Ringwald   q31_t y,
981*1b2596b5SMatthias Ringwald   q31_t sum)
982*1b2596b5SMatthias Ringwald   {
983*1b2596b5SMatthias Ringwald 
984*1b2596b5SMatthias Ringwald     return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
985*1b2596b5SMatthias Ringwald             ((q15_t) x * (q15_t) (y >> 16)));
986*1b2596b5SMatthias Ringwald   }
987*1b2596b5SMatthias Ringwald 
988*1b2596b5SMatthias Ringwald   /*
989*1b2596b5SMatthias Ringwald    * @brief C custom defined SMLSDX for M3 and M0 processors
990*1b2596b5SMatthias Ringwald    */
__SMLSDX(q31_t x,q31_t y,q31_t sum)991*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SMLSDX(
992*1b2596b5SMatthias Ringwald   q31_t x,
993*1b2596b5SMatthias Ringwald   q31_t y,
994*1b2596b5SMatthias Ringwald   q31_t sum)
995*1b2596b5SMatthias Ringwald   {
996*1b2596b5SMatthias Ringwald 
997*1b2596b5SMatthias Ringwald     return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
998*1b2596b5SMatthias Ringwald             ((q15_t) x * (q15_t) (y >> 16)));
999*1b2596b5SMatthias Ringwald   }
1000*1b2596b5SMatthias Ringwald 
1001*1b2596b5SMatthias Ringwald   /*
1002*1b2596b5SMatthias Ringwald    * @brief C custom defined SMLALD for M3 and M0 processors
1003*1b2596b5SMatthias Ringwald    */
__SMLALD(q31_t x,q31_t y,q63_t sum)1004*1b2596b5SMatthias Ringwald   static __INLINE q63_t __SMLALD(
1005*1b2596b5SMatthias Ringwald   q31_t x,
1006*1b2596b5SMatthias Ringwald   q31_t y,
1007*1b2596b5SMatthias Ringwald   q63_t sum)
1008*1b2596b5SMatthias Ringwald   {
1009*1b2596b5SMatthias Ringwald 
1010*1b2596b5SMatthias Ringwald     return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
1011*1b2596b5SMatthias Ringwald             ((q15_t) x * (q15_t) y));
1012*1b2596b5SMatthias Ringwald   }
1013*1b2596b5SMatthias Ringwald 
1014*1b2596b5SMatthias Ringwald   /*
1015*1b2596b5SMatthias Ringwald    * @brief C custom defined SMLALDX for M3 and M0 processors
1016*1b2596b5SMatthias Ringwald    */
__SMLALDX(q31_t x,q31_t y,q63_t sum)1017*1b2596b5SMatthias Ringwald   static __INLINE q63_t __SMLALDX(
1018*1b2596b5SMatthias Ringwald   q31_t x,
1019*1b2596b5SMatthias Ringwald   q31_t y,
1020*1b2596b5SMatthias Ringwald   q63_t sum)
1021*1b2596b5SMatthias Ringwald   {
1022*1b2596b5SMatthias Ringwald 
1023*1b2596b5SMatthias Ringwald     return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
1024*1b2596b5SMatthias Ringwald       ((q15_t) x * (q15_t) (y >> 16));
1025*1b2596b5SMatthias Ringwald   }
1026*1b2596b5SMatthias Ringwald 
1027*1b2596b5SMatthias Ringwald   /*
1028*1b2596b5SMatthias Ringwald    * @brief C custom defined SMUAD for M3 and M0 processors
1029*1b2596b5SMatthias Ringwald    */
__SMUAD(q31_t x,q31_t y)1030*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SMUAD(
1031*1b2596b5SMatthias Ringwald   q31_t x,
1032*1b2596b5SMatthias Ringwald   q31_t y)
1033*1b2596b5SMatthias Ringwald   {
1034*1b2596b5SMatthias Ringwald 
1035*1b2596b5SMatthias Ringwald     return (((x >> 16) * (y >> 16)) +
1036*1b2596b5SMatthias Ringwald             (((x << 16) >> 16) * ((y << 16) >> 16)));
1037*1b2596b5SMatthias Ringwald   }
1038*1b2596b5SMatthias Ringwald 
1039*1b2596b5SMatthias Ringwald   /*
1040*1b2596b5SMatthias Ringwald    * @brief C custom defined SMUSD for M3 and M0 processors
1041*1b2596b5SMatthias Ringwald    */
__SMUSD(q31_t x,q31_t y)1042*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SMUSD(
1043*1b2596b5SMatthias Ringwald   q31_t x,
1044*1b2596b5SMatthias Ringwald   q31_t y)
1045*1b2596b5SMatthias Ringwald   {
1046*1b2596b5SMatthias Ringwald 
1047*1b2596b5SMatthias Ringwald     return (-((x >> 16) * (y >> 16)) +
1048*1b2596b5SMatthias Ringwald             (((x << 16) >> 16) * ((y << 16) >> 16)));
1049*1b2596b5SMatthias Ringwald   }
1050*1b2596b5SMatthias Ringwald 
1051*1b2596b5SMatthias Ringwald 
1052*1b2596b5SMatthias Ringwald   /*
1053*1b2596b5SMatthias Ringwald    * @brief C custom defined SXTB16 for M3 and M0 processors
1054*1b2596b5SMatthias Ringwald    */
__SXTB16(q31_t x)1055*1b2596b5SMatthias Ringwald   static __INLINE q31_t __SXTB16(
1056*1b2596b5SMatthias Ringwald   q31_t x)
1057*1b2596b5SMatthias Ringwald   {
1058*1b2596b5SMatthias Ringwald 
1059*1b2596b5SMatthias Ringwald     return ((((x << 24) >> 24) & 0x0000FFFF) |
1060*1b2596b5SMatthias Ringwald             (((x << 8) >> 8) & 0xFFFF0000));
1061*1b2596b5SMatthias Ringwald   }
1062*1b2596b5SMatthias Ringwald 
1063*1b2596b5SMatthias Ringwald 
1064*1b2596b5SMatthias Ringwald #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
1065*1b2596b5SMatthias Ringwald 
1066*1b2596b5SMatthias Ringwald 
1067*1b2596b5SMatthias Ringwald   /**
1068*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q7 FIR filter.
1069*1b2596b5SMatthias Ringwald    */
1070*1b2596b5SMatthias Ringwald   typedef struct
1071*1b2596b5SMatthias Ringwald   {
1072*1b2596b5SMatthias Ringwald     uint16_t numTaps;        /**< number of filter coefficients in the filter. */
1073*1b2596b5SMatthias Ringwald     q7_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1074*1b2596b5SMatthias Ringwald     q7_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
1075*1b2596b5SMatthias Ringwald   } arm_fir_instance_q7;
1076*1b2596b5SMatthias Ringwald 
1077*1b2596b5SMatthias Ringwald   /**
1078*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 FIR filter.
1079*1b2596b5SMatthias Ringwald    */
1080*1b2596b5SMatthias Ringwald   typedef struct
1081*1b2596b5SMatthias Ringwald   {
1082*1b2596b5SMatthias Ringwald     uint16_t numTaps;         /**< number of filter coefficients in the filter. */
1083*1b2596b5SMatthias Ringwald     q15_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1084*1b2596b5SMatthias Ringwald     q15_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
1085*1b2596b5SMatthias Ringwald   } arm_fir_instance_q15;
1086*1b2596b5SMatthias Ringwald 
1087*1b2596b5SMatthias Ringwald   /**
1088*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 FIR filter.
1089*1b2596b5SMatthias Ringwald    */
1090*1b2596b5SMatthias Ringwald   typedef struct
1091*1b2596b5SMatthias Ringwald   {
1092*1b2596b5SMatthias Ringwald     uint16_t numTaps;         /**< number of filter coefficients in the filter. */
1093*1b2596b5SMatthias Ringwald     q31_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1094*1b2596b5SMatthias Ringwald     q31_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps. */
1095*1b2596b5SMatthias Ringwald   } arm_fir_instance_q31;
1096*1b2596b5SMatthias Ringwald 
1097*1b2596b5SMatthias Ringwald   /**
1098*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point FIR filter.
1099*1b2596b5SMatthias Ringwald    */
1100*1b2596b5SMatthias Ringwald   typedef struct
1101*1b2596b5SMatthias Ringwald   {
1102*1b2596b5SMatthias Ringwald     uint16_t numTaps;     /**< number of filter coefficients in the filter. */
1103*1b2596b5SMatthias Ringwald     float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1104*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
1105*1b2596b5SMatthias Ringwald   } arm_fir_instance_f32;
1106*1b2596b5SMatthias Ringwald 
1107*1b2596b5SMatthias Ringwald 
1108*1b2596b5SMatthias Ringwald   /**
1109*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q7 FIR filter.
1110*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q7 FIR filter structure.
1111*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
1112*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
1113*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
1114*1b2596b5SMatthias Ringwald    * @return none.
1115*1b2596b5SMatthias Ringwald    */
1116*1b2596b5SMatthias Ringwald   void arm_fir_q7(
1117*1b2596b5SMatthias Ringwald   const arm_fir_instance_q7 * S,
1118*1b2596b5SMatthias Ringwald   q7_t * pSrc,
1119*1b2596b5SMatthias Ringwald   q7_t * pDst,
1120*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1121*1b2596b5SMatthias Ringwald 
1122*1b2596b5SMatthias Ringwald 
1123*1b2596b5SMatthias Ringwald   /**
1124*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q7 FIR filter.
1125*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q7 FIR structure.
1126*1b2596b5SMatthias Ringwald    * @param[in] numTaps  Number of filter coefficients in the filter.
1127*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to the filter coefficients.
1128*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.
1129*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples that are processed.
1130*1b2596b5SMatthias Ringwald    * @return none
1131*1b2596b5SMatthias Ringwald    */
1132*1b2596b5SMatthias Ringwald   void arm_fir_init_q7(
1133*1b2596b5SMatthias Ringwald   arm_fir_instance_q7 * S,
1134*1b2596b5SMatthias Ringwald   uint16_t numTaps,
1135*1b2596b5SMatthias Ringwald   q7_t * pCoeffs,
1136*1b2596b5SMatthias Ringwald   q7_t * pState,
1137*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1138*1b2596b5SMatthias Ringwald 
1139*1b2596b5SMatthias Ringwald 
1140*1b2596b5SMatthias Ringwald   /**
1141*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q15 FIR filter.
1142*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 FIR structure.
1143*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
1144*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
1145*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
1146*1b2596b5SMatthias Ringwald    * @return none.
1147*1b2596b5SMatthias Ringwald    */
1148*1b2596b5SMatthias Ringwald   void arm_fir_q15(
1149*1b2596b5SMatthias Ringwald   const arm_fir_instance_q15 * S,
1150*1b2596b5SMatthias Ringwald   q15_t * pSrc,
1151*1b2596b5SMatthias Ringwald   q15_t * pDst,
1152*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1153*1b2596b5SMatthias Ringwald 
1154*1b2596b5SMatthias Ringwald   /**
1155*1b2596b5SMatthias Ringwald    * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
1156*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 FIR filter structure.
1157*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
1158*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
1159*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
1160*1b2596b5SMatthias Ringwald    * @return none.
1161*1b2596b5SMatthias Ringwald    */
1162*1b2596b5SMatthias Ringwald   void arm_fir_fast_q15(
1163*1b2596b5SMatthias Ringwald   const arm_fir_instance_q15 * S,
1164*1b2596b5SMatthias Ringwald   q15_t * pSrc,
1165*1b2596b5SMatthias Ringwald   q15_t * pDst,
1166*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1167*1b2596b5SMatthias Ringwald 
1168*1b2596b5SMatthias Ringwald   /**
1169*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q15 FIR filter.
1170*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
1171*1b2596b5SMatthias Ringwald    * @param[in] numTaps  Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
1172*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to the filter coefficients.
1173*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.
1174*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples that are processed at a time.
1175*1b2596b5SMatthias Ringwald    * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
1176*1b2596b5SMatthias Ringwald    * <code>numTaps</code> is not a supported value.
1177*1b2596b5SMatthias Ringwald    */
1178*1b2596b5SMatthias Ringwald 
1179*1b2596b5SMatthias Ringwald   arm_status arm_fir_init_q15(
1180*1b2596b5SMatthias Ringwald   arm_fir_instance_q15 * S,
1181*1b2596b5SMatthias Ringwald   uint16_t numTaps,
1182*1b2596b5SMatthias Ringwald   q15_t * pCoeffs,
1183*1b2596b5SMatthias Ringwald   q15_t * pState,
1184*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1185*1b2596b5SMatthias Ringwald 
1186*1b2596b5SMatthias Ringwald   /**
1187*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q31 FIR filter.
1188*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 FIR filter structure.
1189*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
1190*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
1191*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
1192*1b2596b5SMatthias Ringwald    * @return none.
1193*1b2596b5SMatthias Ringwald    */
1194*1b2596b5SMatthias Ringwald   void arm_fir_q31(
1195*1b2596b5SMatthias Ringwald   const arm_fir_instance_q31 * S,
1196*1b2596b5SMatthias Ringwald   q31_t * pSrc,
1197*1b2596b5SMatthias Ringwald   q31_t * pDst,
1198*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1199*1b2596b5SMatthias Ringwald 
1200*1b2596b5SMatthias Ringwald   /**
1201*1b2596b5SMatthias Ringwald    * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
1202*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 FIR structure.
1203*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
1204*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
1205*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
1206*1b2596b5SMatthias Ringwald    * @return none.
1207*1b2596b5SMatthias Ringwald    */
1208*1b2596b5SMatthias Ringwald   void arm_fir_fast_q31(
1209*1b2596b5SMatthias Ringwald   const arm_fir_instance_q31 * S,
1210*1b2596b5SMatthias Ringwald   q31_t * pSrc,
1211*1b2596b5SMatthias Ringwald   q31_t * pDst,
1212*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1213*1b2596b5SMatthias Ringwald 
1214*1b2596b5SMatthias Ringwald   /**
1215*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q31 FIR filter.
1216*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q31 FIR structure.
1217*1b2596b5SMatthias Ringwald    * @param[in] 	numTaps  Number of filter coefficients in the filter.
1218*1b2596b5SMatthias Ringwald    * @param[in] 	*pCoeffs points to the filter coefficients.
1219*1b2596b5SMatthias Ringwald    * @param[in] 	*pState points to the state buffer.
1220*1b2596b5SMatthias Ringwald    * @param[in] 	blockSize number of samples that are processed at a time.
1221*1b2596b5SMatthias Ringwald    * @return 		none.
1222*1b2596b5SMatthias Ringwald    */
1223*1b2596b5SMatthias Ringwald   void arm_fir_init_q31(
1224*1b2596b5SMatthias Ringwald   arm_fir_instance_q31 * S,
1225*1b2596b5SMatthias Ringwald   uint16_t numTaps,
1226*1b2596b5SMatthias Ringwald   q31_t * pCoeffs,
1227*1b2596b5SMatthias Ringwald   q31_t * pState,
1228*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1229*1b2596b5SMatthias Ringwald 
1230*1b2596b5SMatthias Ringwald   /**
1231*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point FIR filter.
1232*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the floating-point FIR structure.
1233*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
1234*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
1235*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
1236*1b2596b5SMatthias Ringwald    * @return none.
1237*1b2596b5SMatthias Ringwald    */
1238*1b2596b5SMatthias Ringwald   void arm_fir_f32(
1239*1b2596b5SMatthias Ringwald   const arm_fir_instance_f32 * S,
1240*1b2596b5SMatthias Ringwald   float32_t * pSrc,
1241*1b2596b5SMatthias Ringwald   float32_t * pDst,
1242*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1243*1b2596b5SMatthias Ringwald 
1244*1b2596b5SMatthias Ringwald   /**
1245*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point FIR filter.
1246*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
1247*1b2596b5SMatthias Ringwald    * @param[in] 	numTaps  Number of filter coefficients in the filter.
1248*1b2596b5SMatthias Ringwald    * @param[in] 	*pCoeffs points to the filter coefficients.
1249*1b2596b5SMatthias Ringwald    * @param[in] 	*pState points to the state buffer.
1250*1b2596b5SMatthias Ringwald    * @param[in] 	blockSize number of samples that are processed at a time.
1251*1b2596b5SMatthias Ringwald    * @return    	none.
1252*1b2596b5SMatthias Ringwald    */
1253*1b2596b5SMatthias Ringwald   void arm_fir_init_f32(
1254*1b2596b5SMatthias Ringwald   arm_fir_instance_f32 * S,
1255*1b2596b5SMatthias Ringwald   uint16_t numTaps,
1256*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
1257*1b2596b5SMatthias Ringwald   float32_t * pState,
1258*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1259*1b2596b5SMatthias Ringwald 
1260*1b2596b5SMatthias Ringwald 
1261*1b2596b5SMatthias Ringwald   /**
1262*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 Biquad cascade filter.
1263*1b2596b5SMatthias Ringwald    */
1264*1b2596b5SMatthias Ringwald   typedef struct
1265*1b2596b5SMatthias Ringwald   {
1266*1b2596b5SMatthias Ringwald     int8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
1267*1b2596b5SMatthias Ringwald     q15_t *pState;            /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
1268*1b2596b5SMatthias Ringwald     q15_t *pCoeffs;           /**< Points to the array of coefficients.  The array is of length 5*numStages. */
1269*1b2596b5SMatthias Ringwald     int8_t postShift;         /**< Additional shift, in bits, applied to each output sample. */
1270*1b2596b5SMatthias Ringwald 
1271*1b2596b5SMatthias Ringwald   } arm_biquad_casd_df1_inst_q15;
1272*1b2596b5SMatthias Ringwald 
1273*1b2596b5SMatthias Ringwald 
1274*1b2596b5SMatthias Ringwald   /**
1275*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 Biquad cascade filter.
1276*1b2596b5SMatthias Ringwald    */
1277*1b2596b5SMatthias Ringwald   typedef struct
1278*1b2596b5SMatthias Ringwald   {
1279*1b2596b5SMatthias Ringwald     uint32_t numStages;      /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
1280*1b2596b5SMatthias Ringwald     q31_t *pState;           /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
1281*1b2596b5SMatthias Ringwald     q31_t *pCoeffs;          /**< Points to the array of coefficients.  The array is of length 5*numStages. */
1282*1b2596b5SMatthias Ringwald     uint8_t postShift;       /**< Additional shift, in bits, applied to each output sample. */
1283*1b2596b5SMatthias Ringwald 
1284*1b2596b5SMatthias Ringwald   } arm_biquad_casd_df1_inst_q31;
1285*1b2596b5SMatthias Ringwald 
1286*1b2596b5SMatthias Ringwald   /**
1287*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point Biquad cascade filter.
1288*1b2596b5SMatthias Ringwald    */
1289*1b2596b5SMatthias Ringwald   typedef struct
1290*1b2596b5SMatthias Ringwald   {
1291*1b2596b5SMatthias Ringwald     uint32_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
1292*1b2596b5SMatthias Ringwald     float32_t *pState;          /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
1293*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;         /**< Points to the array of coefficients.  The array is of length 5*numStages. */
1294*1b2596b5SMatthias Ringwald 
1295*1b2596b5SMatthias Ringwald 
1296*1b2596b5SMatthias Ringwald   } arm_biquad_casd_df1_inst_f32;
1297*1b2596b5SMatthias Ringwald 
1298*1b2596b5SMatthias Ringwald 
1299*1b2596b5SMatthias Ringwald 
1300*1b2596b5SMatthias Ringwald   /**
1301*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q15 Biquad cascade filter.
1302*1b2596b5SMatthias Ringwald    * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.
1303*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the block of input data.
1304*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
1305*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
1306*1b2596b5SMatthias Ringwald    * @return     none.
1307*1b2596b5SMatthias Ringwald    */
1308*1b2596b5SMatthias Ringwald 
1309*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df1_q15(
1310*1b2596b5SMatthias Ringwald   const arm_biquad_casd_df1_inst_q15 * S,
1311*1b2596b5SMatthias Ringwald   q15_t * pSrc,
1312*1b2596b5SMatthias Ringwald   q15_t * pDst,
1313*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1314*1b2596b5SMatthias Ringwald 
1315*1b2596b5SMatthias Ringwald   /**
1316*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q15 Biquad cascade filter.
1317*1b2596b5SMatthias Ringwald    * @param[in,out] *S           points to an instance of the Q15 Biquad cascade structure.
1318*1b2596b5SMatthias Ringwald    * @param[in]     numStages    number of 2nd order stages in the filter.
1319*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs     points to the filter coefficients.
1320*1b2596b5SMatthias Ringwald    * @param[in]     *pState      points to the state buffer.
1321*1b2596b5SMatthias Ringwald    * @param[in]     postShift    Shift to be applied to the output. Varies according to the coefficients format
1322*1b2596b5SMatthias Ringwald    * @return        none
1323*1b2596b5SMatthias Ringwald    */
1324*1b2596b5SMatthias Ringwald 
1325*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df1_init_q15(
1326*1b2596b5SMatthias Ringwald   arm_biquad_casd_df1_inst_q15 * S,
1327*1b2596b5SMatthias Ringwald   uint8_t numStages,
1328*1b2596b5SMatthias Ringwald   q15_t * pCoeffs,
1329*1b2596b5SMatthias Ringwald   q15_t * pState,
1330*1b2596b5SMatthias Ringwald   int8_t postShift);
1331*1b2596b5SMatthias Ringwald 
1332*1b2596b5SMatthias Ringwald 
1333*1b2596b5SMatthias Ringwald   /**
1334*1b2596b5SMatthias Ringwald    * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
1335*1b2596b5SMatthias Ringwald    * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.
1336*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the block of input data.
1337*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
1338*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
1339*1b2596b5SMatthias Ringwald    * @return     none.
1340*1b2596b5SMatthias Ringwald    */
1341*1b2596b5SMatthias Ringwald 
1342*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df1_fast_q15(
1343*1b2596b5SMatthias Ringwald   const arm_biquad_casd_df1_inst_q15 * S,
1344*1b2596b5SMatthias Ringwald   q15_t * pSrc,
1345*1b2596b5SMatthias Ringwald   q15_t * pDst,
1346*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1347*1b2596b5SMatthias Ringwald 
1348*1b2596b5SMatthias Ringwald 
1349*1b2596b5SMatthias Ringwald   /**
1350*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q31 Biquad cascade filter
1351*1b2596b5SMatthias Ringwald    * @param[in]  *S         points to an instance of the Q31 Biquad cascade structure.
1352*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc      points to the block of input data.
1353*1b2596b5SMatthias Ringwald    * @param[out] *pDst      points to the block of output data.
1354*1b2596b5SMatthias Ringwald    * @param[in]  blockSize  number of samples to process.
1355*1b2596b5SMatthias Ringwald    * @return     none.
1356*1b2596b5SMatthias Ringwald    */
1357*1b2596b5SMatthias Ringwald 
1358*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df1_q31(
1359*1b2596b5SMatthias Ringwald   const arm_biquad_casd_df1_inst_q31 * S,
1360*1b2596b5SMatthias Ringwald   q31_t * pSrc,
1361*1b2596b5SMatthias Ringwald   q31_t * pDst,
1362*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1363*1b2596b5SMatthias Ringwald 
1364*1b2596b5SMatthias Ringwald   /**
1365*1b2596b5SMatthias Ringwald    * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
1366*1b2596b5SMatthias Ringwald    * @param[in]  *S         points to an instance of the Q31 Biquad cascade structure.
1367*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc      points to the block of input data.
1368*1b2596b5SMatthias Ringwald    * @param[out] *pDst      points to the block of output data.
1369*1b2596b5SMatthias Ringwald    * @param[in]  blockSize  number of samples to process.
1370*1b2596b5SMatthias Ringwald    * @return     none.
1371*1b2596b5SMatthias Ringwald    */
1372*1b2596b5SMatthias Ringwald 
1373*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df1_fast_q31(
1374*1b2596b5SMatthias Ringwald   const arm_biquad_casd_df1_inst_q31 * S,
1375*1b2596b5SMatthias Ringwald   q31_t * pSrc,
1376*1b2596b5SMatthias Ringwald   q31_t * pDst,
1377*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1378*1b2596b5SMatthias Ringwald 
1379*1b2596b5SMatthias Ringwald   /**
1380*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q31 Biquad cascade filter.
1381*1b2596b5SMatthias Ringwald    * @param[in,out] *S           points to an instance of the Q31 Biquad cascade structure.
1382*1b2596b5SMatthias Ringwald    * @param[in]     numStages      number of 2nd order stages in the filter.
1383*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs     points to the filter coefficients.
1384*1b2596b5SMatthias Ringwald    * @param[in]     *pState      points to the state buffer.
1385*1b2596b5SMatthias Ringwald    * @param[in]     postShift    Shift to be applied to the output. Varies according to the coefficients format
1386*1b2596b5SMatthias Ringwald    * @return        none
1387*1b2596b5SMatthias Ringwald    */
1388*1b2596b5SMatthias Ringwald 
1389*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df1_init_q31(
1390*1b2596b5SMatthias Ringwald   arm_biquad_casd_df1_inst_q31 * S,
1391*1b2596b5SMatthias Ringwald   uint8_t numStages,
1392*1b2596b5SMatthias Ringwald   q31_t * pCoeffs,
1393*1b2596b5SMatthias Ringwald   q31_t * pState,
1394*1b2596b5SMatthias Ringwald   int8_t postShift);
1395*1b2596b5SMatthias Ringwald 
1396*1b2596b5SMatthias Ringwald   /**
1397*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point Biquad cascade filter.
1398*1b2596b5SMatthias Ringwald    * @param[in]  *S         points to an instance of the floating-point Biquad cascade structure.
1399*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc      points to the block of input data.
1400*1b2596b5SMatthias Ringwald    * @param[out] *pDst      points to the block of output data.
1401*1b2596b5SMatthias Ringwald    * @param[in]  blockSize  number of samples to process.
1402*1b2596b5SMatthias Ringwald    * @return     none.
1403*1b2596b5SMatthias Ringwald    */
1404*1b2596b5SMatthias Ringwald 
1405*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df1_f32(
1406*1b2596b5SMatthias Ringwald   const arm_biquad_casd_df1_inst_f32 * S,
1407*1b2596b5SMatthias Ringwald   float32_t * pSrc,
1408*1b2596b5SMatthias Ringwald   float32_t * pDst,
1409*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1410*1b2596b5SMatthias Ringwald 
1411*1b2596b5SMatthias Ringwald   /**
1412*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point Biquad cascade filter.
1413*1b2596b5SMatthias Ringwald    * @param[in,out] *S           points to an instance of the floating-point Biquad cascade structure.
1414*1b2596b5SMatthias Ringwald    * @param[in]     numStages    number of 2nd order stages in the filter.
1415*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs     points to the filter coefficients.
1416*1b2596b5SMatthias Ringwald    * @param[in]     *pState      points to the state buffer.
1417*1b2596b5SMatthias Ringwald    * @return        none
1418*1b2596b5SMatthias Ringwald    */
1419*1b2596b5SMatthias Ringwald 
1420*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df1_init_f32(
1421*1b2596b5SMatthias Ringwald   arm_biquad_casd_df1_inst_f32 * S,
1422*1b2596b5SMatthias Ringwald   uint8_t numStages,
1423*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
1424*1b2596b5SMatthias Ringwald   float32_t * pState);
1425*1b2596b5SMatthias Ringwald 
1426*1b2596b5SMatthias Ringwald 
1427*1b2596b5SMatthias Ringwald   /**
1428*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point matrix structure.
1429*1b2596b5SMatthias Ringwald    */
1430*1b2596b5SMatthias Ringwald 
1431*1b2596b5SMatthias Ringwald   typedef struct
1432*1b2596b5SMatthias Ringwald   {
1433*1b2596b5SMatthias Ringwald     uint16_t numRows;     /**< number of rows of the matrix.     */
1434*1b2596b5SMatthias Ringwald     uint16_t numCols;     /**< number of columns of the matrix.  */
1435*1b2596b5SMatthias Ringwald     float32_t *pData;     /**< points to the data of the matrix. */
1436*1b2596b5SMatthias Ringwald   } arm_matrix_instance_f32;
1437*1b2596b5SMatthias Ringwald 
1438*1b2596b5SMatthias Ringwald 
1439*1b2596b5SMatthias Ringwald   /**
1440*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point matrix structure.
1441*1b2596b5SMatthias Ringwald    */
1442*1b2596b5SMatthias Ringwald 
1443*1b2596b5SMatthias Ringwald   typedef struct
1444*1b2596b5SMatthias Ringwald   {
1445*1b2596b5SMatthias Ringwald     uint16_t numRows;     /**< number of rows of the matrix.     */
1446*1b2596b5SMatthias Ringwald     uint16_t numCols;     /**< number of columns of the matrix.  */
1447*1b2596b5SMatthias Ringwald     float64_t *pData;     /**< points to the data of the matrix. */
1448*1b2596b5SMatthias Ringwald   } arm_matrix_instance_f64;
1449*1b2596b5SMatthias Ringwald 
1450*1b2596b5SMatthias Ringwald   /**
1451*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 matrix structure.
1452*1b2596b5SMatthias Ringwald    */
1453*1b2596b5SMatthias Ringwald 
1454*1b2596b5SMatthias Ringwald   typedef struct
1455*1b2596b5SMatthias Ringwald   {
1456*1b2596b5SMatthias Ringwald     uint16_t numRows;     /**< number of rows of the matrix.     */
1457*1b2596b5SMatthias Ringwald     uint16_t numCols;     /**< number of columns of the matrix.  */
1458*1b2596b5SMatthias Ringwald     q15_t *pData;         /**< points to the data of the matrix. */
1459*1b2596b5SMatthias Ringwald 
1460*1b2596b5SMatthias Ringwald   } arm_matrix_instance_q15;
1461*1b2596b5SMatthias Ringwald 
1462*1b2596b5SMatthias Ringwald   /**
1463*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 matrix structure.
1464*1b2596b5SMatthias Ringwald    */
1465*1b2596b5SMatthias Ringwald 
1466*1b2596b5SMatthias Ringwald   typedef struct
1467*1b2596b5SMatthias Ringwald   {
1468*1b2596b5SMatthias Ringwald     uint16_t numRows;     /**< number of rows of the matrix.     */
1469*1b2596b5SMatthias Ringwald     uint16_t numCols;     /**< number of columns of the matrix.  */
1470*1b2596b5SMatthias Ringwald     q31_t *pData;         /**< points to the data of the matrix. */
1471*1b2596b5SMatthias Ringwald 
1472*1b2596b5SMatthias Ringwald   } arm_matrix_instance_q31;
1473*1b2596b5SMatthias Ringwald 
1474*1b2596b5SMatthias Ringwald 
1475*1b2596b5SMatthias Ringwald 
1476*1b2596b5SMatthias Ringwald   /**
1477*1b2596b5SMatthias Ringwald    * @brief Floating-point matrix addition.
1478*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1479*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1480*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1481*1b2596b5SMatthias Ringwald    * @return     The function returns either
1482*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1483*1b2596b5SMatthias Ringwald    */
1484*1b2596b5SMatthias Ringwald 
1485*1b2596b5SMatthias Ringwald   arm_status arm_mat_add_f32(
1486*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrcA,
1487*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrcB,
1488*1b2596b5SMatthias Ringwald   arm_matrix_instance_f32 * pDst);
1489*1b2596b5SMatthias Ringwald 
1490*1b2596b5SMatthias Ringwald   /**
1491*1b2596b5SMatthias Ringwald    * @brief Q15 matrix addition.
1492*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1493*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1494*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1495*1b2596b5SMatthias Ringwald    * @return     The function returns either
1496*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1497*1b2596b5SMatthias Ringwald    */
1498*1b2596b5SMatthias Ringwald 
1499*1b2596b5SMatthias Ringwald   arm_status arm_mat_add_q15(
1500*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcA,
1501*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcB,
1502*1b2596b5SMatthias Ringwald   arm_matrix_instance_q15 * pDst);
1503*1b2596b5SMatthias Ringwald 
1504*1b2596b5SMatthias Ringwald   /**
1505*1b2596b5SMatthias Ringwald    * @brief Q31 matrix addition.
1506*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1507*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1508*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1509*1b2596b5SMatthias Ringwald    * @return     The function returns either
1510*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1511*1b2596b5SMatthias Ringwald    */
1512*1b2596b5SMatthias Ringwald 
1513*1b2596b5SMatthias Ringwald   arm_status arm_mat_add_q31(
1514*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcA,
1515*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcB,
1516*1b2596b5SMatthias Ringwald   arm_matrix_instance_q31 * pDst);
1517*1b2596b5SMatthias Ringwald 
1518*1b2596b5SMatthias Ringwald   /**
1519*1b2596b5SMatthias Ringwald    * @brief Floating-point, complex, matrix multiplication.
1520*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1521*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1522*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1523*1b2596b5SMatthias Ringwald    * @return     The function returns either
1524*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1525*1b2596b5SMatthias Ringwald    */
1526*1b2596b5SMatthias Ringwald 
1527*1b2596b5SMatthias Ringwald   arm_status arm_mat_cmplx_mult_f32(
1528*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrcA,
1529*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrcB,
1530*1b2596b5SMatthias Ringwald   arm_matrix_instance_f32 * pDst);
1531*1b2596b5SMatthias Ringwald 
1532*1b2596b5SMatthias Ringwald   /**
1533*1b2596b5SMatthias Ringwald    * @brief Q15, complex,  matrix multiplication.
1534*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1535*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1536*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1537*1b2596b5SMatthias Ringwald    * @return     The function returns either
1538*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1539*1b2596b5SMatthias Ringwald    */
1540*1b2596b5SMatthias Ringwald 
1541*1b2596b5SMatthias Ringwald   arm_status arm_mat_cmplx_mult_q15(
1542*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcA,
1543*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcB,
1544*1b2596b5SMatthias Ringwald   arm_matrix_instance_q15 * pDst,
1545*1b2596b5SMatthias Ringwald   q15_t * pScratch);
1546*1b2596b5SMatthias Ringwald 
1547*1b2596b5SMatthias Ringwald   /**
1548*1b2596b5SMatthias Ringwald    * @brief Q31, complex, matrix multiplication.
1549*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1550*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1551*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1552*1b2596b5SMatthias Ringwald    * @return     The function returns either
1553*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1554*1b2596b5SMatthias Ringwald    */
1555*1b2596b5SMatthias Ringwald 
1556*1b2596b5SMatthias Ringwald   arm_status arm_mat_cmplx_mult_q31(
1557*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcA,
1558*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcB,
1559*1b2596b5SMatthias Ringwald   arm_matrix_instance_q31 * pDst);
1560*1b2596b5SMatthias Ringwald 
1561*1b2596b5SMatthias Ringwald 
1562*1b2596b5SMatthias Ringwald   /**
1563*1b2596b5SMatthias Ringwald    * @brief Floating-point matrix transpose.
1564*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input matrix
1565*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the output matrix
1566*1b2596b5SMatthias Ringwald    * @return 	The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
1567*1b2596b5SMatthias Ringwald    * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1568*1b2596b5SMatthias Ringwald    */
1569*1b2596b5SMatthias Ringwald 
1570*1b2596b5SMatthias Ringwald   arm_status arm_mat_trans_f32(
1571*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrc,
1572*1b2596b5SMatthias Ringwald   arm_matrix_instance_f32 * pDst);
1573*1b2596b5SMatthias Ringwald 
1574*1b2596b5SMatthias Ringwald 
1575*1b2596b5SMatthias Ringwald   /**
1576*1b2596b5SMatthias Ringwald    * @brief Q15 matrix transpose.
1577*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input matrix
1578*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the output matrix
1579*1b2596b5SMatthias Ringwald    * @return 	The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
1580*1b2596b5SMatthias Ringwald    * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1581*1b2596b5SMatthias Ringwald    */
1582*1b2596b5SMatthias Ringwald 
1583*1b2596b5SMatthias Ringwald   arm_status arm_mat_trans_q15(
1584*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrc,
1585*1b2596b5SMatthias Ringwald   arm_matrix_instance_q15 * pDst);
1586*1b2596b5SMatthias Ringwald 
1587*1b2596b5SMatthias Ringwald   /**
1588*1b2596b5SMatthias Ringwald    * @brief Q31 matrix transpose.
1589*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input matrix
1590*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the output matrix
1591*1b2596b5SMatthias Ringwald    * @return 	The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
1592*1b2596b5SMatthias Ringwald    * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1593*1b2596b5SMatthias Ringwald    */
1594*1b2596b5SMatthias Ringwald 
1595*1b2596b5SMatthias Ringwald   arm_status arm_mat_trans_q31(
1596*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrc,
1597*1b2596b5SMatthias Ringwald   arm_matrix_instance_q31 * pDst);
1598*1b2596b5SMatthias Ringwald 
1599*1b2596b5SMatthias Ringwald 
1600*1b2596b5SMatthias Ringwald   /**
1601*1b2596b5SMatthias Ringwald    * @brief Floating-point matrix multiplication
1602*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1603*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1604*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1605*1b2596b5SMatthias Ringwald    * @return     The function returns either
1606*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1607*1b2596b5SMatthias Ringwald    */
1608*1b2596b5SMatthias Ringwald 
1609*1b2596b5SMatthias Ringwald   arm_status arm_mat_mult_f32(
1610*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrcA,
1611*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrcB,
1612*1b2596b5SMatthias Ringwald   arm_matrix_instance_f32 * pDst);
1613*1b2596b5SMatthias Ringwald 
1614*1b2596b5SMatthias Ringwald   /**
1615*1b2596b5SMatthias Ringwald    * @brief Q15 matrix multiplication
1616*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1617*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1618*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1619*1b2596b5SMatthias Ringwald    * @param[in]		 *pState points to the array for storing intermediate results
1620*1b2596b5SMatthias Ringwald    * @return     The function returns either
1621*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1622*1b2596b5SMatthias Ringwald    */
1623*1b2596b5SMatthias Ringwald 
1624*1b2596b5SMatthias Ringwald   arm_status arm_mat_mult_q15(
1625*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcA,
1626*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcB,
1627*1b2596b5SMatthias Ringwald   arm_matrix_instance_q15 * pDst,
1628*1b2596b5SMatthias Ringwald   q15_t * pState);
1629*1b2596b5SMatthias Ringwald 
1630*1b2596b5SMatthias Ringwald   /**
1631*1b2596b5SMatthias Ringwald    * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
1632*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA  points to the first input matrix structure
1633*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB  points to the second input matrix structure
1634*1b2596b5SMatthias Ringwald    * @param[out]      *pDst   points to output matrix structure
1635*1b2596b5SMatthias Ringwald    * @param[in]		  *pState points to the array for storing intermediate results
1636*1b2596b5SMatthias Ringwald    * @return     The function returns either
1637*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1638*1b2596b5SMatthias Ringwald    */
1639*1b2596b5SMatthias Ringwald 
1640*1b2596b5SMatthias Ringwald   arm_status arm_mat_mult_fast_q15(
1641*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcA,
1642*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcB,
1643*1b2596b5SMatthias Ringwald   arm_matrix_instance_q15 * pDst,
1644*1b2596b5SMatthias Ringwald   q15_t * pState);
1645*1b2596b5SMatthias Ringwald 
1646*1b2596b5SMatthias Ringwald   /**
1647*1b2596b5SMatthias Ringwald    * @brief Q31 matrix multiplication
1648*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1649*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1650*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1651*1b2596b5SMatthias Ringwald    * @return     The function returns either
1652*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1653*1b2596b5SMatthias Ringwald    */
1654*1b2596b5SMatthias Ringwald 
1655*1b2596b5SMatthias Ringwald   arm_status arm_mat_mult_q31(
1656*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcA,
1657*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcB,
1658*1b2596b5SMatthias Ringwald   arm_matrix_instance_q31 * pDst);
1659*1b2596b5SMatthias Ringwald 
1660*1b2596b5SMatthias Ringwald   /**
1661*1b2596b5SMatthias Ringwald    * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
1662*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1663*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1664*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1665*1b2596b5SMatthias Ringwald    * @return     The function returns either
1666*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1667*1b2596b5SMatthias Ringwald    */
1668*1b2596b5SMatthias Ringwald 
1669*1b2596b5SMatthias Ringwald   arm_status arm_mat_mult_fast_q31(
1670*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcA,
1671*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcB,
1672*1b2596b5SMatthias Ringwald   arm_matrix_instance_q31 * pDst);
1673*1b2596b5SMatthias Ringwald 
1674*1b2596b5SMatthias Ringwald 
1675*1b2596b5SMatthias Ringwald   /**
1676*1b2596b5SMatthias Ringwald    * @brief Floating-point matrix subtraction
1677*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1678*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1679*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1680*1b2596b5SMatthias Ringwald    * @return     The function returns either
1681*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1682*1b2596b5SMatthias Ringwald    */
1683*1b2596b5SMatthias Ringwald 
1684*1b2596b5SMatthias Ringwald   arm_status arm_mat_sub_f32(
1685*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrcA,
1686*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrcB,
1687*1b2596b5SMatthias Ringwald   arm_matrix_instance_f32 * pDst);
1688*1b2596b5SMatthias Ringwald 
1689*1b2596b5SMatthias Ringwald   /**
1690*1b2596b5SMatthias Ringwald    * @brief Q15 matrix subtraction
1691*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1692*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1693*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1694*1b2596b5SMatthias Ringwald    * @return     The function returns either
1695*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1696*1b2596b5SMatthias Ringwald    */
1697*1b2596b5SMatthias Ringwald 
1698*1b2596b5SMatthias Ringwald   arm_status arm_mat_sub_q15(
1699*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcA,
1700*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrcB,
1701*1b2596b5SMatthias Ringwald   arm_matrix_instance_q15 * pDst);
1702*1b2596b5SMatthias Ringwald 
1703*1b2596b5SMatthias Ringwald   /**
1704*1b2596b5SMatthias Ringwald    * @brief Q31 matrix subtraction
1705*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input matrix structure
1706*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input matrix structure
1707*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1708*1b2596b5SMatthias Ringwald    * @return     The function returns either
1709*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1710*1b2596b5SMatthias Ringwald    */
1711*1b2596b5SMatthias Ringwald 
1712*1b2596b5SMatthias Ringwald   arm_status arm_mat_sub_q31(
1713*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcA,
1714*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrcB,
1715*1b2596b5SMatthias Ringwald   arm_matrix_instance_q31 * pDst);
1716*1b2596b5SMatthias Ringwald 
1717*1b2596b5SMatthias Ringwald   /**
1718*1b2596b5SMatthias Ringwald    * @brief Floating-point matrix scaling.
1719*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input matrix
1720*1b2596b5SMatthias Ringwald    * @param[in]  scale scale factor
1721*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the output matrix
1722*1b2596b5SMatthias Ringwald    * @return     The function returns either
1723*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1724*1b2596b5SMatthias Ringwald    */
1725*1b2596b5SMatthias Ringwald 
1726*1b2596b5SMatthias Ringwald   arm_status arm_mat_scale_f32(
1727*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * pSrc,
1728*1b2596b5SMatthias Ringwald   float32_t scale,
1729*1b2596b5SMatthias Ringwald   arm_matrix_instance_f32 * pDst);
1730*1b2596b5SMatthias Ringwald 
1731*1b2596b5SMatthias Ringwald   /**
1732*1b2596b5SMatthias Ringwald    * @brief Q15 matrix scaling.
1733*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to input matrix
1734*1b2596b5SMatthias Ringwald    * @param[in]       scaleFract fractional portion of the scale factor
1735*1b2596b5SMatthias Ringwald    * @param[in]       shift number of bits to shift the result by
1736*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix
1737*1b2596b5SMatthias Ringwald    * @return     The function returns either
1738*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1739*1b2596b5SMatthias Ringwald    */
1740*1b2596b5SMatthias Ringwald 
1741*1b2596b5SMatthias Ringwald   arm_status arm_mat_scale_q15(
1742*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q15 * pSrc,
1743*1b2596b5SMatthias Ringwald   q15_t scaleFract,
1744*1b2596b5SMatthias Ringwald   int32_t shift,
1745*1b2596b5SMatthias Ringwald   arm_matrix_instance_q15 * pDst);
1746*1b2596b5SMatthias Ringwald 
1747*1b2596b5SMatthias Ringwald   /**
1748*1b2596b5SMatthias Ringwald    * @brief Q31 matrix scaling.
1749*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to input matrix
1750*1b2596b5SMatthias Ringwald    * @param[in]       scaleFract fractional portion of the scale factor
1751*1b2596b5SMatthias Ringwald    * @param[in]       shift number of bits to shift the result by
1752*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to output matrix structure
1753*1b2596b5SMatthias Ringwald    * @return     The function returns either
1754*1b2596b5SMatthias Ringwald    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1755*1b2596b5SMatthias Ringwald    */
1756*1b2596b5SMatthias Ringwald 
1757*1b2596b5SMatthias Ringwald   arm_status arm_mat_scale_q31(
1758*1b2596b5SMatthias Ringwald   const arm_matrix_instance_q31 * pSrc,
1759*1b2596b5SMatthias Ringwald   q31_t scaleFract,
1760*1b2596b5SMatthias Ringwald   int32_t shift,
1761*1b2596b5SMatthias Ringwald   arm_matrix_instance_q31 * pDst);
1762*1b2596b5SMatthias Ringwald 
1763*1b2596b5SMatthias Ringwald 
1764*1b2596b5SMatthias Ringwald   /**
1765*1b2596b5SMatthias Ringwald    * @brief  Q31 matrix initialization.
1766*1b2596b5SMatthias Ringwald    * @param[in,out] *S             points to an instance of the floating-point matrix structure.
1767*1b2596b5SMatthias Ringwald    * @param[in]     nRows          number of rows in the matrix.
1768*1b2596b5SMatthias Ringwald    * @param[in]     nColumns       number of columns in the matrix.
1769*1b2596b5SMatthias Ringwald    * @param[in]     *pData	       points to the matrix data array.
1770*1b2596b5SMatthias Ringwald    * @return        none
1771*1b2596b5SMatthias Ringwald    */
1772*1b2596b5SMatthias Ringwald 
1773*1b2596b5SMatthias Ringwald   void arm_mat_init_q31(
1774*1b2596b5SMatthias Ringwald   arm_matrix_instance_q31 * S,
1775*1b2596b5SMatthias Ringwald   uint16_t nRows,
1776*1b2596b5SMatthias Ringwald   uint16_t nColumns,
1777*1b2596b5SMatthias Ringwald   q31_t * pData);
1778*1b2596b5SMatthias Ringwald 
1779*1b2596b5SMatthias Ringwald   /**
1780*1b2596b5SMatthias Ringwald    * @brief  Q15 matrix initialization.
1781*1b2596b5SMatthias Ringwald    * @param[in,out] *S             points to an instance of the floating-point matrix structure.
1782*1b2596b5SMatthias Ringwald    * @param[in]     nRows          number of rows in the matrix.
1783*1b2596b5SMatthias Ringwald    * @param[in]     nColumns       number of columns in the matrix.
1784*1b2596b5SMatthias Ringwald    * @param[in]     *pData	       points to the matrix data array.
1785*1b2596b5SMatthias Ringwald    * @return        none
1786*1b2596b5SMatthias Ringwald    */
1787*1b2596b5SMatthias Ringwald 
1788*1b2596b5SMatthias Ringwald   void arm_mat_init_q15(
1789*1b2596b5SMatthias Ringwald   arm_matrix_instance_q15 * S,
1790*1b2596b5SMatthias Ringwald   uint16_t nRows,
1791*1b2596b5SMatthias Ringwald   uint16_t nColumns,
1792*1b2596b5SMatthias Ringwald   q15_t * pData);
1793*1b2596b5SMatthias Ringwald 
1794*1b2596b5SMatthias Ringwald   /**
1795*1b2596b5SMatthias Ringwald    * @brief  Floating-point matrix initialization.
1796*1b2596b5SMatthias Ringwald    * @param[in,out] *S             points to an instance of the floating-point matrix structure.
1797*1b2596b5SMatthias Ringwald    * @param[in]     nRows          number of rows in the matrix.
1798*1b2596b5SMatthias Ringwald    * @param[in]     nColumns       number of columns in the matrix.
1799*1b2596b5SMatthias Ringwald    * @param[in]     *pData	       points to the matrix data array.
1800*1b2596b5SMatthias Ringwald    * @return        none
1801*1b2596b5SMatthias Ringwald    */
1802*1b2596b5SMatthias Ringwald 
1803*1b2596b5SMatthias Ringwald   void arm_mat_init_f32(
1804*1b2596b5SMatthias Ringwald   arm_matrix_instance_f32 * S,
1805*1b2596b5SMatthias Ringwald   uint16_t nRows,
1806*1b2596b5SMatthias Ringwald   uint16_t nColumns,
1807*1b2596b5SMatthias Ringwald   float32_t * pData);
1808*1b2596b5SMatthias Ringwald 
1809*1b2596b5SMatthias Ringwald 
1810*1b2596b5SMatthias Ringwald 
1811*1b2596b5SMatthias Ringwald   /**
1812*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 PID Control.
1813*1b2596b5SMatthias Ringwald    */
1814*1b2596b5SMatthias Ringwald   typedef struct
1815*1b2596b5SMatthias Ringwald   {
1816*1b2596b5SMatthias Ringwald     q15_t A0;    /**< The derived gain, A0 = Kp + Ki + Kd . */
1817*1b2596b5SMatthias Ringwald #ifdef ARM_MATH_CM0_FAMILY
1818*1b2596b5SMatthias Ringwald     q15_t A1;
1819*1b2596b5SMatthias Ringwald     q15_t A2;
1820*1b2596b5SMatthias Ringwald #else
1821*1b2596b5SMatthias Ringwald     q31_t A1;           /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
1822*1b2596b5SMatthias Ringwald #endif
1823*1b2596b5SMatthias Ringwald     q15_t state[3];       /**< The state array of length 3. */
1824*1b2596b5SMatthias Ringwald     q15_t Kp;           /**< The proportional gain. */
1825*1b2596b5SMatthias Ringwald     q15_t Ki;           /**< The integral gain. */
1826*1b2596b5SMatthias Ringwald     q15_t Kd;           /**< The derivative gain. */
1827*1b2596b5SMatthias Ringwald   } arm_pid_instance_q15;
1828*1b2596b5SMatthias Ringwald 
1829*1b2596b5SMatthias Ringwald   /**
1830*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 PID Control.
1831*1b2596b5SMatthias Ringwald    */
1832*1b2596b5SMatthias Ringwald   typedef struct
1833*1b2596b5SMatthias Ringwald   {
1834*1b2596b5SMatthias Ringwald     q31_t A0;            /**< The derived gain, A0 = Kp + Ki + Kd . */
1835*1b2596b5SMatthias Ringwald     q31_t A1;            /**< The derived gain, A1 = -Kp - 2Kd. */
1836*1b2596b5SMatthias Ringwald     q31_t A2;            /**< The derived gain, A2 = Kd . */
1837*1b2596b5SMatthias Ringwald     q31_t state[3];      /**< The state array of length 3. */
1838*1b2596b5SMatthias Ringwald     q31_t Kp;            /**< The proportional gain. */
1839*1b2596b5SMatthias Ringwald     q31_t Ki;            /**< The integral gain. */
1840*1b2596b5SMatthias Ringwald     q31_t Kd;            /**< The derivative gain. */
1841*1b2596b5SMatthias Ringwald 
1842*1b2596b5SMatthias Ringwald   } arm_pid_instance_q31;
1843*1b2596b5SMatthias Ringwald 
1844*1b2596b5SMatthias Ringwald   /**
1845*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point PID Control.
1846*1b2596b5SMatthias Ringwald    */
1847*1b2596b5SMatthias Ringwald   typedef struct
1848*1b2596b5SMatthias Ringwald   {
1849*1b2596b5SMatthias Ringwald     float32_t A0;          /**< The derived gain, A0 = Kp + Ki + Kd . */
1850*1b2596b5SMatthias Ringwald     float32_t A1;          /**< The derived gain, A1 = -Kp - 2Kd. */
1851*1b2596b5SMatthias Ringwald     float32_t A2;          /**< The derived gain, A2 = Kd . */
1852*1b2596b5SMatthias Ringwald     float32_t state[3];    /**< The state array of length 3. */
1853*1b2596b5SMatthias Ringwald     float32_t Kp;               /**< The proportional gain. */
1854*1b2596b5SMatthias Ringwald     float32_t Ki;               /**< The integral gain. */
1855*1b2596b5SMatthias Ringwald     float32_t Kd;               /**< The derivative gain. */
1856*1b2596b5SMatthias Ringwald   } arm_pid_instance_f32;
1857*1b2596b5SMatthias Ringwald 
1858*1b2596b5SMatthias Ringwald 
1859*1b2596b5SMatthias Ringwald 
1860*1b2596b5SMatthias Ringwald   /**
1861*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point PID Control.
1862*1b2596b5SMatthias Ringwald    * @param[in,out] *S      points to an instance of the PID structure.
1863*1b2596b5SMatthias Ringwald    * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
1864*1b2596b5SMatthias Ringwald    * @return none.
1865*1b2596b5SMatthias Ringwald    */
1866*1b2596b5SMatthias Ringwald   void arm_pid_init_f32(
1867*1b2596b5SMatthias Ringwald   arm_pid_instance_f32 * S,
1868*1b2596b5SMatthias Ringwald   int32_t resetStateFlag);
1869*1b2596b5SMatthias Ringwald 
1870*1b2596b5SMatthias Ringwald   /**
1871*1b2596b5SMatthias Ringwald    * @brief  Reset function for the floating-point PID Control.
1872*1b2596b5SMatthias Ringwald    * @param[in,out] *S is an instance of the floating-point PID Control structure
1873*1b2596b5SMatthias Ringwald    * @return none
1874*1b2596b5SMatthias Ringwald    */
1875*1b2596b5SMatthias Ringwald   void arm_pid_reset_f32(
1876*1b2596b5SMatthias Ringwald   arm_pid_instance_f32 * S);
1877*1b2596b5SMatthias Ringwald 
1878*1b2596b5SMatthias Ringwald 
1879*1b2596b5SMatthias Ringwald   /**
1880*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q31 PID Control.
1881*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q15 PID structure.
1882*1b2596b5SMatthias Ringwald    * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
1883*1b2596b5SMatthias Ringwald    * @return none.
1884*1b2596b5SMatthias Ringwald    */
1885*1b2596b5SMatthias Ringwald   void arm_pid_init_q31(
1886*1b2596b5SMatthias Ringwald   arm_pid_instance_q31 * S,
1887*1b2596b5SMatthias Ringwald   int32_t resetStateFlag);
1888*1b2596b5SMatthias Ringwald 
1889*1b2596b5SMatthias Ringwald 
1890*1b2596b5SMatthias Ringwald   /**
1891*1b2596b5SMatthias Ringwald    * @brief  Reset function for the Q31 PID Control.
1892*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q31 PID Control structure
1893*1b2596b5SMatthias Ringwald    * @return none
1894*1b2596b5SMatthias Ringwald    */
1895*1b2596b5SMatthias Ringwald 
1896*1b2596b5SMatthias Ringwald   void arm_pid_reset_q31(
1897*1b2596b5SMatthias Ringwald   arm_pid_instance_q31 * S);
1898*1b2596b5SMatthias Ringwald 
1899*1b2596b5SMatthias Ringwald   /**
1900*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q15 PID Control.
1901*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q15 PID structure.
1902*1b2596b5SMatthias Ringwald    * @param[in] resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
1903*1b2596b5SMatthias Ringwald    * @return none.
1904*1b2596b5SMatthias Ringwald    */
1905*1b2596b5SMatthias Ringwald   void arm_pid_init_q15(
1906*1b2596b5SMatthias Ringwald   arm_pid_instance_q15 * S,
1907*1b2596b5SMatthias Ringwald   int32_t resetStateFlag);
1908*1b2596b5SMatthias Ringwald 
1909*1b2596b5SMatthias Ringwald   /**
1910*1b2596b5SMatthias Ringwald    * @brief  Reset function for the Q15 PID Control.
1911*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the q15 PID Control structure
1912*1b2596b5SMatthias Ringwald    * @return none
1913*1b2596b5SMatthias Ringwald    */
1914*1b2596b5SMatthias Ringwald   void arm_pid_reset_q15(
1915*1b2596b5SMatthias Ringwald   arm_pid_instance_q15 * S);
1916*1b2596b5SMatthias Ringwald 
1917*1b2596b5SMatthias Ringwald 
1918*1b2596b5SMatthias Ringwald   /**
1919*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point Linear Interpolate function.
1920*1b2596b5SMatthias Ringwald    */
1921*1b2596b5SMatthias Ringwald   typedef struct
1922*1b2596b5SMatthias Ringwald   {
1923*1b2596b5SMatthias Ringwald     uint32_t nValues;           /**< nValues */
1924*1b2596b5SMatthias Ringwald     float32_t x1;               /**< x1 */
1925*1b2596b5SMatthias Ringwald     float32_t xSpacing;         /**< xSpacing */
1926*1b2596b5SMatthias Ringwald     float32_t *pYData;          /**< pointer to the table of Y values */
1927*1b2596b5SMatthias Ringwald   } arm_linear_interp_instance_f32;
1928*1b2596b5SMatthias Ringwald 
1929*1b2596b5SMatthias Ringwald   /**
1930*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point bilinear interpolation function.
1931*1b2596b5SMatthias Ringwald    */
1932*1b2596b5SMatthias Ringwald 
1933*1b2596b5SMatthias Ringwald   typedef struct
1934*1b2596b5SMatthias Ringwald   {
1935*1b2596b5SMatthias Ringwald     uint16_t numRows;   /**< number of rows in the data table. */
1936*1b2596b5SMatthias Ringwald     uint16_t numCols;   /**< number of columns in the data table. */
1937*1b2596b5SMatthias Ringwald     float32_t *pData;   /**< points to the data table. */
1938*1b2596b5SMatthias Ringwald   } arm_bilinear_interp_instance_f32;
1939*1b2596b5SMatthias Ringwald 
1940*1b2596b5SMatthias Ringwald    /**
1941*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 bilinear interpolation function.
1942*1b2596b5SMatthias Ringwald    */
1943*1b2596b5SMatthias Ringwald 
1944*1b2596b5SMatthias Ringwald   typedef struct
1945*1b2596b5SMatthias Ringwald   {
1946*1b2596b5SMatthias Ringwald     uint16_t numRows;   /**< number of rows in the data table. */
1947*1b2596b5SMatthias Ringwald     uint16_t numCols;   /**< number of columns in the data table. */
1948*1b2596b5SMatthias Ringwald     q31_t *pData;       /**< points to the data table. */
1949*1b2596b5SMatthias Ringwald   } arm_bilinear_interp_instance_q31;
1950*1b2596b5SMatthias Ringwald 
1951*1b2596b5SMatthias Ringwald    /**
1952*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 bilinear interpolation function.
1953*1b2596b5SMatthias Ringwald    */
1954*1b2596b5SMatthias Ringwald 
1955*1b2596b5SMatthias Ringwald   typedef struct
1956*1b2596b5SMatthias Ringwald   {
1957*1b2596b5SMatthias Ringwald     uint16_t numRows;   /**< number of rows in the data table. */
1958*1b2596b5SMatthias Ringwald     uint16_t numCols;   /**< number of columns in the data table. */
1959*1b2596b5SMatthias Ringwald     q15_t *pData;       /**< points to the data table. */
1960*1b2596b5SMatthias Ringwald   } arm_bilinear_interp_instance_q15;
1961*1b2596b5SMatthias Ringwald 
1962*1b2596b5SMatthias Ringwald    /**
1963*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 bilinear interpolation function.
1964*1b2596b5SMatthias Ringwald    */
1965*1b2596b5SMatthias Ringwald 
1966*1b2596b5SMatthias Ringwald   typedef struct
1967*1b2596b5SMatthias Ringwald   {
1968*1b2596b5SMatthias Ringwald     uint16_t numRows;   /**< number of rows in the data table. */
1969*1b2596b5SMatthias Ringwald     uint16_t numCols;   /**< number of columns in the data table. */
1970*1b2596b5SMatthias Ringwald     q7_t *pData;                /**< points to the data table. */
1971*1b2596b5SMatthias Ringwald   } arm_bilinear_interp_instance_q7;
1972*1b2596b5SMatthias Ringwald 
1973*1b2596b5SMatthias Ringwald 
1974*1b2596b5SMatthias Ringwald   /**
1975*1b2596b5SMatthias Ringwald    * @brief Q7 vector multiplication.
1976*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
1977*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
1978*1b2596b5SMatthias Ringwald    * @param[out]      *pDst  points to the output vector
1979*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
1980*1b2596b5SMatthias Ringwald    * @return none.
1981*1b2596b5SMatthias Ringwald    */
1982*1b2596b5SMatthias Ringwald 
1983*1b2596b5SMatthias Ringwald   void arm_mult_q7(
1984*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
1985*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
1986*1b2596b5SMatthias Ringwald   q7_t * pDst,
1987*1b2596b5SMatthias Ringwald   uint32_t blockSize);
1988*1b2596b5SMatthias Ringwald 
1989*1b2596b5SMatthias Ringwald   /**
1990*1b2596b5SMatthias Ringwald    * @brief Q15 vector multiplication.
1991*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
1992*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
1993*1b2596b5SMatthias Ringwald    * @param[out]      *pDst  points to the output vector
1994*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
1995*1b2596b5SMatthias Ringwald    * @return none.
1996*1b2596b5SMatthias Ringwald    */
1997*1b2596b5SMatthias Ringwald 
1998*1b2596b5SMatthias Ringwald   void arm_mult_q15(
1999*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
2000*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
2001*1b2596b5SMatthias Ringwald   q15_t * pDst,
2002*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2003*1b2596b5SMatthias Ringwald 
2004*1b2596b5SMatthias Ringwald   /**
2005*1b2596b5SMatthias Ringwald    * @brief Q31 vector multiplication.
2006*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2007*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2008*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2009*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2010*1b2596b5SMatthias Ringwald    * @return none.
2011*1b2596b5SMatthias Ringwald    */
2012*1b2596b5SMatthias Ringwald 
2013*1b2596b5SMatthias Ringwald   void arm_mult_q31(
2014*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
2015*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
2016*1b2596b5SMatthias Ringwald   q31_t * pDst,
2017*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2018*1b2596b5SMatthias Ringwald 
2019*1b2596b5SMatthias Ringwald   /**
2020*1b2596b5SMatthias Ringwald    * @brief Floating-point vector multiplication.
2021*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2022*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2023*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2024*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2025*1b2596b5SMatthias Ringwald    * @return none.
2026*1b2596b5SMatthias Ringwald    */
2027*1b2596b5SMatthias Ringwald 
2028*1b2596b5SMatthias Ringwald   void arm_mult_f32(
2029*1b2596b5SMatthias Ringwald   float32_t * pSrcA,
2030*1b2596b5SMatthias Ringwald   float32_t * pSrcB,
2031*1b2596b5SMatthias Ringwald   float32_t * pDst,
2032*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2033*1b2596b5SMatthias Ringwald 
2034*1b2596b5SMatthias Ringwald 
2035*1b2596b5SMatthias Ringwald 
2036*1b2596b5SMatthias Ringwald 
2037*1b2596b5SMatthias Ringwald 
2038*1b2596b5SMatthias Ringwald 
2039*1b2596b5SMatthias Ringwald   /**
2040*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 CFFT/CIFFT function.
2041*1b2596b5SMatthias Ringwald    */
2042*1b2596b5SMatthias Ringwald 
2043*1b2596b5SMatthias Ringwald   typedef struct
2044*1b2596b5SMatthias Ringwald   {
2045*1b2596b5SMatthias Ringwald     uint16_t fftLen;                 /**< length of the FFT. */
2046*1b2596b5SMatthias Ringwald     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2047*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2048*1b2596b5SMatthias Ringwald     q15_t *pTwiddle;                     /**< points to the Sin twiddle factor table. */
2049*1b2596b5SMatthias Ringwald     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
2050*1b2596b5SMatthias Ringwald     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2051*1b2596b5SMatthias Ringwald     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2052*1b2596b5SMatthias Ringwald   } arm_cfft_radix2_instance_q15;
2053*1b2596b5SMatthias Ringwald 
2054*1b2596b5SMatthias Ringwald /* Deprecated */
2055*1b2596b5SMatthias Ringwald   arm_status arm_cfft_radix2_init_q15(
2056*1b2596b5SMatthias Ringwald   arm_cfft_radix2_instance_q15 * S,
2057*1b2596b5SMatthias Ringwald   uint16_t fftLen,
2058*1b2596b5SMatthias Ringwald   uint8_t ifftFlag,
2059*1b2596b5SMatthias Ringwald   uint8_t bitReverseFlag);
2060*1b2596b5SMatthias Ringwald 
2061*1b2596b5SMatthias Ringwald /* Deprecated */
2062*1b2596b5SMatthias Ringwald   void arm_cfft_radix2_q15(
2063*1b2596b5SMatthias Ringwald   const arm_cfft_radix2_instance_q15 * S,
2064*1b2596b5SMatthias Ringwald   q15_t * pSrc);
2065*1b2596b5SMatthias Ringwald 
2066*1b2596b5SMatthias Ringwald 
2067*1b2596b5SMatthias Ringwald 
2068*1b2596b5SMatthias Ringwald   /**
2069*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 CFFT/CIFFT function.
2070*1b2596b5SMatthias Ringwald    */
2071*1b2596b5SMatthias Ringwald 
2072*1b2596b5SMatthias Ringwald   typedef struct
2073*1b2596b5SMatthias Ringwald   {
2074*1b2596b5SMatthias Ringwald     uint16_t fftLen;                 /**< length of the FFT. */
2075*1b2596b5SMatthias Ringwald     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2076*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2077*1b2596b5SMatthias Ringwald     q15_t *pTwiddle;                 /**< points to the twiddle factor table. */
2078*1b2596b5SMatthias Ringwald     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
2079*1b2596b5SMatthias Ringwald     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2080*1b2596b5SMatthias Ringwald     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2081*1b2596b5SMatthias Ringwald   } arm_cfft_radix4_instance_q15;
2082*1b2596b5SMatthias Ringwald 
2083*1b2596b5SMatthias Ringwald /* Deprecated */
2084*1b2596b5SMatthias Ringwald   arm_status arm_cfft_radix4_init_q15(
2085*1b2596b5SMatthias Ringwald   arm_cfft_radix4_instance_q15 * S,
2086*1b2596b5SMatthias Ringwald   uint16_t fftLen,
2087*1b2596b5SMatthias Ringwald   uint8_t ifftFlag,
2088*1b2596b5SMatthias Ringwald   uint8_t bitReverseFlag);
2089*1b2596b5SMatthias Ringwald 
2090*1b2596b5SMatthias Ringwald /* Deprecated */
2091*1b2596b5SMatthias Ringwald   void arm_cfft_radix4_q15(
2092*1b2596b5SMatthias Ringwald   const arm_cfft_radix4_instance_q15 * S,
2093*1b2596b5SMatthias Ringwald   q15_t * pSrc);
2094*1b2596b5SMatthias Ringwald 
2095*1b2596b5SMatthias Ringwald   /**
2096*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
2097*1b2596b5SMatthias Ringwald    */
2098*1b2596b5SMatthias Ringwald 
2099*1b2596b5SMatthias Ringwald   typedef struct
2100*1b2596b5SMatthias Ringwald   {
2101*1b2596b5SMatthias Ringwald     uint16_t fftLen;                 /**< length of the FFT. */
2102*1b2596b5SMatthias Ringwald     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2103*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2104*1b2596b5SMatthias Ringwald     q31_t *pTwiddle;                     /**< points to the Twiddle factor table. */
2105*1b2596b5SMatthias Ringwald     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
2106*1b2596b5SMatthias Ringwald     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2107*1b2596b5SMatthias Ringwald     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2108*1b2596b5SMatthias Ringwald   } arm_cfft_radix2_instance_q31;
2109*1b2596b5SMatthias Ringwald 
2110*1b2596b5SMatthias Ringwald /* Deprecated */
2111*1b2596b5SMatthias Ringwald   arm_status arm_cfft_radix2_init_q31(
2112*1b2596b5SMatthias Ringwald   arm_cfft_radix2_instance_q31 * S,
2113*1b2596b5SMatthias Ringwald   uint16_t fftLen,
2114*1b2596b5SMatthias Ringwald   uint8_t ifftFlag,
2115*1b2596b5SMatthias Ringwald   uint8_t bitReverseFlag);
2116*1b2596b5SMatthias Ringwald 
2117*1b2596b5SMatthias Ringwald /* Deprecated */
2118*1b2596b5SMatthias Ringwald   void arm_cfft_radix2_q31(
2119*1b2596b5SMatthias Ringwald   const arm_cfft_radix2_instance_q31 * S,
2120*1b2596b5SMatthias Ringwald   q31_t * pSrc);
2121*1b2596b5SMatthias Ringwald 
2122*1b2596b5SMatthias Ringwald   /**
2123*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 CFFT/CIFFT function.
2124*1b2596b5SMatthias Ringwald    */
2125*1b2596b5SMatthias Ringwald 
2126*1b2596b5SMatthias Ringwald   typedef struct
2127*1b2596b5SMatthias Ringwald   {
2128*1b2596b5SMatthias Ringwald     uint16_t fftLen;                 /**< length of the FFT. */
2129*1b2596b5SMatthias Ringwald     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2130*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2131*1b2596b5SMatthias Ringwald     q31_t *pTwiddle;                 /**< points to the twiddle factor table. */
2132*1b2596b5SMatthias Ringwald     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
2133*1b2596b5SMatthias Ringwald     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2134*1b2596b5SMatthias Ringwald     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2135*1b2596b5SMatthias Ringwald   } arm_cfft_radix4_instance_q31;
2136*1b2596b5SMatthias Ringwald 
2137*1b2596b5SMatthias Ringwald /* Deprecated */
2138*1b2596b5SMatthias Ringwald   void arm_cfft_radix4_q31(
2139*1b2596b5SMatthias Ringwald   const arm_cfft_radix4_instance_q31 * S,
2140*1b2596b5SMatthias Ringwald   q31_t * pSrc);
2141*1b2596b5SMatthias Ringwald 
2142*1b2596b5SMatthias Ringwald /* Deprecated */
2143*1b2596b5SMatthias Ringwald   arm_status arm_cfft_radix4_init_q31(
2144*1b2596b5SMatthias Ringwald   arm_cfft_radix4_instance_q31 * S,
2145*1b2596b5SMatthias Ringwald   uint16_t fftLen,
2146*1b2596b5SMatthias Ringwald   uint8_t ifftFlag,
2147*1b2596b5SMatthias Ringwald   uint8_t bitReverseFlag);
2148*1b2596b5SMatthias Ringwald 
2149*1b2596b5SMatthias Ringwald   /**
2150*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point CFFT/CIFFT function.
2151*1b2596b5SMatthias Ringwald    */
2152*1b2596b5SMatthias Ringwald 
2153*1b2596b5SMatthias Ringwald   typedef struct
2154*1b2596b5SMatthias Ringwald   {
2155*1b2596b5SMatthias Ringwald     uint16_t fftLen;                   /**< length of the FFT. */
2156*1b2596b5SMatthias Ringwald     uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2157*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2158*1b2596b5SMatthias Ringwald     float32_t *pTwiddle;               /**< points to the Twiddle factor table. */
2159*1b2596b5SMatthias Ringwald     uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
2160*1b2596b5SMatthias Ringwald     uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2161*1b2596b5SMatthias Ringwald     uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2162*1b2596b5SMatthias Ringwald     float32_t onebyfftLen;                 /**< value of 1/fftLen. */
2163*1b2596b5SMatthias Ringwald   } arm_cfft_radix2_instance_f32;
2164*1b2596b5SMatthias Ringwald 
2165*1b2596b5SMatthias Ringwald /* Deprecated */
2166*1b2596b5SMatthias Ringwald   arm_status arm_cfft_radix2_init_f32(
2167*1b2596b5SMatthias Ringwald   arm_cfft_radix2_instance_f32 * S,
2168*1b2596b5SMatthias Ringwald   uint16_t fftLen,
2169*1b2596b5SMatthias Ringwald   uint8_t ifftFlag,
2170*1b2596b5SMatthias Ringwald   uint8_t bitReverseFlag);
2171*1b2596b5SMatthias Ringwald 
2172*1b2596b5SMatthias Ringwald /* Deprecated */
2173*1b2596b5SMatthias Ringwald   void arm_cfft_radix2_f32(
2174*1b2596b5SMatthias Ringwald   const arm_cfft_radix2_instance_f32 * S,
2175*1b2596b5SMatthias Ringwald   float32_t * pSrc);
2176*1b2596b5SMatthias Ringwald 
2177*1b2596b5SMatthias Ringwald   /**
2178*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point CFFT/CIFFT function.
2179*1b2596b5SMatthias Ringwald    */
2180*1b2596b5SMatthias Ringwald 
2181*1b2596b5SMatthias Ringwald   typedef struct
2182*1b2596b5SMatthias Ringwald   {
2183*1b2596b5SMatthias Ringwald     uint16_t fftLen;                   /**< length of the FFT. */
2184*1b2596b5SMatthias Ringwald     uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2185*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2186*1b2596b5SMatthias Ringwald     float32_t *pTwiddle;               /**< points to the Twiddle factor table. */
2187*1b2596b5SMatthias Ringwald     uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
2188*1b2596b5SMatthias Ringwald     uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2189*1b2596b5SMatthias Ringwald     uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2190*1b2596b5SMatthias Ringwald     float32_t onebyfftLen;                 /**< value of 1/fftLen. */
2191*1b2596b5SMatthias Ringwald   } arm_cfft_radix4_instance_f32;
2192*1b2596b5SMatthias Ringwald 
2193*1b2596b5SMatthias Ringwald /* Deprecated */
2194*1b2596b5SMatthias Ringwald   arm_status arm_cfft_radix4_init_f32(
2195*1b2596b5SMatthias Ringwald   arm_cfft_radix4_instance_f32 * S,
2196*1b2596b5SMatthias Ringwald   uint16_t fftLen,
2197*1b2596b5SMatthias Ringwald   uint8_t ifftFlag,
2198*1b2596b5SMatthias Ringwald   uint8_t bitReverseFlag);
2199*1b2596b5SMatthias Ringwald 
2200*1b2596b5SMatthias Ringwald /* Deprecated */
2201*1b2596b5SMatthias Ringwald   void arm_cfft_radix4_f32(
2202*1b2596b5SMatthias Ringwald   const arm_cfft_radix4_instance_f32 * S,
2203*1b2596b5SMatthias Ringwald   float32_t * pSrc);
2204*1b2596b5SMatthias Ringwald 
2205*1b2596b5SMatthias Ringwald   /**
2206*1b2596b5SMatthias Ringwald    * @brief Instance structure for the fixed-point CFFT/CIFFT function.
2207*1b2596b5SMatthias Ringwald    */
2208*1b2596b5SMatthias Ringwald 
2209*1b2596b5SMatthias Ringwald   typedef struct
2210*1b2596b5SMatthias Ringwald   {
2211*1b2596b5SMatthias Ringwald     uint16_t fftLen;                   /**< length of the FFT. */
2212*1b2596b5SMatthias Ringwald     const q15_t *pTwiddle;             /**< points to the Twiddle factor table. */
2213*1b2596b5SMatthias Ringwald     const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
2214*1b2596b5SMatthias Ringwald     uint16_t bitRevLength;             /**< bit reversal table length. */
2215*1b2596b5SMatthias Ringwald   } arm_cfft_instance_q15;
2216*1b2596b5SMatthias Ringwald 
2217*1b2596b5SMatthias Ringwald void arm_cfft_q15(
2218*1b2596b5SMatthias Ringwald     const arm_cfft_instance_q15 * S,
2219*1b2596b5SMatthias Ringwald     q15_t * p1,
2220*1b2596b5SMatthias Ringwald     uint8_t ifftFlag,
2221*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlag);
2222*1b2596b5SMatthias Ringwald 
2223*1b2596b5SMatthias Ringwald   /**
2224*1b2596b5SMatthias Ringwald    * @brief Instance structure for the fixed-point CFFT/CIFFT function.
2225*1b2596b5SMatthias Ringwald    */
2226*1b2596b5SMatthias Ringwald 
2227*1b2596b5SMatthias Ringwald   typedef struct
2228*1b2596b5SMatthias Ringwald   {
2229*1b2596b5SMatthias Ringwald     uint16_t fftLen;                   /**< length of the FFT. */
2230*1b2596b5SMatthias Ringwald     const q31_t *pTwiddle;             /**< points to the Twiddle factor table. */
2231*1b2596b5SMatthias Ringwald     const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
2232*1b2596b5SMatthias Ringwald     uint16_t bitRevLength;             /**< bit reversal table length. */
2233*1b2596b5SMatthias Ringwald   } arm_cfft_instance_q31;
2234*1b2596b5SMatthias Ringwald 
2235*1b2596b5SMatthias Ringwald void arm_cfft_q31(
2236*1b2596b5SMatthias Ringwald     const arm_cfft_instance_q31 * S,
2237*1b2596b5SMatthias Ringwald     q31_t * p1,
2238*1b2596b5SMatthias Ringwald     uint8_t ifftFlag,
2239*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlag);
2240*1b2596b5SMatthias Ringwald 
2241*1b2596b5SMatthias Ringwald   /**
2242*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point CFFT/CIFFT function.
2243*1b2596b5SMatthias Ringwald    */
2244*1b2596b5SMatthias Ringwald 
2245*1b2596b5SMatthias Ringwald   typedef struct
2246*1b2596b5SMatthias Ringwald   {
2247*1b2596b5SMatthias Ringwald     uint16_t fftLen;                   /**< length of the FFT. */
2248*1b2596b5SMatthias Ringwald     const float32_t *pTwiddle;         /**< points to the Twiddle factor table. */
2249*1b2596b5SMatthias Ringwald     const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
2250*1b2596b5SMatthias Ringwald     uint16_t bitRevLength;             /**< bit reversal table length. */
2251*1b2596b5SMatthias Ringwald   } arm_cfft_instance_f32;
2252*1b2596b5SMatthias Ringwald 
2253*1b2596b5SMatthias Ringwald   void arm_cfft_f32(
2254*1b2596b5SMatthias Ringwald   const arm_cfft_instance_f32 * S,
2255*1b2596b5SMatthias Ringwald   float32_t * p1,
2256*1b2596b5SMatthias Ringwald   uint8_t ifftFlag,
2257*1b2596b5SMatthias Ringwald   uint8_t bitReverseFlag);
2258*1b2596b5SMatthias Ringwald 
2259*1b2596b5SMatthias Ringwald   /**
2260*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 RFFT/RIFFT function.
2261*1b2596b5SMatthias Ringwald    */
2262*1b2596b5SMatthias Ringwald 
2263*1b2596b5SMatthias Ringwald   typedef struct
2264*1b2596b5SMatthias Ringwald   {
2265*1b2596b5SMatthias Ringwald     uint32_t fftLenReal;                      /**< length of the real FFT. */
2266*1b2596b5SMatthias Ringwald     uint8_t ifftFlagR;                        /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
2267*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlagR;                  /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
2268*1b2596b5SMatthias Ringwald     uint32_t twidCoefRModifier;               /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2269*1b2596b5SMatthias Ringwald     q15_t *pTwiddleAReal;                     /**< points to the real twiddle factor table. */
2270*1b2596b5SMatthias Ringwald     q15_t *pTwiddleBReal;                     /**< points to the imag twiddle factor table. */
2271*1b2596b5SMatthias Ringwald     const arm_cfft_instance_q15 *pCfft;       /**< points to the complex FFT instance. */
2272*1b2596b5SMatthias Ringwald   } arm_rfft_instance_q15;
2273*1b2596b5SMatthias Ringwald 
2274*1b2596b5SMatthias Ringwald   arm_status arm_rfft_init_q15(
2275*1b2596b5SMatthias Ringwald   arm_rfft_instance_q15 * S,
2276*1b2596b5SMatthias Ringwald   uint32_t fftLenReal,
2277*1b2596b5SMatthias Ringwald   uint32_t ifftFlagR,
2278*1b2596b5SMatthias Ringwald   uint32_t bitReverseFlag);
2279*1b2596b5SMatthias Ringwald 
2280*1b2596b5SMatthias Ringwald   void arm_rfft_q15(
2281*1b2596b5SMatthias Ringwald   const arm_rfft_instance_q15 * S,
2282*1b2596b5SMatthias Ringwald   q15_t * pSrc,
2283*1b2596b5SMatthias Ringwald   q15_t * pDst);
2284*1b2596b5SMatthias Ringwald 
2285*1b2596b5SMatthias Ringwald   /**
2286*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 RFFT/RIFFT function.
2287*1b2596b5SMatthias Ringwald    */
2288*1b2596b5SMatthias Ringwald 
2289*1b2596b5SMatthias Ringwald   typedef struct
2290*1b2596b5SMatthias Ringwald   {
2291*1b2596b5SMatthias Ringwald     uint32_t fftLenReal;                        /**< length of the real FFT. */
2292*1b2596b5SMatthias Ringwald     uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
2293*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
2294*1b2596b5SMatthias Ringwald     uint32_t twidCoefRModifier;                 /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2295*1b2596b5SMatthias Ringwald     q31_t *pTwiddleAReal;                       /**< points to the real twiddle factor table. */
2296*1b2596b5SMatthias Ringwald     q31_t *pTwiddleBReal;                       /**< points to the imag twiddle factor table. */
2297*1b2596b5SMatthias Ringwald     const arm_cfft_instance_q31 *pCfft;         /**< points to the complex FFT instance. */
2298*1b2596b5SMatthias Ringwald   } arm_rfft_instance_q31;
2299*1b2596b5SMatthias Ringwald 
2300*1b2596b5SMatthias Ringwald   arm_status arm_rfft_init_q31(
2301*1b2596b5SMatthias Ringwald   arm_rfft_instance_q31 * S,
2302*1b2596b5SMatthias Ringwald   uint32_t fftLenReal,
2303*1b2596b5SMatthias Ringwald   uint32_t ifftFlagR,
2304*1b2596b5SMatthias Ringwald   uint32_t bitReverseFlag);
2305*1b2596b5SMatthias Ringwald 
2306*1b2596b5SMatthias Ringwald   void arm_rfft_q31(
2307*1b2596b5SMatthias Ringwald   const arm_rfft_instance_q31 * S,
2308*1b2596b5SMatthias Ringwald   q31_t * pSrc,
2309*1b2596b5SMatthias Ringwald   q31_t * pDst);
2310*1b2596b5SMatthias Ringwald 
2311*1b2596b5SMatthias Ringwald   /**
2312*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point RFFT/RIFFT function.
2313*1b2596b5SMatthias Ringwald    */
2314*1b2596b5SMatthias Ringwald 
2315*1b2596b5SMatthias Ringwald   typedef struct
2316*1b2596b5SMatthias Ringwald   {
2317*1b2596b5SMatthias Ringwald     uint32_t fftLenReal;                        /**< length of the real FFT. */
2318*1b2596b5SMatthias Ringwald     uint16_t fftLenBy2;                         /**< length of the complex FFT. */
2319*1b2596b5SMatthias Ringwald     uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
2320*1b2596b5SMatthias Ringwald     uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
2321*1b2596b5SMatthias Ringwald     uint32_t twidCoefRModifier;                     /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2322*1b2596b5SMatthias Ringwald     float32_t *pTwiddleAReal;                   /**< points to the real twiddle factor table. */
2323*1b2596b5SMatthias Ringwald     float32_t *pTwiddleBReal;                   /**< points to the imag twiddle factor table. */
2324*1b2596b5SMatthias Ringwald     arm_cfft_radix4_instance_f32 *pCfft;        /**< points to the complex FFT instance. */
2325*1b2596b5SMatthias Ringwald   } arm_rfft_instance_f32;
2326*1b2596b5SMatthias Ringwald 
2327*1b2596b5SMatthias Ringwald   arm_status arm_rfft_init_f32(
2328*1b2596b5SMatthias Ringwald   arm_rfft_instance_f32 * S,
2329*1b2596b5SMatthias Ringwald   arm_cfft_radix4_instance_f32 * S_CFFT,
2330*1b2596b5SMatthias Ringwald   uint32_t fftLenReal,
2331*1b2596b5SMatthias Ringwald   uint32_t ifftFlagR,
2332*1b2596b5SMatthias Ringwald   uint32_t bitReverseFlag);
2333*1b2596b5SMatthias Ringwald 
2334*1b2596b5SMatthias Ringwald   void arm_rfft_f32(
2335*1b2596b5SMatthias Ringwald   const arm_rfft_instance_f32 * S,
2336*1b2596b5SMatthias Ringwald   float32_t * pSrc,
2337*1b2596b5SMatthias Ringwald   float32_t * pDst);
2338*1b2596b5SMatthias Ringwald 
2339*1b2596b5SMatthias Ringwald   /**
2340*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point RFFT/RIFFT function.
2341*1b2596b5SMatthias Ringwald    */
2342*1b2596b5SMatthias Ringwald 
2343*1b2596b5SMatthias Ringwald typedef struct
2344*1b2596b5SMatthias Ringwald   {
2345*1b2596b5SMatthias Ringwald     arm_cfft_instance_f32 Sint;      /**< Internal CFFT structure. */
2346*1b2596b5SMatthias Ringwald     uint16_t fftLenRFFT;                        /**< length of the real sequence */
2347*1b2596b5SMatthias Ringwald 	float32_t * pTwiddleRFFT;					/**< Twiddle factors real stage  */
2348*1b2596b5SMatthias Ringwald   } arm_rfft_fast_instance_f32 ;
2349*1b2596b5SMatthias Ringwald 
2350*1b2596b5SMatthias Ringwald arm_status arm_rfft_fast_init_f32 (
2351*1b2596b5SMatthias Ringwald 	arm_rfft_fast_instance_f32 * S,
2352*1b2596b5SMatthias Ringwald 	uint16_t fftLen);
2353*1b2596b5SMatthias Ringwald 
2354*1b2596b5SMatthias Ringwald void arm_rfft_fast_f32(
2355*1b2596b5SMatthias Ringwald   arm_rfft_fast_instance_f32 * S,
2356*1b2596b5SMatthias Ringwald   float32_t * p, float32_t * pOut,
2357*1b2596b5SMatthias Ringwald   uint8_t ifftFlag);
2358*1b2596b5SMatthias Ringwald 
2359*1b2596b5SMatthias Ringwald   /**
2360*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point DCT4/IDCT4 function.
2361*1b2596b5SMatthias Ringwald    */
2362*1b2596b5SMatthias Ringwald 
2363*1b2596b5SMatthias Ringwald   typedef struct
2364*1b2596b5SMatthias Ringwald   {
2365*1b2596b5SMatthias Ringwald     uint16_t N;                         /**< length of the DCT4. */
2366*1b2596b5SMatthias Ringwald     uint16_t Nby2;                      /**< half of the length of the DCT4. */
2367*1b2596b5SMatthias Ringwald     float32_t normalize;                /**< normalizing factor. */
2368*1b2596b5SMatthias Ringwald     float32_t *pTwiddle;                /**< points to the twiddle factor table. */
2369*1b2596b5SMatthias Ringwald     float32_t *pCosFactor;              /**< points to the cosFactor table. */
2370*1b2596b5SMatthias Ringwald     arm_rfft_instance_f32 *pRfft;        /**< points to the real FFT instance. */
2371*1b2596b5SMatthias Ringwald     arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
2372*1b2596b5SMatthias Ringwald   } arm_dct4_instance_f32;
2373*1b2596b5SMatthias Ringwald 
2374*1b2596b5SMatthias Ringwald   /**
2375*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point DCT4/IDCT4.
2376*1b2596b5SMatthias Ringwald    * @param[in,out] *S         points to an instance of floating-point DCT4/IDCT4 structure.
2377*1b2596b5SMatthias Ringwald    * @param[in]     *S_RFFT    points to an instance of floating-point RFFT/RIFFT structure.
2378*1b2596b5SMatthias Ringwald    * @param[in]     *S_CFFT    points to an instance of floating-point CFFT/CIFFT structure.
2379*1b2596b5SMatthias Ringwald    * @param[in]     N          length of the DCT4.
2380*1b2596b5SMatthias Ringwald    * @param[in]     Nby2       half of the length of the DCT4.
2381*1b2596b5SMatthias Ringwald    * @param[in]     normalize  normalizing factor.
2382*1b2596b5SMatthias Ringwald    * @return		arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
2383*1b2596b5SMatthias Ringwald    */
2384*1b2596b5SMatthias Ringwald 
2385*1b2596b5SMatthias Ringwald   arm_status arm_dct4_init_f32(
2386*1b2596b5SMatthias Ringwald   arm_dct4_instance_f32 * S,
2387*1b2596b5SMatthias Ringwald   arm_rfft_instance_f32 * S_RFFT,
2388*1b2596b5SMatthias Ringwald   arm_cfft_radix4_instance_f32 * S_CFFT,
2389*1b2596b5SMatthias Ringwald   uint16_t N,
2390*1b2596b5SMatthias Ringwald   uint16_t Nby2,
2391*1b2596b5SMatthias Ringwald   float32_t normalize);
2392*1b2596b5SMatthias Ringwald 
2393*1b2596b5SMatthias Ringwald   /**
2394*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point DCT4/IDCT4.
2395*1b2596b5SMatthias Ringwald    * @param[in]       *S             points to an instance of the floating-point DCT4/IDCT4 structure.
2396*1b2596b5SMatthias Ringwald    * @param[in]       *pState        points to state buffer.
2397*1b2596b5SMatthias Ringwald    * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
2398*1b2596b5SMatthias Ringwald    * @return none.
2399*1b2596b5SMatthias Ringwald    */
2400*1b2596b5SMatthias Ringwald 
2401*1b2596b5SMatthias Ringwald   void arm_dct4_f32(
2402*1b2596b5SMatthias Ringwald   const arm_dct4_instance_f32 * S,
2403*1b2596b5SMatthias Ringwald   float32_t * pState,
2404*1b2596b5SMatthias Ringwald   float32_t * pInlineBuffer);
2405*1b2596b5SMatthias Ringwald 
2406*1b2596b5SMatthias Ringwald   /**
2407*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 DCT4/IDCT4 function.
2408*1b2596b5SMatthias Ringwald    */
2409*1b2596b5SMatthias Ringwald 
2410*1b2596b5SMatthias Ringwald   typedef struct
2411*1b2596b5SMatthias Ringwald   {
2412*1b2596b5SMatthias Ringwald     uint16_t N;                         /**< length of the DCT4. */
2413*1b2596b5SMatthias Ringwald     uint16_t Nby2;                      /**< half of the length of the DCT4. */
2414*1b2596b5SMatthias Ringwald     q31_t normalize;                    /**< normalizing factor. */
2415*1b2596b5SMatthias Ringwald     q31_t *pTwiddle;                    /**< points to the twiddle factor table. */
2416*1b2596b5SMatthias Ringwald     q31_t *pCosFactor;                  /**< points to the cosFactor table. */
2417*1b2596b5SMatthias Ringwald     arm_rfft_instance_q31 *pRfft;        /**< points to the real FFT instance. */
2418*1b2596b5SMatthias Ringwald     arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
2419*1b2596b5SMatthias Ringwald   } arm_dct4_instance_q31;
2420*1b2596b5SMatthias Ringwald 
2421*1b2596b5SMatthias Ringwald   /**
2422*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q31 DCT4/IDCT4.
2423*1b2596b5SMatthias Ringwald    * @param[in,out] *S         points to an instance of Q31 DCT4/IDCT4 structure.
2424*1b2596b5SMatthias Ringwald    * @param[in]     *S_RFFT    points to an instance of Q31 RFFT/RIFFT structure
2425*1b2596b5SMatthias Ringwald    * @param[in]     *S_CFFT    points to an instance of Q31 CFFT/CIFFT structure
2426*1b2596b5SMatthias Ringwald    * @param[in]     N          length of the DCT4.
2427*1b2596b5SMatthias Ringwald    * @param[in]     Nby2       half of the length of the DCT4.
2428*1b2596b5SMatthias Ringwald    * @param[in]     normalize  normalizing factor.
2429*1b2596b5SMatthias Ringwald    * @return		arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
2430*1b2596b5SMatthias Ringwald    */
2431*1b2596b5SMatthias Ringwald 
2432*1b2596b5SMatthias Ringwald   arm_status arm_dct4_init_q31(
2433*1b2596b5SMatthias Ringwald   arm_dct4_instance_q31 * S,
2434*1b2596b5SMatthias Ringwald   arm_rfft_instance_q31 * S_RFFT,
2435*1b2596b5SMatthias Ringwald   arm_cfft_radix4_instance_q31 * S_CFFT,
2436*1b2596b5SMatthias Ringwald   uint16_t N,
2437*1b2596b5SMatthias Ringwald   uint16_t Nby2,
2438*1b2596b5SMatthias Ringwald   q31_t normalize);
2439*1b2596b5SMatthias Ringwald 
2440*1b2596b5SMatthias Ringwald   /**
2441*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q31 DCT4/IDCT4.
2442*1b2596b5SMatthias Ringwald    * @param[in]       *S             points to an instance of the Q31 DCT4 structure.
2443*1b2596b5SMatthias Ringwald    * @param[in]       *pState        points to state buffer.
2444*1b2596b5SMatthias Ringwald    * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
2445*1b2596b5SMatthias Ringwald    * @return none.
2446*1b2596b5SMatthias Ringwald    */
2447*1b2596b5SMatthias Ringwald 
2448*1b2596b5SMatthias Ringwald   void arm_dct4_q31(
2449*1b2596b5SMatthias Ringwald   const arm_dct4_instance_q31 * S,
2450*1b2596b5SMatthias Ringwald   q31_t * pState,
2451*1b2596b5SMatthias Ringwald   q31_t * pInlineBuffer);
2452*1b2596b5SMatthias Ringwald 
2453*1b2596b5SMatthias Ringwald   /**
2454*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 DCT4/IDCT4 function.
2455*1b2596b5SMatthias Ringwald    */
2456*1b2596b5SMatthias Ringwald 
2457*1b2596b5SMatthias Ringwald   typedef struct
2458*1b2596b5SMatthias Ringwald   {
2459*1b2596b5SMatthias Ringwald     uint16_t N;                         /**< length of the DCT4. */
2460*1b2596b5SMatthias Ringwald     uint16_t Nby2;                      /**< half of the length of the DCT4. */
2461*1b2596b5SMatthias Ringwald     q15_t normalize;                    /**< normalizing factor. */
2462*1b2596b5SMatthias Ringwald     q15_t *pTwiddle;                    /**< points to the twiddle factor table. */
2463*1b2596b5SMatthias Ringwald     q15_t *pCosFactor;                  /**< points to the cosFactor table. */
2464*1b2596b5SMatthias Ringwald     arm_rfft_instance_q15 *pRfft;        /**< points to the real FFT instance. */
2465*1b2596b5SMatthias Ringwald     arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
2466*1b2596b5SMatthias Ringwald   } arm_dct4_instance_q15;
2467*1b2596b5SMatthias Ringwald 
2468*1b2596b5SMatthias Ringwald   /**
2469*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q15 DCT4/IDCT4.
2470*1b2596b5SMatthias Ringwald    * @param[in,out] *S         points to an instance of Q15 DCT4/IDCT4 structure.
2471*1b2596b5SMatthias Ringwald    * @param[in]     *S_RFFT    points to an instance of Q15 RFFT/RIFFT structure.
2472*1b2596b5SMatthias Ringwald    * @param[in]     *S_CFFT    points to an instance of Q15 CFFT/CIFFT structure.
2473*1b2596b5SMatthias Ringwald    * @param[in]     N          length of the DCT4.
2474*1b2596b5SMatthias Ringwald    * @param[in]     Nby2       half of the length of the DCT4.
2475*1b2596b5SMatthias Ringwald    * @param[in]     normalize  normalizing factor.
2476*1b2596b5SMatthias Ringwald    * @return		arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
2477*1b2596b5SMatthias Ringwald    */
2478*1b2596b5SMatthias Ringwald 
2479*1b2596b5SMatthias Ringwald   arm_status arm_dct4_init_q15(
2480*1b2596b5SMatthias Ringwald   arm_dct4_instance_q15 * S,
2481*1b2596b5SMatthias Ringwald   arm_rfft_instance_q15 * S_RFFT,
2482*1b2596b5SMatthias Ringwald   arm_cfft_radix4_instance_q15 * S_CFFT,
2483*1b2596b5SMatthias Ringwald   uint16_t N,
2484*1b2596b5SMatthias Ringwald   uint16_t Nby2,
2485*1b2596b5SMatthias Ringwald   q15_t normalize);
2486*1b2596b5SMatthias Ringwald 
2487*1b2596b5SMatthias Ringwald   /**
2488*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q15 DCT4/IDCT4.
2489*1b2596b5SMatthias Ringwald    * @param[in]       *S             points to an instance of the Q15 DCT4 structure.
2490*1b2596b5SMatthias Ringwald    * @param[in]       *pState        points to state buffer.
2491*1b2596b5SMatthias Ringwald    * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
2492*1b2596b5SMatthias Ringwald    * @return none.
2493*1b2596b5SMatthias Ringwald    */
2494*1b2596b5SMatthias Ringwald 
2495*1b2596b5SMatthias Ringwald   void arm_dct4_q15(
2496*1b2596b5SMatthias Ringwald   const arm_dct4_instance_q15 * S,
2497*1b2596b5SMatthias Ringwald   q15_t * pState,
2498*1b2596b5SMatthias Ringwald   q15_t * pInlineBuffer);
2499*1b2596b5SMatthias Ringwald 
2500*1b2596b5SMatthias Ringwald   /**
2501*1b2596b5SMatthias Ringwald    * @brief Floating-point vector addition.
2502*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2503*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2504*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2505*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2506*1b2596b5SMatthias Ringwald    * @return none.
2507*1b2596b5SMatthias Ringwald    */
2508*1b2596b5SMatthias Ringwald 
2509*1b2596b5SMatthias Ringwald   void arm_add_f32(
2510*1b2596b5SMatthias Ringwald   float32_t * pSrcA,
2511*1b2596b5SMatthias Ringwald   float32_t * pSrcB,
2512*1b2596b5SMatthias Ringwald   float32_t * pDst,
2513*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2514*1b2596b5SMatthias Ringwald 
2515*1b2596b5SMatthias Ringwald   /**
2516*1b2596b5SMatthias Ringwald    * @brief Q7 vector addition.
2517*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2518*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2519*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2520*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2521*1b2596b5SMatthias Ringwald    * @return none.
2522*1b2596b5SMatthias Ringwald    */
2523*1b2596b5SMatthias Ringwald 
2524*1b2596b5SMatthias Ringwald   void arm_add_q7(
2525*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
2526*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
2527*1b2596b5SMatthias Ringwald   q7_t * pDst,
2528*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2529*1b2596b5SMatthias Ringwald 
2530*1b2596b5SMatthias Ringwald   /**
2531*1b2596b5SMatthias Ringwald    * @brief Q15 vector addition.
2532*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2533*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2534*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2535*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2536*1b2596b5SMatthias Ringwald    * @return none.
2537*1b2596b5SMatthias Ringwald    */
2538*1b2596b5SMatthias Ringwald 
2539*1b2596b5SMatthias Ringwald   void arm_add_q15(
2540*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
2541*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
2542*1b2596b5SMatthias Ringwald   q15_t * pDst,
2543*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2544*1b2596b5SMatthias Ringwald 
2545*1b2596b5SMatthias Ringwald   /**
2546*1b2596b5SMatthias Ringwald    * @brief Q31 vector addition.
2547*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2548*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2549*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2550*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2551*1b2596b5SMatthias Ringwald    * @return none.
2552*1b2596b5SMatthias Ringwald    */
2553*1b2596b5SMatthias Ringwald 
2554*1b2596b5SMatthias Ringwald   void arm_add_q31(
2555*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
2556*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
2557*1b2596b5SMatthias Ringwald   q31_t * pDst,
2558*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2559*1b2596b5SMatthias Ringwald 
2560*1b2596b5SMatthias Ringwald   /**
2561*1b2596b5SMatthias Ringwald    * @brief Floating-point vector subtraction.
2562*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2563*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2564*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2565*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2566*1b2596b5SMatthias Ringwald    * @return none.
2567*1b2596b5SMatthias Ringwald    */
2568*1b2596b5SMatthias Ringwald 
2569*1b2596b5SMatthias Ringwald   void arm_sub_f32(
2570*1b2596b5SMatthias Ringwald   float32_t * pSrcA,
2571*1b2596b5SMatthias Ringwald   float32_t * pSrcB,
2572*1b2596b5SMatthias Ringwald   float32_t * pDst,
2573*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2574*1b2596b5SMatthias Ringwald 
2575*1b2596b5SMatthias Ringwald   /**
2576*1b2596b5SMatthias Ringwald    * @brief Q7 vector subtraction.
2577*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2578*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2579*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2580*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2581*1b2596b5SMatthias Ringwald    * @return none.
2582*1b2596b5SMatthias Ringwald    */
2583*1b2596b5SMatthias Ringwald 
2584*1b2596b5SMatthias Ringwald   void arm_sub_q7(
2585*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
2586*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
2587*1b2596b5SMatthias Ringwald   q7_t * pDst,
2588*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2589*1b2596b5SMatthias Ringwald 
2590*1b2596b5SMatthias Ringwald   /**
2591*1b2596b5SMatthias Ringwald    * @brief Q15 vector subtraction.
2592*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2593*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2594*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2595*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2596*1b2596b5SMatthias Ringwald    * @return none.
2597*1b2596b5SMatthias Ringwald    */
2598*1b2596b5SMatthias Ringwald 
2599*1b2596b5SMatthias Ringwald   void arm_sub_q15(
2600*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
2601*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
2602*1b2596b5SMatthias Ringwald   q15_t * pDst,
2603*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2604*1b2596b5SMatthias Ringwald 
2605*1b2596b5SMatthias Ringwald   /**
2606*1b2596b5SMatthias Ringwald    * @brief Q31 vector subtraction.
2607*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2608*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2609*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2610*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2611*1b2596b5SMatthias Ringwald    * @return none.
2612*1b2596b5SMatthias Ringwald    */
2613*1b2596b5SMatthias Ringwald 
2614*1b2596b5SMatthias Ringwald   void arm_sub_q31(
2615*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
2616*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
2617*1b2596b5SMatthias Ringwald   q31_t * pDst,
2618*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2619*1b2596b5SMatthias Ringwald 
2620*1b2596b5SMatthias Ringwald   /**
2621*1b2596b5SMatthias Ringwald    * @brief Multiplies a floating-point vector by a scalar.
2622*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the input vector
2623*1b2596b5SMatthias Ringwald    * @param[in]       scale scale factor to be applied
2624*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2625*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in the vector
2626*1b2596b5SMatthias Ringwald    * @return none.
2627*1b2596b5SMatthias Ringwald    */
2628*1b2596b5SMatthias Ringwald 
2629*1b2596b5SMatthias Ringwald   void arm_scale_f32(
2630*1b2596b5SMatthias Ringwald   float32_t * pSrc,
2631*1b2596b5SMatthias Ringwald   float32_t scale,
2632*1b2596b5SMatthias Ringwald   float32_t * pDst,
2633*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2634*1b2596b5SMatthias Ringwald 
2635*1b2596b5SMatthias Ringwald   /**
2636*1b2596b5SMatthias Ringwald    * @brief Multiplies a Q7 vector by a scalar.
2637*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the input vector
2638*1b2596b5SMatthias Ringwald    * @param[in]       scaleFract fractional portion of the scale value
2639*1b2596b5SMatthias Ringwald    * @param[in]       shift number of bits to shift the result by
2640*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2641*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in the vector
2642*1b2596b5SMatthias Ringwald    * @return none.
2643*1b2596b5SMatthias Ringwald    */
2644*1b2596b5SMatthias Ringwald 
2645*1b2596b5SMatthias Ringwald   void arm_scale_q7(
2646*1b2596b5SMatthias Ringwald   q7_t * pSrc,
2647*1b2596b5SMatthias Ringwald   q7_t scaleFract,
2648*1b2596b5SMatthias Ringwald   int8_t shift,
2649*1b2596b5SMatthias Ringwald   q7_t * pDst,
2650*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2651*1b2596b5SMatthias Ringwald 
2652*1b2596b5SMatthias Ringwald   /**
2653*1b2596b5SMatthias Ringwald    * @brief Multiplies a Q15 vector by a scalar.
2654*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the input vector
2655*1b2596b5SMatthias Ringwald    * @param[in]       scaleFract fractional portion of the scale value
2656*1b2596b5SMatthias Ringwald    * @param[in]       shift number of bits to shift the result by
2657*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2658*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in the vector
2659*1b2596b5SMatthias Ringwald    * @return none.
2660*1b2596b5SMatthias Ringwald    */
2661*1b2596b5SMatthias Ringwald 
2662*1b2596b5SMatthias Ringwald   void arm_scale_q15(
2663*1b2596b5SMatthias Ringwald   q15_t * pSrc,
2664*1b2596b5SMatthias Ringwald   q15_t scaleFract,
2665*1b2596b5SMatthias Ringwald   int8_t shift,
2666*1b2596b5SMatthias Ringwald   q15_t * pDst,
2667*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2668*1b2596b5SMatthias Ringwald 
2669*1b2596b5SMatthias Ringwald   /**
2670*1b2596b5SMatthias Ringwald    * @brief Multiplies a Q31 vector by a scalar.
2671*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the input vector
2672*1b2596b5SMatthias Ringwald    * @param[in]       scaleFract fractional portion of the scale value
2673*1b2596b5SMatthias Ringwald    * @param[in]       shift number of bits to shift the result by
2674*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output vector
2675*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in the vector
2676*1b2596b5SMatthias Ringwald    * @return none.
2677*1b2596b5SMatthias Ringwald    */
2678*1b2596b5SMatthias Ringwald 
2679*1b2596b5SMatthias Ringwald   void arm_scale_q31(
2680*1b2596b5SMatthias Ringwald   q31_t * pSrc,
2681*1b2596b5SMatthias Ringwald   q31_t scaleFract,
2682*1b2596b5SMatthias Ringwald   int8_t shift,
2683*1b2596b5SMatthias Ringwald   q31_t * pDst,
2684*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2685*1b2596b5SMatthias Ringwald 
2686*1b2596b5SMatthias Ringwald   /**
2687*1b2596b5SMatthias Ringwald    * @brief Q7 vector absolute value.
2688*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the input buffer
2689*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output buffer
2690*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2691*1b2596b5SMatthias Ringwald    * @return none.
2692*1b2596b5SMatthias Ringwald    */
2693*1b2596b5SMatthias Ringwald 
2694*1b2596b5SMatthias Ringwald   void arm_abs_q7(
2695*1b2596b5SMatthias Ringwald   q7_t * pSrc,
2696*1b2596b5SMatthias Ringwald   q7_t * pDst,
2697*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2698*1b2596b5SMatthias Ringwald 
2699*1b2596b5SMatthias Ringwald   /**
2700*1b2596b5SMatthias Ringwald    * @brief Floating-point vector absolute value.
2701*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the input buffer
2702*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output buffer
2703*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2704*1b2596b5SMatthias Ringwald    * @return none.
2705*1b2596b5SMatthias Ringwald    */
2706*1b2596b5SMatthias Ringwald 
2707*1b2596b5SMatthias Ringwald   void arm_abs_f32(
2708*1b2596b5SMatthias Ringwald   float32_t * pSrc,
2709*1b2596b5SMatthias Ringwald   float32_t * pDst,
2710*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2711*1b2596b5SMatthias Ringwald 
2712*1b2596b5SMatthias Ringwald   /**
2713*1b2596b5SMatthias Ringwald    * @brief Q15 vector absolute value.
2714*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the input buffer
2715*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output buffer
2716*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2717*1b2596b5SMatthias Ringwald    * @return none.
2718*1b2596b5SMatthias Ringwald    */
2719*1b2596b5SMatthias Ringwald 
2720*1b2596b5SMatthias Ringwald   void arm_abs_q15(
2721*1b2596b5SMatthias Ringwald   q15_t * pSrc,
2722*1b2596b5SMatthias Ringwald   q15_t * pDst,
2723*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2724*1b2596b5SMatthias Ringwald 
2725*1b2596b5SMatthias Ringwald   /**
2726*1b2596b5SMatthias Ringwald    * @brief Q31 vector absolute value.
2727*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the input buffer
2728*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the output buffer
2729*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2730*1b2596b5SMatthias Ringwald    * @return none.
2731*1b2596b5SMatthias Ringwald    */
2732*1b2596b5SMatthias Ringwald 
2733*1b2596b5SMatthias Ringwald   void arm_abs_q31(
2734*1b2596b5SMatthias Ringwald   q31_t * pSrc,
2735*1b2596b5SMatthias Ringwald   q31_t * pDst,
2736*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2737*1b2596b5SMatthias Ringwald 
2738*1b2596b5SMatthias Ringwald   /**
2739*1b2596b5SMatthias Ringwald    * @brief Dot product of floating-point vectors.
2740*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2741*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2742*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2743*1b2596b5SMatthias Ringwald    * @param[out]      *result output result returned here
2744*1b2596b5SMatthias Ringwald    * @return none.
2745*1b2596b5SMatthias Ringwald    */
2746*1b2596b5SMatthias Ringwald 
2747*1b2596b5SMatthias Ringwald   void arm_dot_prod_f32(
2748*1b2596b5SMatthias Ringwald   float32_t * pSrcA,
2749*1b2596b5SMatthias Ringwald   float32_t * pSrcB,
2750*1b2596b5SMatthias Ringwald   uint32_t blockSize,
2751*1b2596b5SMatthias Ringwald   float32_t * result);
2752*1b2596b5SMatthias Ringwald 
2753*1b2596b5SMatthias Ringwald   /**
2754*1b2596b5SMatthias Ringwald    * @brief Dot product of Q7 vectors.
2755*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2756*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2757*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2758*1b2596b5SMatthias Ringwald    * @param[out]      *result output result returned here
2759*1b2596b5SMatthias Ringwald    * @return none.
2760*1b2596b5SMatthias Ringwald    */
2761*1b2596b5SMatthias Ringwald 
2762*1b2596b5SMatthias Ringwald   void arm_dot_prod_q7(
2763*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
2764*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
2765*1b2596b5SMatthias Ringwald   uint32_t blockSize,
2766*1b2596b5SMatthias Ringwald   q31_t * result);
2767*1b2596b5SMatthias Ringwald 
2768*1b2596b5SMatthias Ringwald   /**
2769*1b2596b5SMatthias Ringwald    * @brief Dot product of Q15 vectors.
2770*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2771*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2772*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2773*1b2596b5SMatthias Ringwald    * @param[out]      *result output result returned here
2774*1b2596b5SMatthias Ringwald    * @return none.
2775*1b2596b5SMatthias Ringwald    */
2776*1b2596b5SMatthias Ringwald 
2777*1b2596b5SMatthias Ringwald   void arm_dot_prod_q15(
2778*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
2779*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
2780*1b2596b5SMatthias Ringwald   uint32_t blockSize,
2781*1b2596b5SMatthias Ringwald   q63_t * result);
2782*1b2596b5SMatthias Ringwald 
2783*1b2596b5SMatthias Ringwald   /**
2784*1b2596b5SMatthias Ringwald    * @brief Dot product of Q31 vectors.
2785*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input vector
2786*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input vector
2787*1b2596b5SMatthias Ringwald    * @param[in]       blockSize number of samples in each vector
2788*1b2596b5SMatthias Ringwald    * @param[out]      *result output result returned here
2789*1b2596b5SMatthias Ringwald    * @return none.
2790*1b2596b5SMatthias Ringwald    */
2791*1b2596b5SMatthias Ringwald 
2792*1b2596b5SMatthias Ringwald   void arm_dot_prod_q31(
2793*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
2794*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
2795*1b2596b5SMatthias Ringwald   uint32_t blockSize,
2796*1b2596b5SMatthias Ringwald   q63_t * result);
2797*1b2596b5SMatthias Ringwald 
2798*1b2596b5SMatthias Ringwald   /**
2799*1b2596b5SMatthias Ringwald    * @brief  Shifts the elements of a Q7 vector a specified number of bits.
2800*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2801*1b2596b5SMatthias Ringwald    * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
2802*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2803*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2804*1b2596b5SMatthias Ringwald    * @return none.
2805*1b2596b5SMatthias Ringwald    */
2806*1b2596b5SMatthias Ringwald 
2807*1b2596b5SMatthias Ringwald   void arm_shift_q7(
2808*1b2596b5SMatthias Ringwald   q7_t * pSrc,
2809*1b2596b5SMatthias Ringwald   int8_t shiftBits,
2810*1b2596b5SMatthias Ringwald   q7_t * pDst,
2811*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2812*1b2596b5SMatthias Ringwald 
2813*1b2596b5SMatthias Ringwald   /**
2814*1b2596b5SMatthias Ringwald    * @brief  Shifts the elements of a Q15 vector a specified number of bits.
2815*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2816*1b2596b5SMatthias Ringwald    * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
2817*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2818*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2819*1b2596b5SMatthias Ringwald    * @return none.
2820*1b2596b5SMatthias Ringwald    */
2821*1b2596b5SMatthias Ringwald 
2822*1b2596b5SMatthias Ringwald   void arm_shift_q15(
2823*1b2596b5SMatthias Ringwald   q15_t * pSrc,
2824*1b2596b5SMatthias Ringwald   int8_t shiftBits,
2825*1b2596b5SMatthias Ringwald   q15_t * pDst,
2826*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2827*1b2596b5SMatthias Ringwald 
2828*1b2596b5SMatthias Ringwald   /**
2829*1b2596b5SMatthias Ringwald    * @brief  Shifts the elements of a Q31 vector a specified number of bits.
2830*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2831*1b2596b5SMatthias Ringwald    * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right.
2832*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2833*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2834*1b2596b5SMatthias Ringwald    * @return none.
2835*1b2596b5SMatthias Ringwald    */
2836*1b2596b5SMatthias Ringwald 
2837*1b2596b5SMatthias Ringwald   void arm_shift_q31(
2838*1b2596b5SMatthias Ringwald   q31_t * pSrc,
2839*1b2596b5SMatthias Ringwald   int8_t shiftBits,
2840*1b2596b5SMatthias Ringwald   q31_t * pDst,
2841*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2842*1b2596b5SMatthias Ringwald 
2843*1b2596b5SMatthias Ringwald   /**
2844*1b2596b5SMatthias Ringwald    * @brief  Adds a constant offset to a floating-point vector.
2845*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2846*1b2596b5SMatthias Ringwald    * @param[in]  offset is the offset to be added
2847*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2848*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2849*1b2596b5SMatthias Ringwald    * @return none.
2850*1b2596b5SMatthias Ringwald    */
2851*1b2596b5SMatthias Ringwald 
2852*1b2596b5SMatthias Ringwald   void arm_offset_f32(
2853*1b2596b5SMatthias Ringwald   float32_t * pSrc,
2854*1b2596b5SMatthias Ringwald   float32_t offset,
2855*1b2596b5SMatthias Ringwald   float32_t * pDst,
2856*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2857*1b2596b5SMatthias Ringwald 
2858*1b2596b5SMatthias Ringwald   /**
2859*1b2596b5SMatthias Ringwald    * @brief  Adds a constant offset to a Q7 vector.
2860*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2861*1b2596b5SMatthias Ringwald    * @param[in]  offset is the offset to be added
2862*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2863*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2864*1b2596b5SMatthias Ringwald    * @return none.
2865*1b2596b5SMatthias Ringwald    */
2866*1b2596b5SMatthias Ringwald 
2867*1b2596b5SMatthias Ringwald   void arm_offset_q7(
2868*1b2596b5SMatthias Ringwald   q7_t * pSrc,
2869*1b2596b5SMatthias Ringwald   q7_t offset,
2870*1b2596b5SMatthias Ringwald   q7_t * pDst,
2871*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2872*1b2596b5SMatthias Ringwald 
2873*1b2596b5SMatthias Ringwald   /**
2874*1b2596b5SMatthias Ringwald    * @brief  Adds a constant offset to a Q15 vector.
2875*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2876*1b2596b5SMatthias Ringwald    * @param[in]  offset is the offset to be added
2877*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2878*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2879*1b2596b5SMatthias Ringwald    * @return none.
2880*1b2596b5SMatthias Ringwald    */
2881*1b2596b5SMatthias Ringwald 
2882*1b2596b5SMatthias Ringwald   void arm_offset_q15(
2883*1b2596b5SMatthias Ringwald   q15_t * pSrc,
2884*1b2596b5SMatthias Ringwald   q15_t offset,
2885*1b2596b5SMatthias Ringwald   q15_t * pDst,
2886*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2887*1b2596b5SMatthias Ringwald 
2888*1b2596b5SMatthias Ringwald   /**
2889*1b2596b5SMatthias Ringwald    * @brief  Adds a constant offset to a Q31 vector.
2890*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2891*1b2596b5SMatthias Ringwald    * @param[in]  offset is the offset to be added
2892*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2893*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2894*1b2596b5SMatthias Ringwald    * @return none.
2895*1b2596b5SMatthias Ringwald    */
2896*1b2596b5SMatthias Ringwald 
2897*1b2596b5SMatthias Ringwald   void arm_offset_q31(
2898*1b2596b5SMatthias Ringwald   q31_t * pSrc,
2899*1b2596b5SMatthias Ringwald   q31_t offset,
2900*1b2596b5SMatthias Ringwald   q31_t * pDst,
2901*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2902*1b2596b5SMatthias Ringwald 
2903*1b2596b5SMatthias Ringwald   /**
2904*1b2596b5SMatthias Ringwald    * @brief  Negates the elements of a floating-point vector.
2905*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2906*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2907*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2908*1b2596b5SMatthias Ringwald    * @return none.
2909*1b2596b5SMatthias Ringwald    */
2910*1b2596b5SMatthias Ringwald 
2911*1b2596b5SMatthias Ringwald   void arm_negate_f32(
2912*1b2596b5SMatthias Ringwald   float32_t * pSrc,
2913*1b2596b5SMatthias Ringwald   float32_t * pDst,
2914*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2915*1b2596b5SMatthias Ringwald 
2916*1b2596b5SMatthias Ringwald   /**
2917*1b2596b5SMatthias Ringwald    * @brief  Negates the elements of a Q7 vector.
2918*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2919*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2920*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2921*1b2596b5SMatthias Ringwald    * @return none.
2922*1b2596b5SMatthias Ringwald    */
2923*1b2596b5SMatthias Ringwald 
2924*1b2596b5SMatthias Ringwald   void arm_negate_q7(
2925*1b2596b5SMatthias Ringwald   q7_t * pSrc,
2926*1b2596b5SMatthias Ringwald   q7_t * pDst,
2927*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2928*1b2596b5SMatthias Ringwald 
2929*1b2596b5SMatthias Ringwald   /**
2930*1b2596b5SMatthias Ringwald    * @brief  Negates the elements of a Q15 vector.
2931*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2932*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2933*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2934*1b2596b5SMatthias Ringwald    * @return none.
2935*1b2596b5SMatthias Ringwald    */
2936*1b2596b5SMatthias Ringwald 
2937*1b2596b5SMatthias Ringwald   void arm_negate_q15(
2938*1b2596b5SMatthias Ringwald   q15_t * pSrc,
2939*1b2596b5SMatthias Ringwald   q15_t * pDst,
2940*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2941*1b2596b5SMatthias Ringwald 
2942*1b2596b5SMatthias Ringwald   /**
2943*1b2596b5SMatthias Ringwald    * @brief  Negates the elements of a Q31 vector.
2944*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
2945*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
2946*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples in the vector
2947*1b2596b5SMatthias Ringwald    * @return none.
2948*1b2596b5SMatthias Ringwald    */
2949*1b2596b5SMatthias Ringwald 
2950*1b2596b5SMatthias Ringwald   void arm_negate_q31(
2951*1b2596b5SMatthias Ringwald   q31_t * pSrc,
2952*1b2596b5SMatthias Ringwald   q31_t * pDst,
2953*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2954*1b2596b5SMatthias Ringwald   /**
2955*1b2596b5SMatthias Ringwald    * @brief  Copies the elements of a floating-point vector.
2956*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc input pointer
2957*1b2596b5SMatthias Ringwald    * @param[out]  *pDst output pointer
2958*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
2959*1b2596b5SMatthias Ringwald    * @return none.
2960*1b2596b5SMatthias Ringwald    */
2961*1b2596b5SMatthias Ringwald   void arm_copy_f32(
2962*1b2596b5SMatthias Ringwald   float32_t * pSrc,
2963*1b2596b5SMatthias Ringwald   float32_t * pDst,
2964*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2965*1b2596b5SMatthias Ringwald 
2966*1b2596b5SMatthias Ringwald   /**
2967*1b2596b5SMatthias Ringwald    * @brief  Copies the elements of a Q7 vector.
2968*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc input pointer
2969*1b2596b5SMatthias Ringwald    * @param[out]  *pDst output pointer
2970*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
2971*1b2596b5SMatthias Ringwald    * @return none.
2972*1b2596b5SMatthias Ringwald    */
2973*1b2596b5SMatthias Ringwald   void arm_copy_q7(
2974*1b2596b5SMatthias Ringwald   q7_t * pSrc,
2975*1b2596b5SMatthias Ringwald   q7_t * pDst,
2976*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2977*1b2596b5SMatthias Ringwald 
2978*1b2596b5SMatthias Ringwald   /**
2979*1b2596b5SMatthias Ringwald    * @brief  Copies the elements of a Q15 vector.
2980*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc input pointer
2981*1b2596b5SMatthias Ringwald    * @param[out]  *pDst output pointer
2982*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
2983*1b2596b5SMatthias Ringwald    * @return none.
2984*1b2596b5SMatthias Ringwald    */
2985*1b2596b5SMatthias Ringwald   void arm_copy_q15(
2986*1b2596b5SMatthias Ringwald   q15_t * pSrc,
2987*1b2596b5SMatthias Ringwald   q15_t * pDst,
2988*1b2596b5SMatthias Ringwald   uint32_t blockSize);
2989*1b2596b5SMatthias Ringwald 
2990*1b2596b5SMatthias Ringwald   /**
2991*1b2596b5SMatthias Ringwald    * @brief  Copies the elements of a Q31 vector.
2992*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc input pointer
2993*1b2596b5SMatthias Ringwald    * @param[out]  *pDst output pointer
2994*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
2995*1b2596b5SMatthias Ringwald    * @return none.
2996*1b2596b5SMatthias Ringwald    */
2997*1b2596b5SMatthias Ringwald   void arm_copy_q31(
2998*1b2596b5SMatthias Ringwald   q31_t * pSrc,
2999*1b2596b5SMatthias Ringwald   q31_t * pDst,
3000*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3001*1b2596b5SMatthias Ringwald   /**
3002*1b2596b5SMatthias Ringwald    * @brief  Fills a constant value into a floating-point vector.
3003*1b2596b5SMatthias Ringwald    * @param[in]  value input value to be filled
3004*1b2596b5SMatthias Ringwald    * @param[out]  *pDst output pointer
3005*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
3006*1b2596b5SMatthias Ringwald    * @return none.
3007*1b2596b5SMatthias Ringwald    */
3008*1b2596b5SMatthias Ringwald   void arm_fill_f32(
3009*1b2596b5SMatthias Ringwald   float32_t value,
3010*1b2596b5SMatthias Ringwald   float32_t * pDst,
3011*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3012*1b2596b5SMatthias Ringwald 
3013*1b2596b5SMatthias Ringwald   /**
3014*1b2596b5SMatthias Ringwald    * @brief  Fills a constant value into a Q7 vector.
3015*1b2596b5SMatthias Ringwald    * @param[in]  value input value to be filled
3016*1b2596b5SMatthias Ringwald    * @param[out]  *pDst output pointer
3017*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
3018*1b2596b5SMatthias Ringwald    * @return none.
3019*1b2596b5SMatthias Ringwald    */
3020*1b2596b5SMatthias Ringwald   void arm_fill_q7(
3021*1b2596b5SMatthias Ringwald   q7_t value,
3022*1b2596b5SMatthias Ringwald   q7_t * pDst,
3023*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3024*1b2596b5SMatthias Ringwald 
3025*1b2596b5SMatthias Ringwald   /**
3026*1b2596b5SMatthias Ringwald    * @brief  Fills a constant value into a Q15 vector.
3027*1b2596b5SMatthias Ringwald    * @param[in]  value input value to be filled
3028*1b2596b5SMatthias Ringwald    * @param[out]  *pDst output pointer
3029*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
3030*1b2596b5SMatthias Ringwald    * @return none.
3031*1b2596b5SMatthias Ringwald    */
3032*1b2596b5SMatthias Ringwald   void arm_fill_q15(
3033*1b2596b5SMatthias Ringwald   q15_t value,
3034*1b2596b5SMatthias Ringwald   q15_t * pDst,
3035*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3036*1b2596b5SMatthias Ringwald 
3037*1b2596b5SMatthias Ringwald   /**
3038*1b2596b5SMatthias Ringwald    * @brief  Fills a constant value into a Q31 vector.
3039*1b2596b5SMatthias Ringwald    * @param[in]  value input value to be filled
3040*1b2596b5SMatthias Ringwald    * @param[out]  *pDst output pointer
3041*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
3042*1b2596b5SMatthias Ringwald    * @return none.
3043*1b2596b5SMatthias Ringwald    */
3044*1b2596b5SMatthias Ringwald   void arm_fill_q31(
3045*1b2596b5SMatthias Ringwald   q31_t value,
3046*1b2596b5SMatthias Ringwald   q31_t * pDst,
3047*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3048*1b2596b5SMatthias Ringwald 
3049*1b2596b5SMatthias Ringwald /**
3050*1b2596b5SMatthias Ringwald  * @brief Convolution of floating-point sequences.
3051*1b2596b5SMatthias Ringwald  * @param[in] *pSrcA points to the first input sequence.
3052*1b2596b5SMatthias Ringwald  * @param[in] srcALen length of the first input sequence.
3053*1b2596b5SMatthias Ringwald  * @param[in] *pSrcB points to the second input sequence.
3054*1b2596b5SMatthias Ringwald  * @param[in] srcBLen length of the second input sequence.
3055*1b2596b5SMatthias Ringwald  * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.
3056*1b2596b5SMatthias Ringwald  * @return none.
3057*1b2596b5SMatthias Ringwald  */
3058*1b2596b5SMatthias Ringwald 
3059*1b2596b5SMatthias Ringwald   void arm_conv_f32(
3060*1b2596b5SMatthias Ringwald   float32_t * pSrcA,
3061*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3062*1b2596b5SMatthias Ringwald   float32_t * pSrcB,
3063*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3064*1b2596b5SMatthias Ringwald   float32_t * pDst);
3065*1b2596b5SMatthias Ringwald 
3066*1b2596b5SMatthias Ringwald 
3067*1b2596b5SMatthias Ringwald   /**
3068*1b2596b5SMatthias Ringwald    * @brief Convolution of Q15 sequences.
3069*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
3070*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
3071*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
3072*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
3073*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3074*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3075*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3076*1b2596b5SMatthias Ringwald    * @return none.
3077*1b2596b5SMatthias Ringwald    */
3078*1b2596b5SMatthias Ringwald 
3079*1b2596b5SMatthias Ringwald 
3080*1b2596b5SMatthias Ringwald   void arm_conv_opt_q15(
3081*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
3082*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3083*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
3084*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3085*1b2596b5SMatthias Ringwald   q15_t * pDst,
3086*1b2596b5SMatthias Ringwald   q15_t * pScratch1,
3087*1b2596b5SMatthias Ringwald   q15_t * pScratch2);
3088*1b2596b5SMatthias Ringwald 
3089*1b2596b5SMatthias Ringwald 
3090*1b2596b5SMatthias Ringwald /**
3091*1b2596b5SMatthias Ringwald  * @brief Convolution of Q15 sequences.
3092*1b2596b5SMatthias Ringwald  * @param[in] *pSrcA points to the first input sequence.
3093*1b2596b5SMatthias Ringwald  * @param[in] srcALen length of the first input sequence.
3094*1b2596b5SMatthias Ringwald  * @param[in] *pSrcB points to the second input sequence.
3095*1b2596b5SMatthias Ringwald  * @param[in] srcBLen length of the second input sequence.
3096*1b2596b5SMatthias Ringwald  * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.
3097*1b2596b5SMatthias Ringwald  * @return none.
3098*1b2596b5SMatthias Ringwald  */
3099*1b2596b5SMatthias Ringwald 
3100*1b2596b5SMatthias Ringwald   void arm_conv_q15(
3101*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
3102*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3103*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
3104*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3105*1b2596b5SMatthias Ringwald   q15_t * pDst);
3106*1b2596b5SMatthias Ringwald 
3107*1b2596b5SMatthias Ringwald   /**
3108*1b2596b5SMatthias Ringwald    * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3109*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
3110*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
3111*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
3112*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
3113*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3114*1b2596b5SMatthias Ringwald    * @return none.
3115*1b2596b5SMatthias Ringwald    */
3116*1b2596b5SMatthias Ringwald 
3117*1b2596b5SMatthias Ringwald   void arm_conv_fast_q15(
3118*1b2596b5SMatthias Ringwald 			  q15_t * pSrcA,
3119*1b2596b5SMatthias Ringwald 			 uint32_t srcALen,
3120*1b2596b5SMatthias Ringwald 			  q15_t * pSrcB,
3121*1b2596b5SMatthias Ringwald 			 uint32_t srcBLen,
3122*1b2596b5SMatthias Ringwald 			 q15_t * pDst);
3123*1b2596b5SMatthias Ringwald 
3124*1b2596b5SMatthias Ringwald   /**
3125*1b2596b5SMatthias Ringwald    * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3126*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
3127*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
3128*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
3129*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
3130*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3131*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3132*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3133*1b2596b5SMatthias Ringwald    * @return none.
3134*1b2596b5SMatthias Ringwald    */
3135*1b2596b5SMatthias Ringwald 
3136*1b2596b5SMatthias Ringwald   void arm_conv_fast_opt_q15(
3137*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
3138*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3139*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
3140*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3141*1b2596b5SMatthias Ringwald   q15_t * pDst,
3142*1b2596b5SMatthias Ringwald   q15_t * pScratch1,
3143*1b2596b5SMatthias Ringwald   q15_t * pScratch2);
3144*1b2596b5SMatthias Ringwald 
3145*1b2596b5SMatthias Ringwald 
3146*1b2596b5SMatthias Ringwald 
3147*1b2596b5SMatthias Ringwald   /**
3148*1b2596b5SMatthias Ringwald    * @brief Convolution of Q31 sequences.
3149*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
3150*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
3151*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
3152*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
3153*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3154*1b2596b5SMatthias Ringwald    * @return none.
3155*1b2596b5SMatthias Ringwald    */
3156*1b2596b5SMatthias Ringwald 
3157*1b2596b5SMatthias Ringwald   void arm_conv_q31(
3158*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
3159*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3160*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
3161*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3162*1b2596b5SMatthias Ringwald   q31_t * pDst);
3163*1b2596b5SMatthias Ringwald 
3164*1b2596b5SMatthias Ringwald   /**
3165*1b2596b5SMatthias Ringwald    * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
3166*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
3167*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
3168*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
3169*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
3170*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3171*1b2596b5SMatthias Ringwald    * @return none.
3172*1b2596b5SMatthias Ringwald    */
3173*1b2596b5SMatthias Ringwald 
3174*1b2596b5SMatthias Ringwald   void arm_conv_fast_q31(
3175*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
3176*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3177*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
3178*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3179*1b2596b5SMatthias Ringwald   q31_t * pDst);
3180*1b2596b5SMatthias Ringwald 
3181*1b2596b5SMatthias Ringwald 
3182*1b2596b5SMatthias Ringwald     /**
3183*1b2596b5SMatthias Ringwald    * @brief Convolution of Q7 sequences.
3184*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
3185*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
3186*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
3187*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
3188*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3189*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3190*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
3191*1b2596b5SMatthias Ringwald    * @return none.
3192*1b2596b5SMatthias Ringwald    */
3193*1b2596b5SMatthias Ringwald 
3194*1b2596b5SMatthias Ringwald   void arm_conv_opt_q7(
3195*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
3196*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3197*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
3198*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3199*1b2596b5SMatthias Ringwald   q7_t * pDst,
3200*1b2596b5SMatthias Ringwald   q15_t * pScratch1,
3201*1b2596b5SMatthias Ringwald   q15_t * pScratch2);
3202*1b2596b5SMatthias Ringwald 
3203*1b2596b5SMatthias Ringwald 
3204*1b2596b5SMatthias Ringwald 
3205*1b2596b5SMatthias Ringwald   /**
3206*1b2596b5SMatthias Ringwald    * @brief Convolution of Q7 sequences.
3207*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
3208*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
3209*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
3210*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
3211*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1.
3212*1b2596b5SMatthias Ringwald    * @return none.
3213*1b2596b5SMatthias Ringwald    */
3214*1b2596b5SMatthias Ringwald 
3215*1b2596b5SMatthias Ringwald   void arm_conv_q7(
3216*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
3217*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3218*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
3219*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3220*1b2596b5SMatthias Ringwald   q7_t * pDst);
3221*1b2596b5SMatthias Ringwald 
3222*1b2596b5SMatthias Ringwald 
3223*1b2596b5SMatthias Ringwald   /**
3224*1b2596b5SMatthias Ringwald    * @brief Partial convolution of floating-point sequences.
3225*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input sequence.
3226*1b2596b5SMatthias Ringwald    * @param[in]       srcALen length of the first input sequence.
3227*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input sequence.
3228*1b2596b5SMatthias Ringwald    * @param[in]       srcBLen length of the second input sequence.
3229*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the block of output data
3230*1b2596b5SMatthias Ringwald    * @param[in]       firstIndex is the first output sample to start with.
3231*1b2596b5SMatthias Ringwald    * @param[in]       numPoints is the number of output points to be computed.
3232*1b2596b5SMatthias Ringwald    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3233*1b2596b5SMatthias Ringwald    */
3234*1b2596b5SMatthias Ringwald 
3235*1b2596b5SMatthias Ringwald   arm_status arm_conv_partial_f32(
3236*1b2596b5SMatthias Ringwald   float32_t * pSrcA,
3237*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3238*1b2596b5SMatthias Ringwald   float32_t * pSrcB,
3239*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3240*1b2596b5SMatthias Ringwald   float32_t * pDst,
3241*1b2596b5SMatthias Ringwald   uint32_t firstIndex,
3242*1b2596b5SMatthias Ringwald   uint32_t numPoints);
3243*1b2596b5SMatthias Ringwald 
3244*1b2596b5SMatthias Ringwald     /**
3245*1b2596b5SMatthias Ringwald    * @brief Partial convolution of Q15 sequences.
3246*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input sequence.
3247*1b2596b5SMatthias Ringwald    * @param[in]       srcALen length of the first input sequence.
3248*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input sequence.
3249*1b2596b5SMatthias Ringwald    * @param[in]       srcBLen length of the second input sequence.
3250*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the block of output data
3251*1b2596b5SMatthias Ringwald    * @param[in]       firstIndex is the first output sample to start with.
3252*1b2596b5SMatthias Ringwald    * @param[in]       numPoints is the number of output points to be computed.
3253*1b2596b5SMatthias Ringwald    * @param[in]       * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3254*1b2596b5SMatthias Ringwald    * @param[in]       * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3255*1b2596b5SMatthias Ringwald    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3256*1b2596b5SMatthias Ringwald    */
3257*1b2596b5SMatthias Ringwald 
3258*1b2596b5SMatthias Ringwald   arm_status arm_conv_partial_opt_q15(
3259*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
3260*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3261*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
3262*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3263*1b2596b5SMatthias Ringwald   q15_t * pDst,
3264*1b2596b5SMatthias Ringwald   uint32_t firstIndex,
3265*1b2596b5SMatthias Ringwald   uint32_t numPoints,
3266*1b2596b5SMatthias Ringwald   q15_t * pScratch1,
3267*1b2596b5SMatthias Ringwald   q15_t * pScratch2);
3268*1b2596b5SMatthias Ringwald 
3269*1b2596b5SMatthias Ringwald 
3270*1b2596b5SMatthias Ringwald /**
3271*1b2596b5SMatthias Ringwald    * @brief Partial convolution of Q15 sequences.
3272*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input sequence.
3273*1b2596b5SMatthias Ringwald    * @param[in]       srcALen length of the first input sequence.
3274*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input sequence.
3275*1b2596b5SMatthias Ringwald    * @param[in]       srcBLen length of the second input sequence.
3276*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the block of output data
3277*1b2596b5SMatthias Ringwald    * @param[in]       firstIndex is the first output sample to start with.
3278*1b2596b5SMatthias Ringwald    * @param[in]       numPoints is the number of output points to be computed.
3279*1b2596b5SMatthias Ringwald    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3280*1b2596b5SMatthias Ringwald    */
3281*1b2596b5SMatthias Ringwald 
3282*1b2596b5SMatthias Ringwald   arm_status arm_conv_partial_q15(
3283*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
3284*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3285*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
3286*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3287*1b2596b5SMatthias Ringwald   q15_t * pDst,
3288*1b2596b5SMatthias Ringwald   uint32_t firstIndex,
3289*1b2596b5SMatthias Ringwald   uint32_t numPoints);
3290*1b2596b5SMatthias Ringwald 
3291*1b2596b5SMatthias Ringwald   /**
3292*1b2596b5SMatthias Ringwald    * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3293*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input sequence.
3294*1b2596b5SMatthias Ringwald    * @param[in]       srcALen length of the first input sequence.
3295*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input sequence.
3296*1b2596b5SMatthias Ringwald    * @param[in]       srcBLen length of the second input sequence.
3297*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the block of output data
3298*1b2596b5SMatthias Ringwald    * @param[in]       firstIndex is the first output sample to start with.
3299*1b2596b5SMatthias Ringwald    * @param[in]       numPoints is the number of output points to be computed.
3300*1b2596b5SMatthias Ringwald    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3301*1b2596b5SMatthias Ringwald    */
3302*1b2596b5SMatthias Ringwald 
3303*1b2596b5SMatthias Ringwald   arm_status arm_conv_partial_fast_q15(
3304*1b2596b5SMatthias Ringwald 				        q15_t * pSrcA,
3305*1b2596b5SMatthias Ringwald 				       uint32_t srcALen,
3306*1b2596b5SMatthias Ringwald 				        q15_t * pSrcB,
3307*1b2596b5SMatthias Ringwald 				       uint32_t srcBLen,
3308*1b2596b5SMatthias Ringwald 				       q15_t * pDst,
3309*1b2596b5SMatthias Ringwald 				       uint32_t firstIndex,
3310*1b2596b5SMatthias Ringwald 				       uint32_t numPoints);
3311*1b2596b5SMatthias Ringwald 
3312*1b2596b5SMatthias Ringwald 
3313*1b2596b5SMatthias Ringwald   /**
3314*1b2596b5SMatthias Ringwald    * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3315*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input sequence.
3316*1b2596b5SMatthias Ringwald    * @param[in]       srcALen length of the first input sequence.
3317*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input sequence.
3318*1b2596b5SMatthias Ringwald    * @param[in]       srcBLen length of the second input sequence.
3319*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the block of output data
3320*1b2596b5SMatthias Ringwald    * @param[in]       firstIndex is the first output sample to start with.
3321*1b2596b5SMatthias Ringwald    * @param[in]       numPoints is the number of output points to be computed.
3322*1b2596b5SMatthias Ringwald    * @param[in]       * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3323*1b2596b5SMatthias Ringwald    * @param[in]       * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3324*1b2596b5SMatthias Ringwald    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3325*1b2596b5SMatthias Ringwald    */
3326*1b2596b5SMatthias Ringwald 
3327*1b2596b5SMatthias Ringwald   arm_status arm_conv_partial_fast_opt_q15(
3328*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
3329*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3330*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
3331*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3332*1b2596b5SMatthias Ringwald   q15_t * pDst,
3333*1b2596b5SMatthias Ringwald   uint32_t firstIndex,
3334*1b2596b5SMatthias Ringwald   uint32_t numPoints,
3335*1b2596b5SMatthias Ringwald   q15_t * pScratch1,
3336*1b2596b5SMatthias Ringwald   q15_t * pScratch2);
3337*1b2596b5SMatthias Ringwald 
3338*1b2596b5SMatthias Ringwald 
3339*1b2596b5SMatthias Ringwald   /**
3340*1b2596b5SMatthias Ringwald    * @brief Partial convolution of Q31 sequences.
3341*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input sequence.
3342*1b2596b5SMatthias Ringwald    * @param[in]       srcALen length of the first input sequence.
3343*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input sequence.
3344*1b2596b5SMatthias Ringwald    * @param[in]       srcBLen length of the second input sequence.
3345*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the block of output data
3346*1b2596b5SMatthias Ringwald    * @param[in]       firstIndex is the first output sample to start with.
3347*1b2596b5SMatthias Ringwald    * @param[in]       numPoints is the number of output points to be computed.
3348*1b2596b5SMatthias Ringwald    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3349*1b2596b5SMatthias Ringwald    */
3350*1b2596b5SMatthias Ringwald 
3351*1b2596b5SMatthias Ringwald   arm_status arm_conv_partial_q31(
3352*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
3353*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3354*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
3355*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3356*1b2596b5SMatthias Ringwald   q31_t * pDst,
3357*1b2596b5SMatthias Ringwald   uint32_t firstIndex,
3358*1b2596b5SMatthias Ringwald   uint32_t numPoints);
3359*1b2596b5SMatthias Ringwald 
3360*1b2596b5SMatthias Ringwald 
3361*1b2596b5SMatthias Ringwald   /**
3362*1b2596b5SMatthias Ringwald    * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
3363*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input sequence.
3364*1b2596b5SMatthias Ringwald    * @param[in]       srcALen length of the first input sequence.
3365*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input sequence.
3366*1b2596b5SMatthias Ringwald    * @param[in]       srcBLen length of the second input sequence.
3367*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the block of output data
3368*1b2596b5SMatthias Ringwald    * @param[in]       firstIndex is the first output sample to start with.
3369*1b2596b5SMatthias Ringwald    * @param[in]       numPoints is the number of output points to be computed.
3370*1b2596b5SMatthias Ringwald    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3371*1b2596b5SMatthias Ringwald    */
3372*1b2596b5SMatthias Ringwald 
3373*1b2596b5SMatthias Ringwald   arm_status arm_conv_partial_fast_q31(
3374*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
3375*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3376*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
3377*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3378*1b2596b5SMatthias Ringwald   q31_t * pDst,
3379*1b2596b5SMatthias Ringwald   uint32_t firstIndex,
3380*1b2596b5SMatthias Ringwald   uint32_t numPoints);
3381*1b2596b5SMatthias Ringwald 
3382*1b2596b5SMatthias Ringwald 
3383*1b2596b5SMatthias Ringwald   /**
3384*1b2596b5SMatthias Ringwald    * @brief Partial convolution of Q7 sequences
3385*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input sequence.
3386*1b2596b5SMatthias Ringwald    * @param[in]       srcALen length of the first input sequence.
3387*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input sequence.
3388*1b2596b5SMatthias Ringwald    * @param[in]       srcBLen length of the second input sequence.
3389*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the block of output data
3390*1b2596b5SMatthias Ringwald    * @param[in]       firstIndex is the first output sample to start with.
3391*1b2596b5SMatthias Ringwald    * @param[in]       numPoints is the number of output points to be computed.
3392*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3393*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
3394*1b2596b5SMatthias Ringwald    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3395*1b2596b5SMatthias Ringwald    */
3396*1b2596b5SMatthias Ringwald 
3397*1b2596b5SMatthias Ringwald   arm_status arm_conv_partial_opt_q7(
3398*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
3399*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3400*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
3401*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3402*1b2596b5SMatthias Ringwald   q7_t * pDst,
3403*1b2596b5SMatthias Ringwald   uint32_t firstIndex,
3404*1b2596b5SMatthias Ringwald   uint32_t numPoints,
3405*1b2596b5SMatthias Ringwald   q15_t * pScratch1,
3406*1b2596b5SMatthias Ringwald   q15_t * pScratch2);
3407*1b2596b5SMatthias Ringwald 
3408*1b2596b5SMatthias Ringwald 
3409*1b2596b5SMatthias Ringwald /**
3410*1b2596b5SMatthias Ringwald    * @brief Partial convolution of Q7 sequences.
3411*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcA points to the first input sequence.
3412*1b2596b5SMatthias Ringwald    * @param[in]       srcALen length of the first input sequence.
3413*1b2596b5SMatthias Ringwald    * @param[in]       *pSrcB points to the second input sequence.
3414*1b2596b5SMatthias Ringwald    * @param[in]       srcBLen length of the second input sequence.
3415*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the block of output data
3416*1b2596b5SMatthias Ringwald    * @param[in]       firstIndex is the first output sample to start with.
3417*1b2596b5SMatthias Ringwald    * @param[in]       numPoints is the number of output points to be computed.
3418*1b2596b5SMatthias Ringwald    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3419*1b2596b5SMatthias Ringwald    */
3420*1b2596b5SMatthias Ringwald 
3421*1b2596b5SMatthias Ringwald   arm_status arm_conv_partial_q7(
3422*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
3423*1b2596b5SMatthias Ringwald   uint32_t srcALen,
3424*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
3425*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
3426*1b2596b5SMatthias Ringwald   q7_t * pDst,
3427*1b2596b5SMatthias Ringwald   uint32_t firstIndex,
3428*1b2596b5SMatthias Ringwald   uint32_t numPoints);
3429*1b2596b5SMatthias Ringwald 
3430*1b2596b5SMatthias Ringwald 
3431*1b2596b5SMatthias Ringwald 
3432*1b2596b5SMatthias Ringwald   /**
3433*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 FIR decimator.
3434*1b2596b5SMatthias Ringwald    */
3435*1b2596b5SMatthias Ringwald 
3436*1b2596b5SMatthias Ringwald   typedef struct
3437*1b2596b5SMatthias Ringwald   {
3438*1b2596b5SMatthias Ringwald     uint8_t M;                      /**< decimation factor. */
3439*1b2596b5SMatthias Ringwald     uint16_t numTaps;               /**< number of coefficients in the filter. */
3440*1b2596b5SMatthias Ringwald     q15_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numTaps.*/
3441*1b2596b5SMatthias Ringwald     q15_t *pState;                   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3442*1b2596b5SMatthias Ringwald   } arm_fir_decimate_instance_q15;
3443*1b2596b5SMatthias Ringwald 
3444*1b2596b5SMatthias Ringwald   /**
3445*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 FIR decimator.
3446*1b2596b5SMatthias Ringwald    */
3447*1b2596b5SMatthias Ringwald 
3448*1b2596b5SMatthias Ringwald   typedef struct
3449*1b2596b5SMatthias Ringwald   {
3450*1b2596b5SMatthias Ringwald     uint8_t M;                  /**< decimation factor. */
3451*1b2596b5SMatthias Ringwald     uint16_t numTaps;           /**< number of coefficients in the filter. */
3452*1b2596b5SMatthias Ringwald     q31_t *pCoeffs;              /**< points to the coefficient array. The array is of length numTaps.*/
3453*1b2596b5SMatthias Ringwald     q31_t *pState;               /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3454*1b2596b5SMatthias Ringwald 
3455*1b2596b5SMatthias Ringwald   } arm_fir_decimate_instance_q31;
3456*1b2596b5SMatthias Ringwald 
3457*1b2596b5SMatthias Ringwald   /**
3458*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point FIR decimator.
3459*1b2596b5SMatthias Ringwald    */
3460*1b2596b5SMatthias Ringwald 
3461*1b2596b5SMatthias Ringwald   typedef struct
3462*1b2596b5SMatthias Ringwald   {
3463*1b2596b5SMatthias Ringwald     uint8_t M;                          /**< decimation factor. */
3464*1b2596b5SMatthias Ringwald     uint16_t numTaps;                   /**< number of coefficients in the filter. */
3465*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numTaps.*/
3466*1b2596b5SMatthias Ringwald     float32_t *pState;                   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3467*1b2596b5SMatthias Ringwald 
3468*1b2596b5SMatthias Ringwald   } arm_fir_decimate_instance_f32;
3469*1b2596b5SMatthias Ringwald 
3470*1b2596b5SMatthias Ringwald 
3471*1b2596b5SMatthias Ringwald 
3472*1b2596b5SMatthias Ringwald   /**
3473*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point FIR decimator.
3474*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the floating-point FIR decimator structure.
3475*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
3476*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data
3477*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3478*1b2596b5SMatthias Ringwald    * @return none
3479*1b2596b5SMatthias Ringwald    */
3480*1b2596b5SMatthias Ringwald 
3481*1b2596b5SMatthias Ringwald   void arm_fir_decimate_f32(
3482*1b2596b5SMatthias Ringwald   const arm_fir_decimate_instance_f32 * S,
3483*1b2596b5SMatthias Ringwald   float32_t * pSrc,
3484*1b2596b5SMatthias Ringwald   float32_t * pDst,
3485*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3486*1b2596b5SMatthias Ringwald 
3487*1b2596b5SMatthias Ringwald 
3488*1b2596b5SMatthias Ringwald   /**
3489*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point FIR decimator.
3490*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
3491*1b2596b5SMatthias Ringwald    * @param[in] numTaps  number of coefficients in the filter.
3492*1b2596b5SMatthias Ringwald    * @param[in] M  decimation factor.
3493*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to the filter coefficients.
3494*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.
3495*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3496*1b2596b5SMatthias Ringwald    * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3497*1b2596b5SMatthias Ringwald    * <code>blockSize</code> is not a multiple of <code>M</code>.
3498*1b2596b5SMatthias Ringwald    */
3499*1b2596b5SMatthias Ringwald 
3500*1b2596b5SMatthias Ringwald   arm_status arm_fir_decimate_init_f32(
3501*1b2596b5SMatthias Ringwald   arm_fir_decimate_instance_f32 * S,
3502*1b2596b5SMatthias Ringwald   uint16_t numTaps,
3503*1b2596b5SMatthias Ringwald   uint8_t M,
3504*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
3505*1b2596b5SMatthias Ringwald   float32_t * pState,
3506*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3507*1b2596b5SMatthias Ringwald 
3508*1b2596b5SMatthias Ringwald   /**
3509*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q15 FIR decimator.
3510*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 FIR decimator structure.
3511*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
3512*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data
3513*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3514*1b2596b5SMatthias Ringwald    * @return none
3515*1b2596b5SMatthias Ringwald    */
3516*1b2596b5SMatthias Ringwald 
3517*1b2596b5SMatthias Ringwald   void arm_fir_decimate_q15(
3518*1b2596b5SMatthias Ringwald   const arm_fir_decimate_instance_q15 * S,
3519*1b2596b5SMatthias Ringwald   q15_t * pSrc,
3520*1b2596b5SMatthias Ringwald   q15_t * pDst,
3521*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3522*1b2596b5SMatthias Ringwald 
3523*1b2596b5SMatthias Ringwald   /**
3524*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
3525*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 FIR decimator structure.
3526*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
3527*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data
3528*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3529*1b2596b5SMatthias Ringwald    * @return none
3530*1b2596b5SMatthias Ringwald    */
3531*1b2596b5SMatthias Ringwald 
3532*1b2596b5SMatthias Ringwald   void arm_fir_decimate_fast_q15(
3533*1b2596b5SMatthias Ringwald   const arm_fir_decimate_instance_q15 * S,
3534*1b2596b5SMatthias Ringwald   q15_t * pSrc,
3535*1b2596b5SMatthias Ringwald   q15_t * pDst,
3536*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3537*1b2596b5SMatthias Ringwald 
3538*1b2596b5SMatthias Ringwald 
3539*1b2596b5SMatthias Ringwald 
3540*1b2596b5SMatthias Ringwald   /**
3541*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q15 FIR decimator.
3542*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
3543*1b2596b5SMatthias Ringwald    * @param[in] numTaps  number of coefficients in the filter.
3544*1b2596b5SMatthias Ringwald    * @param[in] M  decimation factor.
3545*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to the filter coefficients.
3546*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.
3547*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3548*1b2596b5SMatthias Ringwald    * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3549*1b2596b5SMatthias Ringwald    * <code>blockSize</code> is not a multiple of <code>M</code>.
3550*1b2596b5SMatthias Ringwald    */
3551*1b2596b5SMatthias Ringwald 
3552*1b2596b5SMatthias Ringwald   arm_status arm_fir_decimate_init_q15(
3553*1b2596b5SMatthias Ringwald   arm_fir_decimate_instance_q15 * S,
3554*1b2596b5SMatthias Ringwald   uint16_t numTaps,
3555*1b2596b5SMatthias Ringwald   uint8_t M,
3556*1b2596b5SMatthias Ringwald   q15_t * pCoeffs,
3557*1b2596b5SMatthias Ringwald   q15_t * pState,
3558*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3559*1b2596b5SMatthias Ringwald 
3560*1b2596b5SMatthias Ringwald   /**
3561*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q31 FIR decimator.
3562*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 FIR decimator structure.
3563*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
3564*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data
3565*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3566*1b2596b5SMatthias Ringwald    * @return none
3567*1b2596b5SMatthias Ringwald    */
3568*1b2596b5SMatthias Ringwald 
3569*1b2596b5SMatthias Ringwald   void arm_fir_decimate_q31(
3570*1b2596b5SMatthias Ringwald   const arm_fir_decimate_instance_q31 * S,
3571*1b2596b5SMatthias Ringwald   q31_t * pSrc,
3572*1b2596b5SMatthias Ringwald   q31_t * pDst,
3573*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3574*1b2596b5SMatthias Ringwald 
3575*1b2596b5SMatthias Ringwald   /**
3576*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
3577*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 FIR decimator structure.
3578*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
3579*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data
3580*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3581*1b2596b5SMatthias Ringwald    * @return none
3582*1b2596b5SMatthias Ringwald    */
3583*1b2596b5SMatthias Ringwald 
3584*1b2596b5SMatthias Ringwald   void arm_fir_decimate_fast_q31(
3585*1b2596b5SMatthias Ringwald   arm_fir_decimate_instance_q31 * S,
3586*1b2596b5SMatthias Ringwald   q31_t * pSrc,
3587*1b2596b5SMatthias Ringwald   q31_t * pDst,
3588*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3589*1b2596b5SMatthias Ringwald 
3590*1b2596b5SMatthias Ringwald 
3591*1b2596b5SMatthias Ringwald   /**
3592*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q31 FIR decimator.
3593*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
3594*1b2596b5SMatthias Ringwald    * @param[in] numTaps  number of coefficients in the filter.
3595*1b2596b5SMatthias Ringwald    * @param[in] M  decimation factor.
3596*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to the filter coefficients.
3597*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.
3598*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3599*1b2596b5SMatthias Ringwald    * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3600*1b2596b5SMatthias Ringwald    * <code>blockSize</code> is not a multiple of <code>M</code>.
3601*1b2596b5SMatthias Ringwald    */
3602*1b2596b5SMatthias Ringwald 
3603*1b2596b5SMatthias Ringwald   arm_status arm_fir_decimate_init_q31(
3604*1b2596b5SMatthias Ringwald   arm_fir_decimate_instance_q31 * S,
3605*1b2596b5SMatthias Ringwald   uint16_t numTaps,
3606*1b2596b5SMatthias Ringwald   uint8_t M,
3607*1b2596b5SMatthias Ringwald   q31_t * pCoeffs,
3608*1b2596b5SMatthias Ringwald   q31_t * pState,
3609*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3610*1b2596b5SMatthias Ringwald 
3611*1b2596b5SMatthias Ringwald 
3612*1b2596b5SMatthias Ringwald 
3613*1b2596b5SMatthias Ringwald   /**
3614*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 FIR interpolator.
3615*1b2596b5SMatthias Ringwald    */
3616*1b2596b5SMatthias Ringwald 
3617*1b2596b5SMatthias Ringwald   typedef struct
3618*1b2596b5SMatthias Ringwald   {
3619*1b2596b5SMatthias Ringwald     uint8_t L;                      /**< upsample factor. */
3620*1b2596b5SMatthias Ringwald     uint16_t phaseLength;           /**< length of each polyphase filter component. */
3621*1b2596b5SMatthias Ringwald     q15_t *pCoeffs;                 /**< points to the coefficient array. The array is of length L*phaseLength. */
3622*1b2596b5SMatthias Ringwald     q15_t *pState;                  /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
3623*1b2596b5SMatthias Ringwald   } arm_fir_interpolate_instance_q15;
3624*1b2596b5SMatthias Ringwald 
3625*1b2596b5SMatthias Ringwald   /**
3626*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 FIR interpolator.
3627*1b2596b5SMatthias Ringwald    */
3628*1b2596b5SMatthias Ringwald 
3629*1b2596b5SMatthias Ringwald   typedef struct
3630*1b2596b5SMatthias Ringwald   {
3631*1b2596b5SMatthias Ringwald     uint8_t L;                      /**< upsample factor. */
3632*1b2596b5SMatthias Ringwald     uint16_t phaseLength;           /**< length of each polyphase filter component. */
3633*1b2596b5SMatthias Ringwald     q31_t *pCoeffs;                  /**< points to the coefficient array. The array is of length L*phaseLength. */
3634*1b2596b5SMatthias Ringwald     q31_t *pState;                   /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
3635*1b2596b5SMatthias Ringwald   } arm_fir_interpolate_instance_q31;
3636*1b2596b5SMatthias Ringwald 
3637*1b2596b5SMatthias Ringwald   /**
3638*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point FIR interpolator.
3639*1b2596b5SMatthias Ringwald    */
3640*1b2596b5SMatthias Ringwald 
3641*1b2596b5SMatthias Ringwald   typedef struct
3642*1b2596b5SMatthias Ringwald   {
3643*1b2596b5SMatthias Ringwald     uint8_t L;                     /**< upsample factor. */
3644*1b2596b5SMatthias Ringwald     uint16_t phaseLength;          /**< length of each polyphase filter component. */
3645*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;             /**< points to the coefficient array. The array is of length L*phaseLength. */
3646*1b2596b5SMatthias Ringwald     float32_t *pState;              /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
3647*1b2596b5SMatthias Ringwald   } arm_fir_interpolate_instance_f32;
3648*1b2596b5SMatthias Ringwald 
3649*1b2596b5SMatthias Ringwald 
3650*1b2596b5SMatthias Ringwald   /**
3651*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q15 FIR interpolator.
3652*1b2596b5SMatthias Ringwald    * @param[in] *S        points to an instance of the Q15 FIR interpolator structure.
3653*1b2596b5SMatthias Ringwald    * @param[in] *pSrc     points to the block of input data.
3654*1b2596b5SMatthias Ringwald    * @param[out] *pDst    points to the block of output data.
3655*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3656*1b2596b5SMatthias Ringwald    * @return none.
3657*1b2596b5SMatthias Ringwald    */
3658*1b2596b5SMatthias Ringwald 
3659*1b2596b5SMatthias Ringwald   void arm_fir_interpolate_q15(
3660*1b2596b5SMatthias Ringwald   const arm_fir_interpolate_instance_q15 * S,
3661*1b2596b5SMatthias Ringwald   q15_t * pSrc,
3662*1b2596b5SMatthias Ringwald   q15_t * pDst,
3663*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3664*1b2596b5SMatthias Ringwald 
3665*1b2596b5SMatthias Ringwald 
3666*1b2596b5SMatthias Ringwald   /**
3667*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q15 FIR interpolator.
3668*1b2596b5SMatthias Ringwald    * @param[in,out] *S        points to an instance of the Q15 FIR interpolator structure.
3669*1b2596b5SMatthias Ringwald    * @param[in]     L         upsample factor.
3670*1b2596b5SMatthias Ringwald    * @param[in]     numTaps   number of filter coefficients in the filter.
3671*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs  points to the filter coefficient buffer.
3672*1b2596b5SMatthias Ringwald    * @param[in]     *pState   points to the state buffer.
3673*1b2596b5SMatthias Ringwald    * @param[in]     blockSize number of input samples to process per call.
3674*1b2596b5SMatthias Ringwald    * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3675*1b2596b5SMatthias Ringwald    * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
3676*1b2596b5SMatthias Ringwald    */
3677*1b2596b5SMatthias Ringwald 
3678*1b2596b5SMatthias Ringwald   arm_status arm_fir_interpolate_init_q15(
3679*1b2596b5SMatthias Ringwald   arm_fir_interpolate_instance_q15 * S,
3680*1b2596b5SMatthias Ringwald   uint8_t L,
3681*1b2596b5SMatthias Ringwald   uint16_t numTaps,
3682*1b2596b5SMatthias Ringwald   q15_t * pCoeffs,
3683*1b2596b5SMatthias Ringwald   q15_t * pState,
3684*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3685*1b2596b5SMatthias Ringwald 
3686*1b2596b5SMatthias Ringwald   /**
3687*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q31 FIR interpolator.
3688*1b2596b5SMatthias Ringwald    * @param[in] *S        points to an instance of the Q15 FIR interpolator structure.
3689*1b2596b5SMatthias Ringwald    * @param[in] *pSrc     points to the block of input data.
3690*1b2596b5SMatthias Ringwald    * @param[out] *pDst    points to the block of output data.
3691*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3692*1b2596b5SMatthias Ringwald    * @return none.
3693*1b2596b5SMatthias Ringwald    */
3694*1b2596b5SMatthias Ringwald 
3695*1b2596b5SMatthias Ringwald   void arm_fir_interpolate_q31(
3696*1b2596b5SMatthias Ringwald   const arm_fir_interpolate_instance_q31 * S,
3697*1b2596b5SMatthias Ringwald   q31_t * pSrc,
3698*1b2596b5SMatthias Ringwald   q31_t * pDst,
3699*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3700*1b2596b5SMatthias Ringwald 
3701*1b2596b5SMatthias Ringwald   /**
3702*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q31 FIR interpolator.
3703*1b2596b5SMatthias Ringwald    * @param[in,out] *S        points to an instance of the Q31 FIR interpolator structure.
3704*1b2596b5SMatthias Ringwald    * @param[in]     L         upsample factor.
3705*1b2596b5SMatthias Ringwald    * @param[in]     numTaps   number of filter coefficients in the filter.
3706*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs  points to the filter coefficient buffer.
3707*1b2596b5SMatthias Ringwald    * @param[in]     *pState   points to the state buffer.
3708*1b2596b5SMatthias Ringwald    * @param[in]     blockSize number of input samples to process per call.
3709*1b2596b5SMatthias Ringwald    * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3710*1b2596b5SMatthias Ringwald    * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
3711*1b2596b5SMatthias Ringwald    */
3712*1b2596b5SMatthias Ringwald 
3713*1b2596b5SMatthias Ringwald   arm_status arm_fir_interpolate_init_q31(
3714*1b2596b5SMatthias Ringwald   arm_fir_interpolate_instance_q31 * S,
3715*1b2596b5SMatthias Ringwald   uint8_t L,
3716*1b2596b5SMatthias Ringwald   uint16_t numTaps,
3717*1b2596b5SMatthias Ringwald   q31_t * pCoeffs,
3718*1b2596b5SMatthias Ringwald   q31_t * pState,
3719*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3720*1b2596b5SMatthias Ringwald 
3721*1b2596b5SMatthias Ringwald 
3722*1b2596b5SMatthias Ringwald   /**
3723*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point FIR interpolator.
3724*1b2596b5SMatthias Ringwald    * @param[in] *S        points to an instance of the floating-point FIR interpolator structure.
3725*1b2596b5SMatthias Ringwald    * @param[in] *pSrc     points to the block of input data.
3726*1b2596b5SMatthias Ringwald    * @param[out] *pDst    points to the block of output data.
3727*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of input samples to process per call.
3728*1b2596b5SMatthias Ringwald    * @return none.
3729*1b2596b5SMatthias Ringwald    */
3730*1b2596b5SMatthias Ringwald 
3731*1b2596b5SMatthias Ringwald   void arm_fir_interpolate_f32(
3732*1b2596b5SMatthias Ringwald   const arm_fir_interpolate_instance_f32 * S,
3733*1b2596b5SMatthias Ringwald   float32_t * pSrc,
3734*1b2596b5SMatthias Ringwald   float32_t * pDst,
3735*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3736*1b2596b5SMatthias Ringwald 
3737*1b2596b5SMatthias Ringwald   /**
3738*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point FIR interpolator.
3739*1b2596b5SMatthias Ringwald    * @param[in,out] *S        points to an instance of the floating-point FIR interpolator structure.
3740*1b2596b5SMatthias Ringwald    * @param[in]     L         upsample factor.
3741*1b2596b5SMatthias Ringwald    * @param[in]     numTaps   number of filter coefficients in the filter.
3742*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs  points to the filter coefficient buffer.
3743*1b2596b5SMatthias Ringwald    * @param[in]     *pState   points to the state buffer.
3744*1b2596b5SMatthias Ringwald    * @param[in]     blockSize number of input samples to process per call.
3745*1b2596b5SMatthias Ringwald    * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3746*1b2596b5SMatthias Ringwald    * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
3747*1b2596b5SMatthias Ringwald    */
3748*1b2596b5SMatthias Ringwald 
3749*1b2596b5SMatthias Ringwald   arm_status arm_fir_interpolate_init_f32(
3750*1b2596b5SMatthias Ringwald   arm_fir_interpolate_instance_f32 * S,
3751*1b2596b5SMatthias Ringwald   uint8_t L,
3752*1b2596b5SMatthias Ringwald   uint16_t numTaps,
3753*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
3754*1b2596b5SMatthias Ringwald   float32_t * pState,
3755*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3756*1b2596b5SMatthias Ringwald 
3757*1b2596b5SMatthias Ringwald   /**
3758*1b2596b5SMatthias Ringwald    * @brief Instance structure for the high precision Q31 Biquad cascade filter.
3759*1b2596b5SMatthias Ringwald    */
3760*1b2596b5SMatthias Ringwald 
3761*1b2596b5SMatthias Ringwald   typedef struct
3762*1b2596b5SMatthias Ringwald   {
3763*1b2596b5SMatthias Ringwald     uint8_t numStages;       /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
3764*1b2596b5SMatthias Ringwald     q63_t *pState;           /**< points to the array of state coefficients.  The array is of length 4*numStages. */
3765*1b2596b5SMatthias Ringwald     q31_t *pCoeffs;          /**< points to the array of coefficients.  The array is of length 5*numStages. */
3766*1b2596b5SMatthias Ringwald     uint8_t postShift;       /**< additional shift, in bits, applied to each output sample. */
3767*1b2596b5SMatthias Ringwald 
3768*1b2596b5SMatthias Ringwald   } arm_biquad_cas_df1_32x64_ins_q31;
3769*1b2596b5SMatthias Ringwald 
3770*1b2596b5SMatthias Ringwald 
3771*1b2596b5SMatthias Ringwald   /**
3772*1b2596b5SMatthias Ringwald    * @param[in]  *S        points to an instance of the high precision Q31 Biquad cascade filter structure.
3773*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc     points to the block of input data.
3774*1b2596b5SMatthias Ringwald    * @param[out] *pDst     points to the block of output data
3775*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
3776*1b2596b5SMatthias Ringwald    * @return none.
3777*1b2596b5SMatthias Ringwald    */
3778*1b2596b5SMatthias Ringwald 
3779*1b2596b5SMatthias Ringwald   void arm_biquad_cas_df1_32x64_q31(
3780*1b2596b5SMatthias Ringwald   const arm_biquad_cas_df1_32x64_ins_q31 * S,
3781*1b2596b5SMatthias Ringwald   q31_t * pSrc,
3782*1b2596b5SMatthias Ringwald   q31_t * pDst,
3783*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3784*1b2596b5SMatthias Ringwald 
3785*1b2596b5SMatthias Ringwald 
3786*1b2596b5SMatthias Ringwald   /**
3787*1b2596b5SMatthias Ringwald    * @param[in,out] *S           points to an instance of the high precision Q31 Biquad cascade filter structure.
3788*1b2596b5SMatthias Ringwald    * @param[in]     numStages    number of 2nd order stages in the filter.
3789*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs     points to the filter coefficients.
3790*1b2596b5SMatthias Ringwald    * @param[in]     *pState      points to the state buffer.
3791*1b2596b5SMatthias Ringwald    * @param[in]     postShift    shift to be applied to the output. Varies according to the coefficients format
3792*1b2596b5SMatthias Ringwald    * @return        none
3793*1b2596b5SMatthias Ringwald    */
3794*1b2596b5SMatthias Ringwald 
3795*1b2596b5SMatthias Ringwald   void arm_biquad_cas_df1_32x64_init_q31(
3796*1b2596b5SMatthias Ringwald   arm_biquad_cas_df1_32x64_ins_q31 * S,
3797*1b2596b5SMatthias Ringwald   uint8_t numStages,
3798*1b2596b5SMatthias Ringwald   q31_t * pCoeffs,
3799*1b2596b5SMatthias Ringwald   q63_t * pState,
3800*1b2596b5SMatthias Ringwald   uint8_t postShift);
3801*1b2596b5SMatthias Ringwald 
3802*1b2596b5SMatthias Ringwald 
3803*1b2596b5SMatthias Ringwald 
3804*1b2596b5SMatthias Ringwald   /**
3805*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
3806*1b2596b5SMatthias Ringwald    */
3807*1b2596b5SMatthias Ringwald 
3808*1b2596b5SMatthias Ringwald   typedef struct
3809*1b2596b5SMatthias Ringwald   {
3810*1b2596b5SMatthias Ringwald     uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
3811*1b2596b5SMatthias Ringwald     float32_t *pState;         /**< points to the array of state coefficients.  The array is of length 2*numStages. */
3812*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
3813*1b2596b5SMatthias Ringwald   } arm_biquad_cascade_df2T_instance_f32;
3814*1b2596b5SMatthias Ringwald 
3815*1b2596b5SMatthias Ringwald 
3816*1b2596b5SMatthias Ringwald 
3817*1b2596b5SMatthias Ringwald   /**
3818*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
3819*1b2596b5SMatthias Ringwald    */
3820*1b2596b5SMatthias Ringwald 
3821*1b2596b5SMatthias Ringwald   typedef struct
3822*1b2596b5SMatthias Ringwald   {
3823*1b2596b5SMatthias Ringwald     uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
3824*1b2596b5SMatthias Ringwald     float32_t *pState;         /**< points to the array of state coefficients.  The array is of length 4*numStages. */
3825*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
3826*1b2596b5SMatthias Ringwald   } arm_biquad_cascade_stereo_df2T_instance_f32;
3827*1b2596b5SMatthias Ringwald 
3828*1b2596b5SMatthias Ringwald 
3829*1b2596b5SMatthias Ringwald 
3830*1b2596b5SMatthias Ringwald   /**
3831*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
3832*1b2596b5SMatthias Ringwald    */
3833*1b2596b5SMatthias Ringwald 
3834*1b2596b5SMatthias Ringwald   typedef struct
3835*1b2596b5SMatthias Ringwald   {
3836*1b2596b5SMatthias Ringwald     uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
3837*1b2596b5SMatthias Ringwald     float64_t *pState;         /**< points to the array of state coefficients.  The array is of length 2*numStages. */
3838*1b2596b5SMatthias Ringwald     float64_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */
3839*1b2596b5SMatthias Ringwald   } arm_biquad_cascade_df2T_instance_f64;
3840*1b2596b5SMatthias Ringwald 
3841*1b2596b5SMatthias Ringwald 
3842*1b2596b5SMatthias Ringwald   /**
3843*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
3844*1b2596b5SMatthias Ringwald    * @param[in]  *S        points to an instance of the filter data structure.
3845*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc     points to the block of input data.
3846*1b2596b5SMatthias Ringwald    * @param[out] *pDst     points to the block of output data
3847*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
3848*1b2596b5SMatthias Ringwald    * @return none.
3849*1b2596b5SMatthias Ringwald    */
3850*1b2596b5SMatthias Ringwald 
3851*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df2T_f32(
3852*1b2596b5SMatthias Ringwald   const arm_biquad_cascade_df2T_instance_f32 * S,
3853*1b2596b5SMatthias Ringwald   float32_t * pSrc,
3854*1b2596b5SMatthias Ringwald   float32_t * pDst,
3855*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3856*1b2596b5SMatthias Ringwald 
3857*1b2596b5SMatthias Ringwald 
3858*1b2596b5SMatthias Ringwald   /**
3859*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
3860*1b2596b5SMatthias Ringwald    * @param[in]  *S        points to an instance of the filter data structure.
3861*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc     points to the block of input data.
3862*1b2596b5SMatthias Ringwald    * @param[out] *pDst     points to the block of output data
3863*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
3864*1b2596b5SMatthias Ringwald    * @return none.
3865*1b2596b5SMatthias Ringwald    */
3866*1b2596b5SMatthias Ringwald 
3867*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_stereo_df2T_f32(
3868*1b2596b5SMatthias Ringwald   const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
3869*1b2596b5SMatthias Ringwald   float32_t * pSrc,
3870*1b2596b5SMatthias Ringwald   float32_t * pDst,
3871*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3872*1b2596b5SMatthias Ringwald 
3873*1b2596b5SMatthias Ringwald   /**
3874*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
3875*1b2596b5SMatthias Ringwald    * @param[in]  *S        points to an instance of the filter data structure.
3876*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc     points to the block of input data.
3877*1b2596b5SMatthias Ringwald    * @param[out] *pDst     points to the block of output data
3878*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
3879*1b2596b5SMatthias Ringwald    * @return none.
3880*1b2596b5SMatthias Ringwald    */
3881*1b2596b5SMatthias Ringwald 
3882*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df2T_f64(
3883*1b2596b5SMatthias Ringwald   const arm_biquad_cascade_df2T_instance_f64 * S,
3884*1b2596b5SMatthias Ringwald   float64_t * pSrc,
3885*1b2596b5SMatthias Ringwald   float64_t * pDst,
3886*1b2596b5SMatthias Ringwald   uint32_t blockSize);
3887*1b2596b5SMatthias Ringwald 
3888*1b2596b5SMatthias Ringwald 
3889*1b2596b5SMatthias Ringwald   /**
3890*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
3891*1b2596b5SMatthias Ringwald    * @param[in,out] *S           points to an instance of the filter data structure.
3892*1b2596b5SMatthias Ringwald    * @param[in]     numStages    number of 2nd order stages in the filter.
3893*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs     points to the filter coefficients.
3894*1b2596b5SMatthias Ringwald    * @param[in]     *pState      points to the state buffer.
3895*1b2596b5SMatthias Ringwald    * @return        none
3896*1b2596b5SMatthias Ringwald    */
3897*1b2596b5SMatthias Ringwald 
3898*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df2T_init_f32(
3899*1b2596b5SMatthias Ringwald   arm_biquad_cascade_df2T_instance_f32 * S,
3900*1b2596b5SMatthias Ringwald   uint8_t numStages,
3901*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
3902*1b2596b5SMatthias Ringwald   float32_t * pState);
3903*1b2596b5SMatthias Ringwald 
3904*1b2596b5SMatthias Ringwald 
3905*1b2596b5SMatthias Ringwald   /**
3906*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
3907*1b2596b5SMatthias Ringwald    * @param[in,out] *S           points to an instance of the filter data structure.
3908*1b2596b5SMatthias Ringwald    * @param[in]     numStages    number of 2nd order stages in the filter.
3909*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs     points to the filter coefficients.
3910*1b2596b5SMatthias Ringwald    * @param[in]     *pState      points to the state buffer.
3911*1b2596b5SMatthias Ringwald    * @return        none
3912*1b2596b5SMatthias Ringwald    */
3913*1b2596b5SMatthias Ringwald 
3914*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_stereo_df2T_init_f32(
3915*1b2596b5SMatthias Ringwald   arm_biquad_cascade_stereo_df2T_instance_f32 * S,
3916*1b2596b5SMatthias Ringwald   uint8_t numStages,
3917*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
3918*1b2596b5SMatthias Ringwald   float32_t * pState);
3919*1b2596b5SMatthias Ringwald 
3920*1b2596b5SMatthias Ringwald 
3921*1b2596b5SMatthias Ringwald   /**
3922*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter.
3923*1b2596b5SMatthias Ringwald    * @param[in,out] *S           points to an instance of the filter data structure.
3924*1b2596b5SMatthias Ringwald    * @param[in]     numStages    number of 2nd order stages in the filter.
3925*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs     points to the filter coefficients.
3926*1b2596b5SMatthias Ringwald    * @param[in]     *pState      points to the state buffer.
3927*1b2596b5SMatthias Ringwald    * @return        none
3928*1b2596b5SMatthias Ringwald    */
3929*1b2596b5SMatthias Ringwald 
3930*1b2596b5SMatthias Ringwald   void arm_biquad_cascade_df2T_init_f64(
3931*1b2596b5SMatthias Ringwald   arm_biquad_cascade_df2T_instance_f64 * S,
3932*1b2596b5SMatthias Ringwald   uint8_t numStages,
3933*1b2596b5SMatthias Ringwald   float64_t * pCoeffs,
3934*1b2596b5SMatthias Ringwald   float64_t * pState);
3935*1b2596b5SMatthias Ringwald 
3936*1b2596b5SMatthias Ringwald 
3937*1b2596b5SMatthias Ringwald 
3938*1b2596b5SMatthias Ringwald   /**
3939*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 FIR lattice filter.
3940*1b2596b5SMatthias Ringwald    */
3941*1b2596b5SMatthias Ringwald 
3942*1b2596b5SMatthias Ringwald   typedef struct
3943*1b2596b5SMatthias Ringwald   {
3944*1b2596b5SMatthias Ringwald     uint16_t numStages;                          /**< number of filter stages. */
3945*1b2596b5SMatthias Ringwald     q15_t *pState;                               /**< points to the state variable array. The array is of length numStages. */
3946*1b2596b5SMatthias Ringwald     q15_t *pCoeffs;                              /**< points to the coefficient array. The array is of length numStages. */
3947*1b2596b5SMatthias Ringwald   } arm_fir_lattice_instance_q15;
3948*1b2596b5SMatthias Ringwald 
3949*1b2596b5SMatthias Ringwald   /**
3950*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 FIR lattice filter.
3951*1b2596b5SMatthias Ringwald    */
3952*1b2596b5SMatthias Ringwald 
3953*1b2596b5SMatthias Ringwald   typedef struct
3954*1b2596b5SMatthias Ringwald   {
3955*1b2596b5SMatthias Ringwald     uint16_t numStages;                          /**< number of filter stages. */
3956*1b2596b5SMatthias Ringwald     q31_t *pState;                               /**< points to the state variable array. The array is of length numStages. */
3957*1b2596b5SMatthias Ringwald     q31_t *pCoeffs;                              /**< points to the coefficient array. The array is of length numStages. */
3958*1b2596b5SMatthias Ringwald   } arm_fir_lattice_instance_q31;
3959*1b2596b5SMatthias Ringwald 
3960*1b2596b5SMatthias Ringwald   /**
3961*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point FIR lattice filter.
3962*1b2596b5SMatthias Ringwald    */
3963*1b2596b5SMatthias Ringwald 
3964*1b2596b5SMatthias Ringwald   typedef struct
3965*1b2596b5SMatthias Ringwald   {
3966*1b2596b5SMatthias Ringwald     uint16_t numStages;                  /**< number of filter stages. */
3967*1b2596b5SMatthias Ringwald     float32_t *pState;                   /**< points to the state variable array. The array is of length numStages. */
3968*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numStages. */
3969*1b2596b5SMatthias Ringwald   } arm_fir_lattice_instance_f32;
3970*1b2596b5SMatthias Ringwald 
3971*1b2596b5SMatthias Ringwald   /**
3972*1b2596b5SMatthias Ringwald    * @brief Initialization function for the Q15 FIR lattice filter.
3973*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 FIR lattice structure.
3974*1b2596b5SMatthias Ringwald    * @param[in] numStages  number of filter stages.
3975*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages.
3976*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.  The array is of length numStages.
3977*1b2596b5SMatthias Ringwald    * @return none.
3978*1b2596b5SMatthias Ringwald    */
3979*1b2596b5SMatthias Ringwald 
3980*1b2596b5SMatthias Ringwald   void arm_fir_lattice_init_q15(
3981*1b2596b5SMatthias Ringwald   arm_fir_lattice_instance_q15 * S,
3982*1b2596b5SMatthias Ringwald   uint16_t numStages,
3983*1b2596b5SMatthias Ringwald   q15_t * pCoeffs,
3984*1b2596b5SMatthias Ringwald   q15_t * pState);
3985*1b2596b5SMatthias Ringwald 
3986*1b2596b5SMatthias Ringwald 
3987*1b2596b5SMatthias Ringwald   /**
3988*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q15 FIR lattice filter.
3989*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 FIR lattice structure.
3990*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
3991*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
3992*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
3993*1b2596b5SMatthias Ringwald    * @return none.
3994*1b2596b5SMatthias Ringwald    */
3995*1b2596b5SMatthias Ringwald   void arm_fir_lattice_q15(
3996*1b2596b5SMatthias Ringwald   const arm_fir_lattice_instance_q15 * S,
3997*1b2596b5SMatthias Ringwald   q15_t * pSrc,
3998*1b2596b5SMatthias Ringwald   q15_t * pDst,
3999*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4000*1b2596b5SMatthias Ringwald 
4001*1b2596b5SMatthias Ringwald   /**
4002*1b2596b5SMatthias Ringwald    * @brief Initialization function for the Q31 FIR lattice filter.
4003*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 FIR lattice structure.
4004*1b2596b5SMatthias Ringwald    * @param[in] numStages  number of filter stages.
4005*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages.
4006*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.   The array is of length numStages.
4007*1b2596b5SMatthias Ringwald    * @return none.
4008*1b2596b5SMatthias Ringwald    */
4009*1b2596b5SMatthias Ringwald 
4010*1b2596b5SMatthias Ringwald   void arm_fir_lattice_init_q31(
4011*1b2596b5SMatthias Ringwald   arm_fir_lattice_instance_q31 * S,
4012*1b2596b5SMatthias Ringwald   uint16_t numStages,
4013*1b2596b5SMatthias Ringwald   q31_t * pCoeffs,
4014*1b2596b5SMatthias Ringwald   q31_t * pState);
4015*1b2596b5SMatthias Ringwald 
4016*1b2596b5SMatthias Ringwald 
4017*1b2596b5SMatthias Ringwald   /**
4018*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q31 FIR lattice filter.
4019*1b2596b5SMatthias Ringwald    * @param[in]  *S        points to an instance of the Q31 FIR lattice structure.
4020*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc     points to the block of input data.
4021*1b2596b5SMatthias Ringwald    * @param[out] *pDst     points to the block of output data
4022*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
4023*1b2596b5SMatthias Ringwald    * @return none.
4024*1b2596b5SMatthias Ringwald    */
4025*1b2596b5SMatthias Ringwald 
4026*1b2596b5SMatthias Ringwald   void arm_fir_lattice_q31(
4027*1b2596b5SMatthias Ringwald   const arm_fir_lattice_instance_q31 * S,
4028*1b2596b5SMatthias Ringwald   q31_t * pSrc,
4029*1b2596b5SMatthias Ringwald   q31_t * pDst,
4030*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4031*1b2596b5SMatthias Ringwald 
4032*1b2596b5SMatthias Ringwald /**
4033*1b2596b5SMatthias Ringwald  * @brief Initialization function for the floating-point FIR lattice filter.
4034*1b2596b5SMatthias Ringwald  * @param[in] *S points to an instance of the floating-point FIR lattice structure.
4035*1b2596b5SMatthias Ringwald  * @param[in] numStages  number of filter stages.
4036*1b2596b5SMatthias Ringwald  * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages.
4037*1b2596b5SMatthias Ringwald  * @param[in] *pState points to the state buffer.  The array is of length numStages.
4038*1b2596b5SMatthias Ringwald  * @return none.
4039*1b2596b5SMatthias Ringwald  */
4040*1b2596b5SMatthias Ringwald 
4041*1b2596b5SMatthias Ringwald   void arm_fir_lattice_init_f32(
4042*1b2596b5SMatthias Ringwald   arm_fir_lattice_instance_f32 * S,
4043*1b2596b5SMatthias Ringwald   uint16_t numStages,
4044*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
4045*1b2596b5SMatthias Ringwald   float32_t * pState);
4046*1b2596b5SMatthias Ringwald 
4047*1b2596b5SMatthias Ringwald   /**
4048*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point FIR lattice filter.
4049*1b2596b5SMatthias Ringwald    * @param[in]  *S        points to an instance of the floating-point FIR lattice structure.
4050*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc     points to the block of input data.
4051*1b2596b5SMatthias Ringwald    * @param[out] *pDst     points to the block of output data
4052*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
4053*1b2596b5SMatthias Ringwald    * @return none.
4054*1b2596b5SMatthias Ringwald    */
4055*1b2596b5SMatthias Ringwald 
4056*1b2596b5SMatthias Ringwald   void arm_fir_lattice_f32(
4057*1b2596b5SMatthias Ringwald   const arm_fir_lattice_instance_f32 * S,
4058*1b2596b5SMatthias Ringwald   float32_t * pSrc,
4059*1b2596b5SMatthias Ringwald   float32_t * pDst,
4060*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4061*1b2596b5SMatthias Ringwald 
4062*1b2596b5SMatthias Ringwald   /**
4063*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 IIR lattice filter.
4064*1b2596b5SMatthias Ringwald    */
4065*1b2596b5SMatthias Ringwald   typedef struct
4066*1b2596b5SMatthias Ringwald   {
4067*1b2596b5SMatthias Ringwald     uint16_t numStages;                         /**< number of stages in the filter. */
4068*1b2596b5SMatthias Ringwald     q15_t *pState;                              /**< points to the state variable array. The array is of length numStages+blockSize. */
4069*1b2596b5SMatthias Ringwald     q15_t *pkCoeffs;                            /**< points to the reflection coefficient array. The array is of length numStages. */
4070*1b2596b5SMatthias Ringwald     q15_t *pvCoeffs;                            /**< points to the ladder coefficient array. The array is of length numStages+1. */
4071*1b2596b5SMatthias Ringwald   } arm_iir_lattice_instance_q15;
4072*1b2596b5SMatthias Ringwald 
4073*1b2596b5SMatthias Ringwald   /**
4074*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 IIR lattice filter.
4075*1b2596b5SMatthias Ringwald    */
4076*1b2596b5SMatthias Ringwald   typedef struct
4077*1b2596b5SMatthias Ringwald   {
4078*1b2596b5SMatthias Ringwald     uint16_t numStages;                         /**< number of stages in the filter. */
4079*1b2596b5SMatthias Ringwald     q31_t *pState;                              /**< points to the state variable array. The array is of length numStages+blockSize. */
4080*1b2596b5SMatthias Ringwald     q31_t *pkCoeffs;                            /**< points to the reflection coefficient array. The array is of length numStages. */
4081*1b2596b5SMatthias Ringwald     q31_t *pvCoeffs;                            /**< points to the ladder coefficient array. The array is of length numStages+1. */
4082*1b2596b5SMatthias Ringwald   } arm_iir_lattice_instance_q31;
4083*1b2596b5SMatthias Ringwald 
4084*1b2596b5SMatthias Ringwald   /**
4085*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point IIR lattice filter.
4086*1b2596b5SMatthias Ringwald    */
4087*1b2596b5SMatthias Ringwald   typedef struct
4088*1b2596b5SMatthias Ringwald   {
4089*1b2596b5SMatthias Ringwald     uint16_t numStages;                         /**< number of stages in the filter. */
4090*1b2596b5SMatthias Ringwald     float32_t *pState;                          /**< points to the state variable array. The array is of length numStages+blockSize. */
4091*1b2596b5SMatthias Ringwald     float32_t *pkCoeffs;                        /**< points to the reflection coefficient array. The array is of length numStages. */
4092*1b2596b5SMatthias Ringwald     float32_t *pvCoeffs;                        /**< points to the ladder coefficient array. The array is of length numStages+1. */
4093*1b2596b5SMatthias Ringwald   } arm_iir_lattice_instance_f32;
4094*1b2596b5SMatthias Ringwald 
4095*1b2596b5SMatthias Ringwald   /**
4096*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point IIR lattice filter.
4097*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the floating-point IIR lattice structure.
4098*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
4099*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
4100*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4101*1b2596b5SMatthias Ringwald    * @return none.
4102*1b2596b5SMatthias Ringwald    */
4103*1b2596b5SMatthias Ringwald 
4104*1b2596b5SMatthias Ringwald   void arm_iir_lattice_f32(
4105*1b2596b5SMatthias Ringwald   const arm_iir_lattice_instance_f32 * S,
4106*1b2596b5SMatthias Ringwald   float32_t * pSrc,
4107*1b2596b5SMatthias Ringwald   float32_t * pDst,
4108*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4109*1b2596b5SMatthias Ringwald 
4110*1b2596b5SMatthias Ringwald   /**
4111*1b2596b5SMatthias Ringwald    * @brief Initialization function for the floating-point IIR lattice filter.
4112*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the floating-point IIR lattice structure.
4113*1b2596b5SMatthias Ringwald    * @param[in] numStages number of stages in the filter.
4114*1b2596b5SMatthias Ringwald    * @param[in] *pkCoeffs points to the reflection coefficient buffer.  The array is of length numStages.
4115*1b2596b5SMatthias Ringwald    * @param[in] *pvCoeffs points to the ladder coefficient buffer.  The array is of length numStages+1.
4116*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.  The array is of length numStages+blockSize-1.
4117*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4118*1b2596b5SMatthias Ringwald    * @return none.
4119*1b2596b5SMatthias Ringwald    */
4120*1b2596b5SMatthias Ringwald 
4121*1b2596b5SMatthias Ringwald   void arm_iir_lattice_init_f32(
4122*1b2596b5SMatthias Ringwald   arm_iir_lattice_instance_f32 * S,
4123*1b2596b5SMatthias Ringwald   uint16_t numStages,
4124*1b2596b5SMatthias Ringwald   float32_t * pkCoeffs,
4125*1b2596b5SMatthias Ringwald   float32_t * pvCoeffs,
4126*1b2596b5SMatthias Ringwald   float32_t * pState,
4127*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4128*1b2596b5SMatthias Ringwald 
4129*1b2596b5SMatthias Ringwald 
4130*1b2596b5SMatthias Ringwald   /**
4131*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q31 IIR lattice filter.
4132*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 IIR lattice structure.
4133*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
4134*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
4135*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4136*1b2596b5SMatthias Ringwald    * @return none.
4137*1b2596b5SMatthias Ringwald    */
4138*1b2596b5SMatthias Ringwald 
4139*1b2596b5SMatthias Ringwald   void arm_iir_lattice_q31(
4140*1b2596b5SMatthias Ringwald   const arm_iir_lattice_instance_q31 * S,
4141*1b2596b5SMatthias Ringwald   q31_t * pSrc,
4142*1b2596b5SMatthias Ringwald   q31_t * pDst,
4143*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4144*1b2596b5SMatthias Ringwald 
4145*1b2596b5SMatthias Ringwald 
4146*1b2596b5SMatthias Ringwald   /**
4147*1b2596b5SMatthias Ringwald    * @brief Initialization function for the Q31 IIR lattice filter.
4148*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 IIR lattice structure.
4149*1b2596b5SMatthias Ringwald    * @param[in] numStages number of stages in the filter.
4150*1b2596b5SMatthias Ringwald    * @param[in] *pkCoeffs points to the reflection coefficient buffer.  The array is of length numStages.
4151*1b2596b5SMatthias Ringwald    * @param[in] *pvCoeffs points to the ladder coefficient buffer.  The array is of length numStages+1.
4152*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.  The array is of length numStages+blockSize.
4153*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4154*1b2596b5SMatthias Ringwald    * @return none.
4155*1b2596b5SMatthias Ringwald    */
4156*1b2596b5SMatthias Ringwald 
4157*1b2596b5SMatthias Ringwald   void arm_iir_lattice_init_q31(
4158*1b2596b5SMatthias Ringwald   arm_iir_lattice_instance_q31 * S,
4159*1b2596b5SMatthias Ringwald   uint16_t numStages,
4160*1b2596b5SMatthias Ringwald   q31_t * pkCoeffs,
4161*1b2596b5SMatthias Ringwald   q31_t * pvCoeffs,
4162*1b2596b5SMatthias Ringwald   q31_t * pState,
4163*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4164*1b2596b5SMatthias Ringwald 
4165*1b2596b5SMatthias Ringwald 
4166*1b2596b5SMatthias Ringwald   /**
4167*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q15 IIR lattice filter.
4168*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 IIR lattice structure.
4169*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
4170*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data.
4171*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4172*1b2596b5SMatthias Ringwald    * @return none.
4173*1b2596b5SMatthias Ringwald    */
4174*1b2596b5SMatthias Ringwald 
4175*1b2596b5SMatthias Ringwald   void arm_iir_lattice_q15(
4176*1b2596b5SMatthias Ringwald   const arm_iir_lattice_instance_q15 * S,
4177*1b2596b5SMatthias Ringwald   q15_t * pSrc,
4178*1b2596b5SMatthias Ringwald   q15_t * pDst,
4179*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4180*1b2596b5SMatthias Ringwald 
4181*1b2596b5SMatthias Ringwald 
4182*1b2596b5SMatthias Ringwald /**
4183*1b2596b5SMatthias Ringwald  * @brief Initialization function for the Q15 IIR lattice filter.
4184*1b2596b5SMatthias Ringwald  * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
4185*1b2596b5SMatthias Ringwald  * @param[in] numStages  number of stages in the filter.
4186*1b2596b5SMatthias Ringwald  * @param[in] *pkCoeffs points to reflection coefficient buffer.  The array is of length numStages.
4187*1b2596b5SMatthias Ringwald  * @param[in] *pvCoeffs points to ladder coefficient buffer.  The array is of length numStages+1.
4188*1b2596b5SMatthias Ringwald  * @param[in] *pState points to state buffer.  The array is of length numStages+blockSize.
4189*1b2596b5SMatthias Ringwald  * @param[in] blockSize number of samples to process per call.
4190*1b2596b5SMatthias Ringwald  * @return none.
4191*1b2596b5SMatthias Ringwald  */
4192*1b2596b5SMatthias Ringwald 
4193*1b2596b5SMatthias Ringwald   void arm_iir_lattice_init_q15(
4194*1b2596b5SMatthias Ringwald   arm_iir_lattice_instance_q15 * S,
4195*1b2596b5SMatthias Ringwald   uint16_t numStages,
4196*1b2596b5SMatthias Ringwald   q15_t * pkCoeffs,
4197*1b2596b5SMatthias Ringwald   q15_t * pvCoeffs,
4198*1b2596b5SMatthias Ringwald   q15_t * pState,
4199*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4200*1b2596b5SMatthias Ringwald 
4201*1b2596b5SMatthias Ringwald   /**
4202*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point LMS filter.
4203*1b2596b5SMatthias Ringwald    */
4204*1b2596b5SMatthias Ringwald 
4205*1b2596b5SMatthias Ringwald   typedef struct
4206*1b2596b5SMatthias Ringwald   {
4207*1b2596b5SMatthias Ringwald     uint16_t numTaps;    /**< number of coefficients in the filter. */
4208*1b2596b5SMatthias Ringwald     float32_t *pState;   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4209*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;  /**< points to the coefficient array. The array is of length numTaps. */
4210*1b2596b5SMatthias Ringwald     float32_t mu;        /**< step size that controls filter coefficient updates. */
4211*1b2596b5SMatthias Ringwald   } arm_lms_instance_f32;
4212*1b2596b5SMatthias Ringwald 
4213*1b2596b5SMatthias Ringwald   /**
4214*1b2596b5SMatthias Ringwald    * @brief Processing function for floating-point LMS filter.
4215*1b2596b5SMatthias Ringwald    * @param[in]  *S points to an instance of the floating-point LMS filter structure.
4216*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the block of input data.
4217*1b2596b5SMatthias Ringwald    * @param[in]  *pRef points to the block of reference data.
4218*1b2596b5SMatthias Ringwald    * @param[out] *pOut points to the block of output data.
4219*1b2596b5SMatthias Ringwald    * @param[out] *pErr points to the block of error data.
4220*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
4221*1b2596b5SMatthias Ringwald    * @return     none.
4222*1b2596b5SMatthias Ringwald    */
4223*1b2596b5SMatthias Ringwald 
4224*1b2596b5SMatthias Ringwald   void arm_lms_f32(
4225*1b2596b5SMatthias Ringwald   const arm_lms_instance_f32 * S,
4226*1b2596b5SMatthias Ringwald   float32_t * pSrc,
4227*1b2596b5SMatthias Ringwald   float32_t * pRef,
4228*1b2596b5SMatthias Ringwald   float32_t * pOut,
4229*1b2596b5SMatthias Ringwald   float32_t * pErr,
4230*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4231*1b2596b5SMatthias Ringwald 
4232*1b2596b5SMatthias Ringwald   /**
4233*1b2596b5SMatthias Ringwald    * @brief Initialization function for floating-point LMS filter.
4234*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the floating-point LMS filter structure.
4235*1b2596b5SMatthias Ringwald    * @param[in] numTaps  number of filter coefficients.
4236*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to the coefficient buffer.
4237*1b2596b5SMatthias Ringwald    * @param[in] *pState points to state buffer.
4238*1b2596b5SMatthias Ringwald    * @param[in] mu step size that controls filter coefficient updates.
4239*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4240*1b2596b5SMatthias Ringwald    * @return none.
4241*1b2596b5SMatthias Ringwald    */
4242*1b2596b5SMatthias Ringwald 
4243*1b2596b5SMatthias Ringwald   void arm_lms_init_f32(
4244*1b2596b5SMatthias Ringwald   arm_lms_instance_f32 * S,
4245*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4246*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
4247*1b2596b5SMatthias Ringwald   float32_t * pState,
4248*1b2596b5SMatthias Ringwald   float32_t mu,
4249*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4250*1b2596b5SMatthias Ringwald 
4251*1b2596b5SMatthias Ringwald   /**
4252*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 LMS filter.
4253*1b2596b5SMatthias Ringwald    */
4254*1b2596b5SMatthias Ringwald 
4255*1b2596b5SMatthias Ringwald   typedef struct
4256*1b2596b5SMatthias Ringwald   {
4257*1b2596b5SMatthias Ringwald     uint16_t numTaps;    /**< number of coefficients in the filter. */
4258*1b2596b5SMatthias Ringwald     q15_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4259*1b2596b5SMatthias Ringwald     q15_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */
4260*1b2596b5SMatthias Ringwald     q15_t mu;            /**< step size that controls filter coefficient updates. */
4261*1b2596b5SMatthias Ringwald     uint32_t postShift;  /**< bit shift applied to coefficients. */
4262*1b2596b5SMatthias Ringwald   } arm_lms_instance_q15;
4263*1b2596b5SMatthias Ringwald 
4264*1b2596b5SMatthias Ringwald 
4265*1b2596b5SMatthias Ringwald   /**
4266*1b2596b5SMatthias Ringwald    * @brief Initialization function for the Q15 LMS filter.
4267*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 LMS filter structure.
4268*1b2596b5SMatthias Ringwald    * @param[in] numTaps  number of filter coefficients.
4269*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to the coefficient buffer.
4270*1b2596b5SMatthias Ringwald    * @param[in] *pState points to the state buffer.
4271*1b2596b5SMatthias Ringwald    * @param[in] mu step size that controls filter coefficient updates.
4272*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4273*1b2596b5SMatthias Ringwald    * @param[in] postShift bit shift applied to coefficients.
4274*1b2596b5SMatthias Ringwald    * @return    none.
4275*1b2596b5SMatthias Ringwald    */
4276*1b2596b5SMatthias Ringwald 
4277*1b2596b5SMatthias Ringwald   void arm_lms_init_q15(
4278*1b2596b5SMatthias Ringwald   arm_lms_instance_q15 * S,
4279*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4280*1b2596b5SMatthias Ringwald   q15_t * pCoeffs,
4281*1b2596b5SMatthias Ringwald   q15_t * pState,
4282*1b2596b5SMatthias Ringwald   q15_t mu,
4283*1b2596b5SMatthias Ringwald   uint32_t blockSize,
4284*1b2596b5SMatthias Ringwald   uint32_t postShift);
4285*1b2596b5SMatthias Ringwald 
4286*1b2596b5SMatthias Ringwald   /**
4287*1b2596b5SMatthias Ringwald    * @brief Processing function for Q15 LMS filter.
4288*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 LMS filter structure.
4289*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
4290*1b2596b5SMatthias Ringwald    * @param[in] *pRef points to the block of reference data.
4291*1b2596b5SMatthias Ringwald    * @param[out] *pOut points to the block of output data.
4292*1b2596b5SMatthias Ringwald    * @param[out] *pErr points to the block of error data.
4293*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4294*1b2596b5SMatthias Ringwald    * @return none.
4295*1b2596b5SMatthias Ringwald    */
4296*1b2596b5SMatthias Ringwald 
4297*1b2596b5SMatthias Ringwald   void arm_lms_q15(
4298*1b2596b5SMatthias Ringwald   const arm_lms_instance_q15 * S,
4299*1b2596b5SMatthias Ringwald   q15_t * pSrc,
4300*1b2596b5SMatthias Ringwald   q15_t * pRef,
4301*1b2596b5SMatthias Ringwald   q15_t * pOut,
4302*1b2596b5SMatthias Ringwald   q15_t * pErr,
4303*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4304*1b2596b5SMatthias Ringwald 
4305*1b2596b5SMatthias Ringwald 
4306*1b2596b5SMatthias Ringwald   /**
4307*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 LMS filter.
4308*1b2596b5SMatthias Ringwald    */
4309*1b2596b5SMatthias Ringwald 
4310*1b2596b5SMatthias Ringwald   typedef struct
4311*1b2596b5SMatthias Ringwald   {
4312*1b2596b5SMatthias Ringwald     uint16_t numTaps;    /**< number of coefficients in the filter. */
4313*1b2596b5SMatthias Ringwald     q31_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4314*1b2596b5SMatthias Ringwald     q31_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */
4315*1b2596b5SMatthias Ringwald     q31_t mu;            /**< step size that controls filter coefficient updates. */
4316*1b2596b5SMatthias Ringwald     uint32_t postShift;  /**< bit shift applied to coefficients. */
4317*1b2596b5SMatthias Ringwald 
4318*1b2596b5SMatthias Ringwald   } arm_lms_instance_q31;
4319*1b2596b5SMatthias Ringwald 
4320*1b2596b5SMatthias Ringwald   /**
4321*1b2596b5SMatthias Ringwald    * @brief Processing function for Q31 LMS filter.
4322*1b2596b5SMatthias Ringwald    * @param[in]  *S points to an instance of the Q15 LMS filter structure.
4323*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the block of input data.
4324*1b2596b5SMatthias Ringwald    * @param[in]  *pRef points to the block of reference data.
4325*1b2596b5SMatthias Ringwald    * @param[out] *pOut points to the block of output data.
4326*1b2596b5SMatthias Ringwald    * @param[out] *pErr points to the block of error data.
4327*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process.
4328*1b2596b5SMatthias Ringwald    * @return     none.
4329*1b2596b5SMatthias Ringwald    */
4330*1b2596b5SMatthias Ringwald 
4331*1b2596b5SMatthias Ringwald   void arm_lms_q31(
4332*1b2596b5SMatthias Ringwald   const arm_lms_instance_q31 * S,
4333*1b2596b5SMatthias Ringwald   q31_t * pSrc,
4334*1b2596b5SMatthias Ringwald   q31_t * pRef,
4335*1b2596b5SMatthias Ringwald   q31_t * pOut,
4336*1b2596b5SMatthias Ringwald   q31_t * pErr,
4337*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4338*1b2596b5SMatthias Ringwald 
4339*1b2596b5SMatthias Ringwald   /**
4340*1b2596b5SMatthias Ringwald    * @brief Initialization function for Q31 LMS filter.
4341*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 LMS filter structure.
4342*1b2596b5SMatthias Ringwald    * @param[in] numTaps  number of filter coefficients.
4343*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to coefficient buffer.
4344*1b2596b5SMatthias Ringwald    * @param[in] *pState points to state buffer.
4345*1b2596b5SMatthias Ringwald    * @param[in] mu step size that controls filter coefficient updates.
4346*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4347*1b2596b5SMatthias Ringwald    * @param[in] postShift bit shift applied to coefficients.
4348*1b2596b5SMatthias Ringwald    * @return none.
4349*1b2596b5SMatthias Ringwald    */
4350*1b2596b5SMatthias Ringwald 
4351*1b2596b5SMatthias Ringwald   void arm_lms_init_q31(
4352*1b2596b5SMatthias Ringwald   arm_lms_instance_q31 * S,
4353*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4354*1b2596b5SMatthias Ringwald   q31_t * pCoeffs,
4355*1b2596b5SMatthias Ringwald   q31_t * pState,
4356*1b2596b5SMatthias Ringwald   q31_t mu,
4357*1b2596b5SMatthias Ringwald   uint32_t blockSize,
4358*1b2596b5SMatthias Ringwald   uint32_t postShift);
4359*1b2596b5SMatthias Ringwald 
4360*1b2596b5SMatthias Ringwald   /**
4361*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point normalized LMS filter.
4362*1b2596b5SMatthias Ringwald    */
4363*1b2596b5SMatthias Ringwald 
4364*1b2596b5SMatthias Ringwald   typedef struct
4365*1b2596b5SMatthias Ringwald   {
4366*1b2596b5SMatthias Ringwald     uint16_t numTaps;     /**< number of coefficients in the filter. */
4367*1b2596b5SMatthias Ringwald     float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4368*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
4369*1b2596b5SMatthias Ringwald     float32_t mu;        /**< step size that control filter coefficient updates. */
4370*1b2596b5SMatthias Ringwald     float32_t energy;    /**< saves previous frame energy. */
4371*1b2596b5SMatthias Ringwald     float32_t x0;        /**< saves previous input sample. */
4372*1b2596b5SMatthias Ringwald   } arm_lms_norm_instance_f32;
4373*1b2596b5SMatthias Ringwald 
4374*1b2596b5SMatthias Ringwald   /**
4375*1b2596b5SMatthias Ringwald    * @brief Processing function for floating-point normalized LMS filter.
4376*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
4377*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
4378*1b2596b5SMatthias Ringwald    * @param[in] *pRef points to the block of reference data.
4379*1b2596b5SMatthias Ringwald    * @param[out] *pOut points to the block of output data.
4380*1b2596b5SMatthias Ringwald    * @param[out] *pErr points to the block of error data.
4381*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4382*1b2596b5SMatthias Ringwald    * @return none.
4383*1b2596b5SMatthias Ringwald    */
4384*1b2596b5SMatthias Ringwald 
4385*1b2596b5SMatthias Ringwald   void arm_lms_norm_f32(
4386*1b2596b5SMatthias Ringwald   arm_lms_norm_instance_f32 * S,
4387*1b2596b5SMatthias Ringwald   float32_t * pSrc,
4388*1b2596b5SMatthias Ringwald   float32_t * pRef,
4389*1b2596b5SMatthias Ringwald   float32_t * pOut,
4390*1b2596b5SMatthias Ringwald   float32_t * pErr,
4391*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4392*1b2596b5SMatthias Ringwald 
4393*1b2596b5SMatthias Ringwald   /**
4394*1b2596b5SMatthias Ringwald    * @brief Initialization function for floating-point normalized LMS filter.
4395*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the floating-point LMS filter structure.
4396*1b2596b5SMatthias Ringwald    * @param[in] numTaps  number of filter coefficients.
4397*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to coefficient buffer.
4398*1b2596b5SMatthias Ringwald    * @param[in] *pState points to state buffer.
4399*1b2596b5SMatthias Ringwald    * @param[in] mu step size that controls filter coefficient updates.
4400*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4401*1b2596b5SMatthias Ringwald    * @return none.
4402*1b2596b5SMatthias Ringwald    */
4403*1b2596b5SMatthias Ringwald 
4404*1b2596b5SMatthias Ringwald   void arm_lms_norm_init_f32(
4405*1b2596b5SMatthias Ringwald   arm_lms_norm_instance_f32 * S,
4406*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4407*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
4408*1b2596b5SMatthias Ringwald   float32_t * pState,
4409*1b2596b5SMatthias Ringwald   float32_t mu,
4410*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4411*1b2596b5SMatthias Ringwald 
4412*1b2596b5SMatthias Ringwald 
4413*1b2596b5SMatthias Ringwald   /**
4414*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 normalized LMS filter.
4415*1b2596b5SMatthias Ringwald    */
4416*1b2596b5SMatthias Ringwald   typedef struct
4417*1b2596b5SMatthias Ringwald   {
4418*1b2596b5SMatthias Ringwald     uint16_t numTaps;     /**< number of coefficients in the filter. */
4419*1b2596b5SMatthias Ringwald     q31_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4420*1b2596b5SMatthias Ringwald     q31_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */
4421*1b2596b5SMatthias Ringwald     q31_t mu;             /**< step size that controls filter coefficient updates. */
4422*1b2596b5SMatthias Ringwald     uint8_t postShift;    /**< bit shift applied to coefficients. */
4423*1b2596b5SMatthias Ringwald     q31_t *recipTable;    /**< points to the reciprocal initial value table. */
4424*1b2596b5SMatthias Ringwald     q31_t energy;         /**< saves previous frame energy. */
4425*1b2596b5SMatthias Ringwald     q31_t x0;             /**< saves previous input sample. */
4426*1b2596b5SMatthias Ringwald   } arm_lms_norm_instance_q31;
4427*1b2596b5SMatthias Ringwald 
4428*1b2596b5SMatthias Ringwald   /**
4429*1b2596b5SMatthias Ringwald    * @brief Processing function for Q31 normalized LMS filter.
4430*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
4431*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
4432*1b2596b5SMatthias Ringwald    * @param[in] *pRef points to the block of reference data.
4433*1b2596b5SMatthias Ringwald    * @param[out] *pOut points to the block of output data.
4434*1b2596b5SMatthias Ringwald    * @param[out] *pErr points to the block of error data.
4435*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4436*1b2596b5SMatthias Ringwald    * @return none.
4437*1b2596b5SMatthias Ringwald    */
4438*1b2596b5SMatthias Ringwald 
4439*1b2596b5SMatthias Ringwald   void arm_lms_norm_q31(
4440*1b2596b5SMatthias Ringwald   arm_lms_norm_instance_q31 * S,
4441*1b2596b5SMatthias Ringwald   q31_t * pSrc,
4442*1b2596b5SMatthias Ringwald   q31_t * pRef,
4443*1b2596b5SMatthias Ringwald   q31_t * pOut,
4444*1b2596b5SMatthias Ringwald   q31_t * pErr,
4445*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4446*1b2596b5SMatthias Ringwald 
4447*1b2596b5SMatthias Ringwald   /**
4448*1b2596b5SMatthias Ringwald    * @brief Initialization function for Q31 normalized LMS filter.
4449*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
4450*1b2596b5SMatthias Ringwald    * @param[in] numTaps  number of filter coefficients.
4451*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to coefficient buffer.
4452*1b2596b5SMatthias Ringwald    * @param[in] *pState points to state buffer.
4453*1b2596b5SMatthias Ringwald    * @param[in] mu step size that controls filter coefficient updates.
4454*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4455*1b2596b5SMatthias Ringwald    * @param[in] postShift bit shift applied to coefficients.
4456*1b2596b5SMatthias Ringwald    * @return none.
4457*1b2596b5SMatthias Ringwald    */
4458*1b2596b5SMatthias Ringwald 
4459*1b2596b5SMatthias Ringwald   void arm_lms_norm_init_q31(
4460*1b2596b5SMatthias Ringwald   arm_lms_norm_instance_q31 * S,
4461*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4462*1b2596b5SMatthias Ringwald   q31_t * pCoeffs,
4463*1b2596b5SMatthias Ringwald   q31_t * pState,
4464*1b2596b5SMatthias Ringwald   q31_t mu,
4465*1b2596b5SMatthias Ringwald   uint32_t blockSize,
4466*1b2596b5SMatthias Ringwald   uint8_t postShift);
4467*1b2596b5SMatthias Ringwald 
4468*1b2596b5SMatthias Ringwald   /**
4469*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 normalized LMS filter.
4470*1b2596b5SMatthias Ringwald    */
4471*1b2596b5SMatthias Ringwald 
4472*1b2596b5SMatthias Ringwald   typedef struct
4473*1b2596b5SMatthias Ringwald   {
4474*1b2596b5SMatthias Ringwald     uint16_t numTaps;    /**< Number of coefficients in the filter. */
4475*1b2596b5SMatthias Ringwald     q15_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4476*1b2596b5SMatthias Ringwald     q15_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */
4477*1b2596b5SMatthias Ringwald     q15_t mu;            /**< step size that controls filter coefficient updates. */
4478*1b2596b5SMatthias Ringwald     uint8_t postShift;   /**< bit shift applied to coefficients. */
4479*1b2596b5SMatthias Ringwald     q15_t *recipTable;   /**< Points to the reciprocal initial value table. */
4480*1b2596b5SMatthias Ringwald     q15_t energy;        /**< saves previous frame energy. */
4481*1b2596b5SMatthias Ringwald     q15_t x0;            /**< saves previous input sample. */
4482*1b2596b5SMatthias Ringwald   } arm_lms_norm_instance_q15;
4483*1b2596b5SMatthias Ringwald 
4484*1b2596b5SMatthias Ringwald   /**
4485*1b2596b5SMatthias Ringwald    * @brief Processing function for Q15 normalized LMS filter.
4486*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
4487*1b2596b5SMatthias Ringwald    * @param[in] *pSrc points to the block of input data.
4488*1b2596b5SMatthias Ringwald    * @param[in] *pRef points to the block of reference data.
4489*1b2596b5SMatthias Ringwald    * @param[out] *pOut points to the block of output data.
4490*1b2596b5SMatthias Ringwald    * @param[out] *pErr points to the block of error data.
4491*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4492*1b2596b5SMatthias Ringwald    * @return none.
4493*1b2596b5SMatthias Ringwald    */
4494*1b2596b5SMatthias Ringwald 
4495*1b2596b5SMatthias Ringwald   void arm_lms_norm_q15(
4496*1b2596b5SMatthias Ringwald   arm_lms_norm_instance_q15 * S,
4497*1b2596b5SMatthias Ringwald   q15_t * pSrc,
4498*1b2596b5SMatthias Ringwald   q15_t * pRef,
4499*1b2596b5SMatthias Ringwald   q15_t * pOut,
4500*1b2596b5SMatthias Ringwald   q15_t * pErr,
4501*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4502*1b2596b5SMatthias Ringwald 
4503*1b2596b5SMatthias Ringwald 
4504*1b2596b5SMatthias Ringwald   /**
4505*1b2596b5SMatthias Ringwald    * @brief Initialization function for Q15 normalized LMS filter.
4506*1b2596b5SMatthias Ringwald    * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
4507*1b2596b5SMatthias Ringwald    * @param[in] numTaps  number of filter coefficients.
4508*1b2596b5SMatthias Ringwald    * @param[in] *pCoeffs points to coefficient buffer.
4509*1b2596b5SMatthias Ringwald    * @param[in] *pState points to state buffer.
4510*1b2596b5SMatthias Ringwald    * @param[in] mu step size that controls filter coefficient updates.
4511*1b2596b5SMatthias Ringwald    * @param[in] blockSize number of samples to process.
4512*1b2596b5SMatthias Ringwald    * @param[in] postShift bit shift applied to coefficients.
4513*1b2596b5SMatthias Ringwald    * @return none.
4514*1b2596b5SMatthias Ringwald    */
4515*1b2596b5SMatthias Ringwald 
4516*1b2596b5SMatthias Ringwald   void arm_lms_norm_init_q15(
4517*1b2596b5SMatthias Ringwald   arm_lms_norm_instance_q15 * S,
4518*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4519*1b2596b5SMatthias Ringwald   q15_t * pCoeffs,
4520*1b2596b5SMatthias Ringwald   q15_t * pState,
4521*1b2596b5SMatthias Ringwald   q15_t mu,
4522*1b2596b5SMatthias Ringwald   uint32_t blockSize,
4523*1b2596b5SMatthias Ringwald   uint8_t postShift);
4524*1b2596b5SMatthias Ringwald 
4525*1b2596b5SMatthias Ringwald   /**
4526*1b2596b5SMatthias Ringwald    * @brief Correlation of floating-point sequences.
4527*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
4528*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
4529*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
4530*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
4531*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4532*1b2596b5SMatthias Ringwald    * @return none.
4533*1b2596b5SMatthias Ringwald    */
4534*1b2596b5SMatthias Ringwald 
4535*1b2596b5SMatthias Ringwald   void arm_correlate_f32(
4536*1b2596b5SMatthias Ringwald   float32_t * pSrcA,
4537*1b2596b5SMatthias Ringwald   uint32_t srcALen,
4538*1b2596b5SMatthias Ringwald   float32_t * pSrcB,
4539*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
4540*1b2596b5SMatthias Ringwald   float32_t * pDst);
4541*1b2596b5SMatthias Ringwald 
4542*1b2596b5SMatthias Ringwald 
4543*1b2596b5SMatthias Ringwald    /**
4544*1b2596b5SMatthias Ringwald    * @brief Correlation of Q15 sequences
4545*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
4546*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
4547*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
4548*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
4549*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4550*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
4551*1b2596b5SMatthias Ringwald    * @return none.
4552*1b2596b5SMatthias Ringwald    */
4553*1b2596b5SMatthias Ringwald   void arm_correlate_opt_q15(
4554*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
4555*1b2596b5SMatthias Ringwald   uint32_t srcALen,
4556*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
4557*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
4558*1b2596b5SMatthias Ringwald   q15_t * pDst,
4559*1b2596b5SMatthias Ringwald   q15_t * pScratch);
4560*1b2596b5SMatthias Ringwald 
4561*1b2596b5SMatthias Ringwald 
4562*1b2596b5SMatthias Ringwald   /**
4563*1b2596b5SMatthias Ringwald    * @brief Correlation of Q15 sequences.
4564*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
4565*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
4566*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
4567*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
4568*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4569*1b2596b5SMatthias Ringwald    * @return none.
4570*1b2596b5SMatthias Ringwald    */
4571*1b2596b5SMatthias Ringwald 
4572*1b2596b5SMatthias Ringwald   void arm_correlate_q15(
4573*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
4574*1b2596b5SMatthias Ringwald   uint32_t srcALen,
4575*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
4576*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
4577*1b2596b5SMatthias Ringwald   q15_t * pDst);
4578*1b2596b5SMatthias Ringwald 
4579*1b2596b5SMatthias Ringwald   /**
4580*1b2596b5SMatthias Ringwald    * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
4581*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
4582*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
4583*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
4584*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
4585*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4586*1b2596b5SMatthias Ringwald    * @return none.
4587*1b2596b5SMatthias Ringwald    */
4588*1b2596b5SMatthias Ringwald 
4589*1b2596b5SMatthias Ringwald   void arm_correlate_fast_q15(
4590*1b2596b5SMatthias Ringwald 			       q15_t * pSrcA,
4591*1b2596b5SMatthias Ringwald 			      uint32_t srcALen,
4592*1b2596b5SMatthias Ringwald 			       q15_t * pSrcB,
4593*1b2596b5SMatthias Ringwald 			      uint32_t srcBLen,
4594*1b2596b5SMatthias Ringwald 			      q15_t * pDst);
4595*1b2596b5SMatthias Ringwald 
4596*1b2596b5SMatthias Ringwald 
4597*1b2596b5SMatthias Ringwald 
4598*1b2596b5SMatthias Ringwald   /**
4599*1b2596b5SMatthias Ringwald    * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
4600*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
4601*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
4602*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
4603*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
4604*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4605*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
4606*1b2596b5SMatthias Ringwald    * @return none.
4607*1b2596b5SMatthias Ringwald    */
4608*1b2596b5SMatthias Ringwald 
4609*1b2596b5SMatthias Ringwald   void arm_correlate_fast_opt_q15(
4610*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
4611*1b2596b5SMatthias Ringwald   uint32_t srcALen,
4612*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
4613*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
4614*1b2596b5SMatthias Ringwald   q15_t * pDst,
4615*1b2596b5SMatthias Ringwald   q15_t * pScratch);
4616*1b2596b5SMatthias Ringwald 
4617*1b2596b5SMatthias Ringwald   /**
4618*1b2596b5SMatthias Ringwald    * @brief Correlation of Q31 sequences.
4619*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
4620*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
4621*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
4622*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
4623*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4624*1b2596b5SMatthias Ringwald    * @return none.
4625*1b2596b5SMatthias Ringwald    */
4626*1b2596b5SMatthias Ringwald 
4627*1b2596b5SMatthias Ringwald   void arm_correlate_q31(
4628*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
4629*1b2596b5SMatthias Ringwald   uint32_t srcALen,
4630*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
4631*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
4632*1b2596b5SMatthias Ringwald   q31_t * pDst);
4633*1b2596b5SMatthias Ringwald 
4634*1b2596b5SMatthias Ringwald   /**
4635*1b2596b5SMatthias Ringwald    * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
4636*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
4637*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
4638*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
4639*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
4640*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4641*1b2596b5SMatthias Ringwald    * @return none.
4642*1b2596b5SMatthias Ringwald    */
4643*1b2596b5SMatthias Ringwald 
4644*1b2596b5SMatthias Ringwald   void arm_correlate_fast_q31(
4645*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
4646*1b2596b5SMatthias Ringwald   uint32_t srcALen,
4647*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
4648*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
4649*1b2596b5SMatthias Ringwald   q31_t * pDst);
4650*1b2596b5SMatthias Ringwald 
4651*1b2596b5SMatthias Ringwald 
4652*1b2596b5SMatthias Ringwald 
4653*1b2596b5SMatthias Ringwald  /**
4654*1b2596b5SMatthias Ringwald    * @brief Correlation of Q7 sequences.
4655*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
4656*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
4657*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
4658*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
4659*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4660*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
4661*1b2596b5SMatthias Ringwald    * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
4662*1b2596b5SMatthias Ringwald    * @return none.
4663*1b2596b5SMatthias Ringwald    */
4664*1b2596b5SMatthias Ringwald 
4665*1b2596b5SMatthias Ringwald   void arm_correlate_opt_q7(
4666*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
4667*1b2596b5SMatthias Ringwald   uint32_t srcALen,
4668*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
4669*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
4670*1b2596b5SMatthias Ringwald   q7_t * pDst,
4671*1b2596b5SMatthias Ringwald   q15_t * pScratch1,
4672*1b2596b5SMatthias Ringwald   q15_t * pScratch2);
4673*1b2596b5SMatthias Ringwald 
4674*1b2596b5SMatthias Ringwald 
4675*1b2596b5SMatthias Ringwald   /**
4676*1b2596b5SMatthias Ringwald    * @brief Correlation of Q7 sequences.
4677*1b2596b5SMatthias Ringwald    * @param[in] *pSrcA points to the first input sequence.
4678*1b2596b5SMatthias Ringwald    * @param[in] srcALen length of the first input sequence.
4679*1b2596b5SMatthias Ringwald    * @param[in] *pSrcB points to the second input sequence.
4680*1b2596b5SMatthias Ringwald    * @param[in] srcBLen length of the second input sequence.
4681*1b2596b5SMatthias Ringwald    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1.
4682*1b2596b5SMatthias Ringwald    * @return none.
4683*1b2596b5SMatthias Ringwald    */
4684*1b2596b5SMatthias Ringwald 
4685*1b2596b5SMatthias Ringwald   void arm_correlate_q7(
4686*1b2596b5SMatthias Ringwald   q7_t * pSrcA,
4687*1b2596b5SMatthias Ringwald   uint32_t srcALen,
4688*1b2596b5SMatthias Ringwald   q7_t * pSrcB,
4689*1b2596b5SMatthias Ringwald   uint32_t srcBLen,
4690*1b2596b5SMatthias Ringwald   q7_t * pDst);
4691*1b2596b5SMatthias Ringwald 
4692*1b2596b5SMatthias Ringwald 
4693*1b2596b5SMatthias Ringwald   /**
4694*1b2596b5SMatthias Ringwald    * @brief Instance structure for the floating-point sparse FIR filter.
4695*1b2596b5SMatthias Ringwald    */
4696*1b2596b5SMatthias Ringwald   typedef struct
4697*1b2596b5SMatthias Ringwald   {
4698*1b2596b5SMatthias Ringwald     uint16_t numTaps;             /**< number of coefficients in the filter. */
4699*1b2596b5SMatthias Ringwald     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
4700*1b2596b5SMatthias Ringwald     float32_t *pState;            /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4701*1b2596b5SMatthias Ringwald     float32_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
4702*1b2596b5SMatthias Ringwald     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
4703*1b2596b5SMatthias Ringwald     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
4704*1b2596b5SMatthias Ringwald   } arm_fir_sparse_instance_f32;
4705*1b2596b5SMatthias Ringwald 
4706*1b2596b5SMatthias Ringwald   /**
4707*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q31 sparse FIR filter.
4708*1b2596b5SMatthias Ringwald    */
4709*1b2596b5SMatthias Ringwald 
4710*1b2596b5SMatthias Ringwald   typedef struct
4711*1b2596b5SMatthias Ringwald   {
4712*1b2596b5SMatthias Ringwald     uint16_t numTaps;             /**< number of coefficients in the filter. */
4713*1b2596b5SMatthias Ringwald     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
4714*1b2596b5SMatthias Ringwald     q31_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4715*1b2596b5SMatthias Ringwald     q31_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/
4716*1b2596b5SMatthias Ringwald     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
4717*1b2596b5SMatthias Ringwald     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
4718*1b2596b5SMatthias Ringwald   } arm_fir_sparse_instance_q31;
4719*1b2596b5SMatthias Ringwald 
4720*1b2596b5SMatthias Ringwald   /**
4721*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q15 sparse FIR filter.
4722*1b2596b5SMatthias Ringwald    */
4723*1b2596b5SMatthias Ringwald 
4724*1b2596b5SMatthias Ringwald   typedef struct
4725*1b2596b5SMatthias Ringwald   {
4726*1b2596b5SMatthias Ringwald     uint16_t numTaps;             /**< number of coefficients in the filter. */
4727*1b2596b5SMatthias Ringwald     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
4728*1b2596b5SMatthias Ringwald     q15_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4729*1b2596b5SMatthias Ringwald     q15_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/
4730*1b2596b5SMatthias Ringwald     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
4731*1b2596b5SMatthias Ringwald     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
4732*1b2596b5SMatthias Ringwald   } arm_fir_sparse_instance_q15;
4733*1b2596b5SMatthias Ringwald 
4734*1b2596b5SMatthias Ringwald   /**
4735*1b2596b5SMatthias Ringwald    * @brief Instance structure for the Q7 sparse FIR filter.
4736*1b2596b5SMatthias Ringwald    */
4737*1b2596b5SMatthias Ringwald 
4738*1b2596b5SMatthias Ringwald   typedef struct
4739*1b2596b5SMatthias Ringwald   {
4740*1b2596b5SMatthias Ringwald     uint16_t numTaps;             /**< number of coefficients in the filter. */
4741*1b2596b5SMatthias Ringwald     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */
4742*1b2596b5SMatthias Ringwald     q7_t *pState;                 /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4743*1b2596b5SMatthias Ringwald     q7_t *pCoeffs;                /**< points to the coefficient array. The array is of length numTaps.*/
4744*1b2596b5SMatthias Ringwald     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */
4745*1b2596b5SMatthias Ringwald     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */
4746*1b2596b5SMatthias Ringwald   } arm_fir_sparse_instance_q7;
4747*1b2596b5SMatthias Ringwald 
4748*1b2596b5SMatthias Ringwald   /**
4749*1b2596b5SMatthias Ringwald    * @brief Processing function for the floating-point sparse FIR filter.
4750*1b2596b5SMatthias Ringwald    * @param[in]  *S          points to an instance of the floating-point sparse FIR structure.
4751*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc       points to the block of input data.
4752*1b2596b5SMatthias Ringwald    * @param[out] *pDst       points to the block of output data
4753*1b2596b5SMatthias Ringwald    * @param[in]  *pScratchIn points to a temporary buffer of size blockSize.
4754*1b2596b5SMatthias Ringwald    * @param[in]  blockSize   number of input samples to process per call.
4755*1b2596b5SMatthias Ringwald    * @return none.
4756*1b2596b5SMatthias Ringwald    */
4757*1b2596b5SMatthias Ringwald 
4758*1b2596b5SMatthias Ringwald   void arm_fir_sparse_f32(
4759*1b2596b5SMatthias Ringwald   arm_fir_sparse_instance_f32 * S,
4760*1b2596b5SMatthias Ringwald   float32_t * pSrc,
4761*1b2596b5SMatthias Ringwald   float32_t * pDst,
4762*1b2596b5SMatthias Ringwald   float32_t * pScratchIn,
4763*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4764*1b2596b5SMatthias Ringwald 
4765*1b2596b5SMatthias Ringwald   /**
4766*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the floating-point sparse FIR filter.
4767*1b2596b5SMatthias Ringwald    * @param[in,out] *S         points to an instance of the floating-point sparse FIR structure.
4768*1b2596b5SMatthias Ringwald    * @param[in]     numTaps    number of nonzero coefficients in the filter.
4769*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs   points to the array of filter coefficients.
4770*1b2596b5SMatthias Ringwald    * @param[in]     *pState    points to the state buffer.
4771*1b2596b5SMatthias Ringwald    * @param[in]     *pTapDelay points to the array of offset times.
4772*1b2596b5SMatthias Ringwald    * @param[in]     maxDelay   maximum offset time supported.
4773*1b2596b5SMatthias Ringwald    * @param[in]     blockSize  number of samples that will be processed per block.
4774*1b2596b5SMatthias Ringwald    * @return none
4775*1b2596b5SMatthias Ringwald    */
4776*1b2596b5SMatthias Ringwald 
4777*1b2596b5SMatthias Ringwald   void arm_fir_sparse_init_f32(
4778*1b2596b5SMatthias Ringwald   arm_fir_sparse_instance_f32 * S,
4779*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4780*1b2596b5SMatthias Ringwald   float32_t * pCoeffs,
4781*1b2596b5SMatthias Ringwald   float32_t * pState,
4782*1b2596b5SMatthias Ringwald   int32_t * pTapDelay,
4783*1b2596b5SMatthias Ringwald   uint16_t maxDelay,
4784*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4785*1b2596b5SMatthias Ringwald 
4786*1b2596b5SMatthias Ringwald   /**
4787*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q31 sparse FIR filter.
4788*1b2596b5SMatthias Ringwald    * @param[in]  *S          points to an instance of the Q31 sparse FIR structure.
4789*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc       points to the block of input data.
4790*1b2596b5SMatthias Ringwald    * @param[out] *pDst       points to the block of output data
4791*1b2596b5SMatthias Ringwald    * @param[in]  *pScratchIn points to a temporary buffer of size blockSize.
4792*1b2596b5SMatthias Ringwald    * @param[in]  blockSize   number of input samples to process per call.
4793*1b2596b5SMatthias Ringwald    * @return none.
4794*1b2596b5SMatthias Ringwald    */
4795*1b2596b5SMatthias Ringwald 
4796*1b2596b5SMatthias Ringwald   void arm_fir_sparse_q31(
4797*1b2596b5SMatthias Ringwald   arm_fir_sparse_instance_q31 * S,
4798*1b2596b5SMatthias Ringwald   q31_t * pSrc,
4799*1b2596b5SMatthias Ringwald   q31_t * pDst,
4800*1b2596b5SMatthias Ringwald   q31_t * pScratchIn,
4801*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4802*1b2596b5SMatthias Ringwald 
4803*1b2596b5SMatthias Ringwald   /**
4804*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q31 sparse FIR filter.
4805*1b2596b5SMatthias Ringwald    * @param[in,out] *S         points to an instance of the Q31 sparse FIR structure.
4806*1b2596b5SMatthias Ringwald    * @param[in]     numTaps    number of nonzero coefficients in the filter.
4807*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs   points to the array of filter coefficients.
4808*1b2596b5SMatthias Ringwald    * @param[in]     *pState    points to the state buffer.
4809*1b2596b5SMatthias Ringwald    * @param[in]     *pTapDelay points to the array of offset times.
4810*1b2596b5SMatthias Ringwald    * @param[in]     maxDelay   maximum offset time supported.
4811*1b2596b5SMatthias Ringwald    * @param[in]     blockSize  number of samples that will be processed per block.
4812*1b2596b5SMatthias Ringwald    * @return none
4813*1b2596b5SMatthias Ringwald    */
4814*1b2596b5SMatthias Ringwald 
4815*1b2596b5SMatthias Ringwald   void arm_fir_sparse_init_q31(
4816*1b2596b5SMatthias Ringwald   arm_fir_sparse_instance_q31 * S,
4817*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4818*1b2596b5SMatthias Ringwald   q31_t * pCoeffs,
4819*1b2596b5SMatthias Ringwald   q31_t * pState,
4820*1b2596b5SMatthias Ringwald   int32_t * pTapDelay,
4821*1b2596b5SMatthias Ringwald   uint16_t maxDelay,
4822*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4823*1b2596b5SMatthias Ringwald 
4824*1b2596b5SMatthias Ringwald   /**
4825*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q15 sparse FIR filter.
4826*1b2596b5SMatthias Ringwald    * @param[in]  *S           points to an instance of the Q15 sparse FIR structure.
4827*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc        points to the block of input data.
4828*1b2596b5SMatthias Ringwald    * @param[out] *pDst        points to the block of output data
4829*1b2596b5SMatthias Ringwald    * @param[in]  *pScratchIn  points to a temporary buffer of size blockSize.
4830*1b2596b5SMatthias Ringwald    * @param[in]  *pScratchOut points to a temporary buffer of size blockSize.
4831*1b2596b5SMatthias Ringwald    * @param[in]  blockSize    number of input samples to process per call.
4832*1b2596b5SMatthias Ringwald    * @return none.
4833*1b2596b5SMatthias Ringwald    */
4834*1b2596b5SMatthias Ringwald 
4835*1b2596b5SMatthias Ringwald   void arm_fir_sparse_q15(
4836*1b2596b5SMatthias Ringwald   arm_fir_sparse_instance_q15 * S,
4837*1b2596b5SMatthias Ringwald   q15_t * pSrc,
4838*1b2596b5SMatthias Ringwald   q15_t * pDst,
4839*1b2596b5SMatthias Ringwald   q15_t * pScratchIn,
4840*1b2596b5SMatthias Ringwald   q31_t * pScratchOut,
4841*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4842*1b2596b5SMatthias Ringwald 
4843*1b2596b5SMatthias Ringwald 
4844*1b2596b5SMatthias Ringwald   /**
4845*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q15 sparse FIR filter.
4846*1b2596b5SMatthias Ringwald    * @param[in,out] *S         points to an instance of the Q15 sparse FIR structure.
4847*1b2596b5SMatthias Ringwald    * @param[in]     numTaps    number of nonzero coefficients in the filter.
4848*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs   points to the array of filter coefficients.
4849*1b2596b5SMatthias Ringwald    * @param[in]     *pState    points to the state buffer.
4850*1b2596b5SMatthias Ringwald    * @param[in]     *pTapDelay points to the array of offset times.
4851*1b2596b5SMatthias Ringwald    * @param[in]     maxDelay   maximum offset time supported.
4852*1b2596b5SMatthias Ringwald    * @param[in]     blockSize  number of samples that will be processed per block.
4853*1b2596b5SMatthias Ringwald    * @return none
4854*1b2596b5SMatthias Ringwald    */
4855*1b2596b5SMatthias Ringwald 
4856*1b2596b5SMatthias Ringwald   void arm_fir_sparse_init_q15(
4857*1b2596b5SMatthias Ringwald   arm_fir_sparse_instance_q15 * S,
4858*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4859*1b2596b5SMatthias Ringwald   q15_t * pCoeffs,
4860*1b2596b5SMatthias Ringwald   q15_t * pState,
4861*1b2596b5SMatthias Ringwald   int32_t * pTapDelay,
4862*1b2596b5SMatthias Ringwald   uint16_t maxDelay,
4863*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4864*1b2596b5SMatthias Ringwald 
4865*1b2596b5SMatthias Ringwald   /**
4866*1b2596b5SMatthias Ringwald    * @brief Processing function for the Q7 sparse FIR filter.
4867*1b2596b5SMatthias Ringwald    * @param[in]  *S           points to an instance of the Q7 sparse FIR structure.
4868*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc        points to the block of input data.
4869*1b2596b5SMatthias Ringwald    * @param[out] *pDst        points to the block of output data
4870*1b2596b5SMatthias Ringwald    * @param[in]  *pScratchIn  points to a temporary buffer of size blockSize.
4871*1b2596b5SMatthias Ringwald    * @param[in]  *pScratchOut points to a temporary buffer of size blockSize.
4872*1b2596b5SMatthias Ringwald    * @param[in]  blockSize    number of input samples to process per call.
4873*1b2596b5SMatthias Ringwald    * @return none.
4874*1b2596b5SMatthias Ringwald    */
4875*1b2596b5SMatthias Ringwald 
4876*1b2596b5SMatthias Ringwald   void arm_fir_sparse_q7(
4877*1b2596b5SMatthias Ringwald   arm_fir_sparse_instance_q7 * S,
4878*1b2596b5SMatthias Ringwald   q7_t * pSrc,
4879*1b2596b5SMatthias Ringwald   q7_t * pDst,
4880*1b2596b5SMatthias Ringwald   q7_t * pScratchIn,
4881*1b2596b5SMatthias Ringwald   q31_t * pScratchOut,
4882*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4883*1b2596b5SMatthias Ringwald 
4884*1b2596b5SMatthias Ringwald   /**
4885*1b2596b5SMatthias Ringwald    * @brief  Initialization function for the Q7 sparse FIR filter.
4886*1b2596b5SMatthias Ringwald    * @param[in,out] *S         points to an instance of the Q7 sparse FIR structure.
4887*1b2596b5SMatthias Ringwald    * @param[in]     numTaps    number of nonzero coefficients in the filter.
4888*1b2596b5SMatthias Ringwald    * @param[in]     *pCoeffs   points to the array of filter coefficients.
4889*1b2596b5SMatthias Ringwald    * @param[in]     *pState    points to the state buffer.
4890*1b2596b5SMatthias Ringwald    * @param[in]     *pTapDelay points to the array of offset times.
4891*1b2596b5SMatthias Ringwald    * @param[in]     maxDelay   maximum offset time supported.
4892*1b2596b5SMatthias Ringwald    * @param[in]     blockSize  number of samples that will be processed per block.
4893*1b2596b5SMatthias Ringwald    * @return none
4894*1b2596b5SMatthias Ringwald    */
4895*1b2596b5SMatthias Ringwald 
4896*1b2596b5SMatthias Ringwald   void arm_fir_sparse_init_q7(
4897*1b2596b5SMatthias Ringwald   arm_fir_sparse_instance_q7 * S,
4898*1b2596b5SMatthias Ringwald   uint16_t numTaps,
4899*1b2596b5SMatthias Ringwald   q7_t * pCoeffs,
4900*1b2596b5SMatthias Ringwald   q7_t * pState,
4901*1b2596b5SMatthias Ringwald   int32_t * pTapDelay,
4902*1b2596b5SMatthias Ringwald   uint16_t maxDelay,
4903*1b2596b5SMatthias Ringwald   uint32_t blockSize);
4904*1b2596b5SMatthias Ringwald 
4905*1b2596b5SMatthias Ringwald 
4906*1b2596b5SMatthias Ringwald   /*
4907*1b2596b5SMatthias Ringwald    * @brief  Floating-point sin_cos function.
4908*1b2596b5SMatthias Ringwald    * @param[in]  theta    input value in degrees
4909*1b2596b5SMatthias Ringwald    * @param[out] *pSinVal points to the processed sine output.
4910*1b2596b5SMatthias Ringwald    * @param[out] *pCosVal points to the processed cos output.
4911*1b2596b5SMatthias Ringwald    * @return none.
4912*1b2596b5SMatthias Ringwald    */
4913*1b2596b5SMatthias Ringwald 
4914*1b2596b5SMatthias Ringwald   void arm_sin_cos_f32(
4915*1b2596b5SMatthias Ringwald   float32_t theta,
4916*1b2596b5SMatthias Ringwald   float32_t * pSinVal,
4917*1b2596b5SMatthias Ringwald   float32_t * pCcosVal);
4918*1b2596b5SMatthias Ringwald 
4919*1b2596b5SMatthias Ringwald   /*
4920*1b2596b5SMatthias Ringwald    * @brief  Q31 sin_cos function.
4921*1b2596b5SMatthias Ringwald    * @param[in]  theta    scaled input value in degrees
4922*1b2596b5SMatthias Ringwald    * @param[out] *pSinVal points to the processed sine output.
4923*1b2596b5SMatthias Ringwald    * @param[out] *pCosVal points to the processed cosine output.
4924*1b2596b5SMatthias Ringwald    * @return none.
4925*1b2596b5SMatthias Ringwald    */
4926*1b2596b5SMatthias Ringwald 
4927*1b2596b5SMatthias Ringwald   void arm_sin_cos_q31(
4928*1b2596b5SMatthias Ringwald   q31_t theta,
4929*1b2596b5SMatthias Ringwald   q31_t * pSinVal,
4930*1b2596b5SMatthias Ringwald   q31_t * pCosVal);
4931*1b2596b5SMatthias Ringwald 
4932*1b2596b5SMatthias Ringwald 
4933*1b2596b5SMatthias Ringwald   /**
4934*1b2596b5SMatthias Ringwald    * @brief  Floating-point complex conjugate.
4935*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
4936*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
4937*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in each vector
4938*1b2596b5SMatthias Ringwald    * @return none.
4939*1b2596b5SMatthias Ringwald    */
4940*1b2596b5SMatthias Ringwald 
4941*1b2596b5SMatthias Ringwald   void arm_cmplx_conj_f32(
4942*1b2596b5SMatthias Ringwald   float32_t * pSrc,
4943*1b2596b5SMatthias Ringwald   float32_t * pDst,
4944*1b2596b5SMatthias Ringwald   uint32_t numSamples);
4945*1b2596b5SMatthias Ringwald 
4946*1b2596b5SMatthias Ringwald   /**
4947*1b2596b5SMatthias Ringwald    * @brief  Q31 complex conjugate.
4948*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
4949*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
4950*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in each vector
4951*1b2596b5SMatthias Ringwald    * @return none.
4952*1b2596b5SMatthias Ringwald    */
4953*1b2596b5SMatthias Ringwald 
4954*1b2596b5SMatthias Ringwald   void arm_cmplx_conj_q31(
4955*1b2596b5SMatthias Ringwald   q31_t * pSrc,
4956*1b2596b5SMatthias Ringwald   q31_t * pDst,
4957*1b2596b5SMatthias Ringwald   uint32_t numSamples);
4958*1b2596b5SMatthias Ringwald 
4959*1b2596b5SMatthias Ringwald   /**
4960*1b2596b5SMatthias Ringwald    * @brief  Q15 complex conjugate.
4961*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the input vector
4962*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the output vector
4963*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in each vector
4964*1b2596b5SMatthias Ringwald    * @return none.
4965*1b2596b5SMatthias Ringwald    */
4966*1b2596b5SMatthias Ringwald 
4967*1b2596b5SMatthias Ringwald   void arm_cmplx_conj_q15(
4968*1b2596b5SMatthias Ringwald   q15_t * pSrc,
4969*1b2596b5SMatthias Ringwald   q15_t * pDst,
4970*1b2596b5SMatthias Ringwald   uint32_t numSamples);
4971*1b2596b5SMatthias Ringwald 
4972*1b2596b5SMatthias Ringwald 
4973*1b2596b5SMatthias Ringwald 
4974*1b2596b5SMatthias Ringwald   /**
4975*1b2596b5SMatthias Ringwald    * @brief  Floating-point complex magnitude squared
4976*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the complex input vector
4977*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the real output vector
4978*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in the input vector
4979*1b2596b5SMatthias Ringwald    * @return none.
4980*1b2596b5SMatthias Ringwald    */
4981*1b2596b5SMatthias Ringwald 
4982*1b2596b5SMatthias Ringwald   void arm_cmplx_mag_squared_f32(
4983*1b2596b5SMatthias Ringwald   float32_t * pSrc,
4984*1b2596b5SMatthias Ringwald   float32_t * pDst,
4985*1b2596b5SMatthias Ringwald   uint32_t numSamples);
4986*1b2596b5SMatthias Ringwald 
4987*1b2596b5SMatthias Ringwald   /**
4988*1b2596b5SMatthias Ringwald    * @brief  Q31 complex magnitude squared
4989*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the complex input vector
4990*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the real output vector
4991*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in the input vector
4992*1b2596b5SMatthias Ringwald    * @return none.
4993*1b2596b5SMatthias Ringwald    */
4994*1b2596b5SMatthias Ringwald 
4995*1b2596b5SMatthias Ringwald   void arm_cmplx_mag_squared_q31(
4996*1b2596b5SMatthias Ringwald   q31_t * pSrc,
4997*1b2596b5SMatthias Ringwald   q31_t * pDst,
4998*1b2596b5SMatthias Ringwald   uint32_t numSamples);
4999*1b2596b5SMatthias Ringwald 
5000*1b2596b5SMatthias Ringwald   /**
5001*1b2596b5SMatthias Ringwald    * @brief  Q15 complex magnitude squared
5002*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the complex input vector
5003*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the real output vector
5004*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in the input vector
5005*1b2596b5SMatthias Ringwald    * @return none.
5006*1b2596b5SMatthias Ringwald    */
5007*1b2596b5SMatthias Ringwald 
5008*1b2596b5SMatthias Ringwald   void arm_cmplx_mag_squared_q15(
5009*1b2596b5SMatthias Ringwald   q15_t * pSrc,
5010*1b2596b5SMatthias Ringwald   q15_t * pDst,
5011*1b2596b5SMatthias Ringwald   uint32_t numSamples);
5012*1b2596b5SMatthias Ringwald 
5013*1b2596b5SMatthias Ringwald 
5014*1b2596b5SMatthias Ringwald  /**
5015*1b2596b5SMatthias Ringwald    * @ingroup groupController
5016*1b2596b5SMatthias Ringwald    */
5017*1b2596b5SMatthias Ringwald 
5018*1b2596b5SMatthias Ringwald   /**
5019*1b2596b5SMatthias Ringwald    * @defgroup PID PID Motor Control
5020*1b2596b5SMatthias Ringwald    *
5021*1b2596b5SMatthias Ringwald    * A Proportional Integral Derivative (PID) controller is a generic feedback control
5022*1b2596b5SMatthias Ringwald    * loop mechanism widely used in industrial control systems.
5023*1b2596b5SMatthias Ringwald    * A PID controller is the most commonly used type of feedback controller.
5024*1b2596b5SMatthias Ringwald    *
5025*1b2596b5SMatthias Ringwald    * This set of functions implements (PID) controllers
5026*1b2596b5SMatthias Ringwald    * for Q15, Q31, and floating-point data types.  The functions operate on a single sample
5027*1b2596b5SMatthias Ringwald    * of data and each call to the function returns a single processed value.
5028*1b2596b5SMatthias Ringwald    * <code>S</code> points to an instance of the PID control data structure.  <code>in</code>
5029*1b2596b5SMatthias Ringwald    * is the input sample value. The functions return the output value.
5030*1b2596b5SMatthias Ringwald    *
5031*1b2596b5SMatthias Ringwald    * \par Algorithm:
5032*1b2596b5SMatthias Ringwald    * <pre>
5033*1b2596b5SMatthias Ringwald    *    y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
5034*1b2596b5SMatthias Ringwald    *    A0 = Kp + Ki + Kd
5035*1b2596b5SMatthias Ringwald    *    A1 = (-Kp ) - (2 * Kd )
5036*1b2596b5SMatthias Ringwald    *    A2 = Kd  </pre>
5037*1b2596b5SMatthias Ringwald    *
5038*1b2596b5SMatthias Ringwald    * \par
5039*1b2596b5SMatthias Ringwald    * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
5040*1b2596b5SMatthias Ringwald    *
5041*1b2596b5SMatthias Ringwald    * \par
5042*1b2596b5SMatthias Ringwald    * \image html PID.gif "Proportional Integral Derivative Controller"
5043*1b2596b5SMatthias Ringwald    *
5044*1b2596b5SMatthias Ringwald    * \par
5045*1b2596b5SMatthias Ringwald    * The PID controller calculates an "error" value as the difference between
5046*1b2596b5SMatthias Ringwald    * the measured output and the reference input.
5047*1b2596b5SMatthias Ringwald    * The controller attempts to minimize the error by adjusting the process control inputs.
5048*1b2596b5SMatthias Ringwald    * The proportional value determines the reaction to the current error,
5049*1b2596b5SMatthias Ringwald    * the integral value determines the reaction based on the sum of recent errors,
5050*1b2596b5SMatthias Ringwald    * and the derivative value determines the reaction based on the rate at which the error has been changing.
5051*1b2596b5SMatthias Ringwald    *
5052*1b2596b5SMatthias Ringwald    * \par Instance Structure
5053*1b2596b5SMatthias Ringwald    * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
5054*1b2596b5SMatthias Ringwald    * A separate instance structure must be defined for each PID Controller.
5055*1b2596b5SMatthias Ringwald    * There are separate instance structure declarations for each of the 3 supported data types.
5056*1b2596b5SMatthias Ringwald    *
5057*1b2596b5SMatthias Ringwald    * \par Reset Functions
5058*1b2596b5SMatthias Ringwald    * There is also an associated reset function for each data type which clears the state array.
5059*1b2596b5SMatthias Ringwald    *
5060*1b2596b5SMatthias Ringwald    * \par Initialization Functions
5061*1b2596b5SMatthias Ringwald    * There is also an associated initialization function for each data type.
5062*1b2596b5SMatthias Ringwald    * The initialization function performs the following operations:
5063*1b2596b5SMatthias Ringwald    * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
5064*1b2596b5SMatthias Ringwald    * - Zeros out the values in the state buffer.
5065*1b2596b5SMatthias Ringwald    *
5066*1b2596b5SMatthias Ringwald    * \par
5067*1b2596b5SMatthias Ringwald    * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
5068*1b2596b5SMatthias Ringwald    *
5069*1b2596b5SMatthias Ringwald    * \par Fixed-Point Behavior
5070*1b2596b5SMatthias Ringwald    * Care must be taken when using the fixed-point versions of the PID Controller functions.
5071*1b2596b5SMatthias Ringwald    * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
5072*1b2596b5SMatthias Ringwald    * Refer to the function specific documentation below for usage guidelines.
5073*1b2596b5SMatthias Ringwald    */
5074*1b2596b5SMatthias Ringwald 
5075*1b2596b5SMatthias Ringwald   /**
5076*1b2596b5SMatthias Ringwald    * @addtogroup PID
5077*1b2596b5SMatthias Ringwald    * @{
5078*1b2596b5SMatthias Ringwald    */
5079*1b2596b5SMatthias Ringwald 
5080*1b2596b5SMatthias Ringwald   /**
5081*1b2596b5SMatthias Ringwald    * @brief  Process function for the floating-point PID Control.
5082*1b2596b5SMatthias Ringwald    * @param[in,out] *S is an instance of the floating-point PID Control structure
5083*1b2596b5SMatthias Ringwald    * @param[in] in input sample to process
5084*1b2596b5SMatthias Ringwald    * @return out processed output sample.
5085*1b2596b5SMatthias Ringwald    */
5086*1b2596b5SMatthias Ringwald 
5087*1b2596b5SMatthias Ringwald 
arm_pid_f32(arm_pid_instance_f32 * S,float32_t in)5088*1b2596b5SMatthias Ringwald   static __INLINE float32_t arm_pid_f32(
5089*1b2596b5SMatthias Ringwald   arm_pid_instance_f32 * S,
5090*1b2596b5SMatthias Ringwald   float32_t in)
5091*1b2596b5SMatthias Ringwald   {
5092*1b2596b5SMatthias Ringwald     float32_t out;
5093*1b2596b5SMatthias Ringwald 
5094*1b2596b5SMatthias Ringwald     /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]  */
5095*1b2596b5SMatthias Ringwald     out = (S->A0 * in) +
5096*1b2596b5SMatthias Ringwald       (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
5097*1b2596b5SMatthias Ringwald 
5098*1b2596b5SMatthias Ringwald     /* Update state */
5099*1b2596b5SMatthias Ringwald     S->state[1] = S->state[0];
5100*1b2596b5SMatthias Ringwald     S->state[0] = in;
5101*1b2596b5SMatthias Ringwald     S->state[2] = out;
5102*1b2596b5SMatthias Ringwald 
5103*1b2596b5SMatthias Ringwald     /* return to application */
5104*1b2596b5SMatthias Ringwald     return (out);
5105*1b2596b5SMatthias Ringwald 
5106*1b2596b5SMatthias Ringwald   }
5107*1b2596b5SMatthias Ringwald 
5108*1b2596b5SMatthias Ringwald   /**
5109*1b2596b5SMatthias Ringwald    * @brief  Process function for the Q31 PID Control.
5110*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q31 PID Control structure
5111*1b2596b5SMatthias Ringwald    * @param[in] in input sample to process
5112*1b2596b5SMatthias Ringwald    * @return out processed output sample.
5113*1b2596b5SMatthias Ringwald    *
5114*1b2596b5SMatthias Ringwald    * <b>Scaling and Overflow Behavior:</b>
5115*1b2596b5SMatthias Ringwald    * \par
5116*1b2596b5SMatthias Ringwald    * The function is implemented using an internal 64-bit accumulator.
5117*1b2596b5SMatthias Ringwald    * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
5118*1b2596b5SMatthias Ringwald    * Thus, if the accumulator result overflows it wraps around rather than clip.
5119*1b2596b5SMatthias Ringwald    * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
5120*1b2596b5SMatthias Ringwald    * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
5121*1b2596b5SMatthias Ringwald    */
5122*1b2596b5SMatthias Ringwald 
arm_pid_q31(arm_pid_instance_q31 * S,q31_t in)5123*1b2596b5SMatthias Ringwald   static __INLINE q31_t arm_pid_q31(
5124*1b2596b5SMatthias Ringwald   arm_pid_instance_q31 * S,
5125*1b2596b5SMatthias Ringwald   q31_t in)
5126*1b2596b5SMatthias Ringwald   {
5127*1b2596b5SMatthias Ringwald     q63_t acc;
5128*1b2596b5SMatthias Ringwald     q31_t out;
5129*1b2596b5SMatthias Ringwald 
5130*1b2596b5SMatthias Ringwald     /* acc = A0 * x[n]  */
5131*1b2596b5SMatthias Ringwald     acc = (q63_t) S->A0 * in;
5132*1b2596b5SMatthias Ringwald 
5133*1b2596b5SMatthias Ringwald     /* acc += A1 * x[n-1] */
5134*1b2596b5SMatthias Ringwald     acc += (q63_t) S->A1 * S->state[0];
5135*1b2596b5SMatthias Ringwald 
5136*1b2596b5SMatthias Ringwald     /* acc += A2 * x[n-2]  */
5137*1b2596b5SMatthias Ringwald     acc += (q63_t) S->A2 * S->state[1];
5138*1b2596b5SMatthias Ringwald 
5139*1b2596b5SMatthias Ringwald     /* convert output to 1.31 format to add y[n-1] */
5140*1b2596b5SMatthias Ringwald     out = (q31_t) (acc >> 31u);
5141*1b2596b5SMatthias Ringwald 
5142*1b2596b5SMatthias Ringwald     /* out += y[n-1] */
5143*1b2596b5SMatthias Ringwald     out += S->state[2];
5144*1b2596b5SMatthias Ringwald 
5145*1b2596b5SMatthias Ringwald     /* Update state */
5146*1b2596b5SMatthias Ringwald     S->state[1] = S->state[0];
5147*1b2596b5SMatthias Ringwald     S->state[0] = in;
5148*1b2596b5SMatthias Ringwald     S->state[2] = out;
5149*1b2596b5SMatthias Ringwald 
5150*1b2596b5SMatthias Ringwald     /* return to application */
5151*1b2596b5SMatthias Ringwald     return (out);
5152*1b2596b5SMatthias Ringwald 
5153*1b2596b5SMatthias Ringwald   }
5154*1b2596b5SMatthias Ringwald 
5155*1b2596b5SMatthias Ringwald   /**
5156*1b2596b5SMatthias Ringwald    * @brief  Process function for the Q15 PID Control.
5157*1b2596b5SMatthias Ringwald    * @param[in,out] *S points to an instance of the Q15 PID Control structure
5158*1b2596b5SMatthias Ringwald    * @param[in] in input sample to process
5159*1b2596b5SMatthias Ringwald    * @return out processed output sample.
5160*1b2596b5SMatthias Ringwald    *
5161*1b2596b5SMatthias Ringwald    * <b>Scaling and Overflow Behavior:</b>
5162*1b2596b5SMatthias Ringwald    * \par
5163*1b2596b5SMatthias Ringwald    * The function is implemented using a 64-bit internal accumulator.
5164*1b2596b5SMatthias Ringwald    * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
5165*1b2596b5SMatthias Ringwald    * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
5166*1b2596b5SMatthias Ringwald    * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
5167*1b2596b5SMatthias Ringwald    * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
5168*1b2596b5SMatthias Ringwald    * Lastly, the accumulator is saturated to yield a result in 1.15 format.
5169*1b2596b5SMatthias Ringwald    */
5170*1b2596b5SMatthias Ringwald 
arm_pid_q15(arm_pid_instance_q15 * S,q15_t in)5171*1b2596b5SMatthias Ringwald   static __INLINE q15_t arm_pid_q15(
5172*1b2596b5SMatthias Ringwald   arm_pid_instance_q15 * S,
5173*1b2596b5SMatthias Ringwald   q15_t in)
5174*1b2596b5SMatthias Ringwald   {
5175*1b2596b5SMatthias Ringwald     q63_t acc;
5176*1b2596b5SMatthias Ringwald     q15_t out;
5177*1b2596b5SMatthias Ringwald 
5178*1b2596b5SMatthias Ringwald #ifndef ARM_MATH_CM0_FAMILY
5179*1b2596b5SMatthias Ringwald     __SIMD32_TYPE *vstate;
5180*1b2596b5SMatthias Ringwald 
5181*1b2596b5SMatthias Ringwald     /* Implementation of PID controller */
5182*1b2596b5SMatthias Ringwald 
5183*1b2596b5SMatthias Ringwald     /* acc = A0 * x[n]  */
5184*1b2596b5SMatthias Ringwald     acc = (q31_t) __SMUAD(S->A0, in);
5185*1b2596b5SMatthias Ringwald 
5186*1b2596b5SMatthias Ringwald     /* acc += A1 * x[n-1] + A2 * x[n-2]  */
5187*1b2596b5SMatthias Ringwald     vstate = __SIMD32_CONST(S->state);
5188*1b2596b5SMatthias Ringwald     acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
5189*1b2596b5SMatthias Ringwald 
5190*1b2596b5SMatthias Ringwald #else
5191*1b2596b5SMatthias Ringwald     /* acc = A0 * x[n]  */
5192*1b2596b5SMatthias Ringwald     acc = ((q31_t) S->A0) * in;
5193*1b2596b5SMatthias Ringwald 
5194*1b2596b5SMatthias Ringwald     /* acc += A1 * x[n-1] + A2 * x[n-2]  */
5195*1b2596b5SMatthias Ringwald     acc += (q31_t) S->A1 * S->state[0];
5196*1b2596b5SMatthias Ringwald     acc += (q31_t) S->A2 * S->state[1];
5197*1b2596b5SMatthias Ringwald 
5198*1b2596b5SMatthias Ringwald #endif
5199*1b2596b5SMatthias Ringwald 
5200*1b2596b5SMatthias Ringwald     /* acc += y[n-1] */
5201*1b2596b5SMatthias Ringwald     acc += (q31_t) S->state[2] << 15;
5202*1b2596b5SMatthias Ringwald 
5203*1b2596b5SMatthias Ringwald     /* saturate the output */
5204*1b2596b5SMatthias Ringwald     out = (q15_t) (__SSAT((acc >> 15), 16));
5205*1b2596b5SMatthias Ringwald 
5206*1b2596b5SMatthias Ringwald     /* Update state */
5207*1b2596b5SMatthias Ringwald     S->state[1] = S->state[0];
5208*1b2596b5SMatthias Ringwald     S->state[0] = in;
5209*1b2596b5SMatthias Ringwald     S->state[2] = out;
5210*1b2596b5SMatthias Ringwald 
5211*1b2596b5SMatthias Ringwald     /* return to application */
5212*1b2596b5SMatthias Ringwald     return (out);
5213*1b2596b5SMatthias Ringwald 
5214*1b2596b5SMatthias Ringwald   }
5215*1b2596b5SMatthias Ringwald 
5216*1b2596b5SMatthias Ringwald   /**
5217*1b2596b5SMatthias Ringwald    * @} end of PID group
5218*1b2596b5SMatthias Ringwald    */
5219*1b2596b5SMatthias Ringwald 
5220*1b2596b5SMatthias Ringwald 
5221*1b2596b5SMatthias Ringwald   /**
5222*1b2596b5SMatthias Ringwald    * @brief Floating-point matrix inverse.
5223*1b2596b5SMatthias Ringwald    * @param[in]  *src points to the instance of the input floating-point matrix structure.
5224*1b2596b5SMatthias Ringwald    * @param[out] *dst points to the instance of the output floating-point matrix structure.
5225*1b2596b5SMatthias Ringwald    * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
5226*1b2596b5SMatthias Ringwald    * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
5227*1b2596b5SMatthias Ringwald    */
5228*1b2596b5SMatthias Ringwald 
5229*1b2596b5SMatthias Ringwald   arm_status arm_mat_inverse_f32(
5230*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f32 * src,
5231*1b2596b5SMatthias Ringwald   arm_matrix_instance_f32 * dst);
5232*1b2596b5SMatthias Ringwald 
5233*1b2596b5SMatthias Ringwald 
5234*1b2596b5SMatthias Ringwald   /**
5235*1b2596b5SMatthias Ringwald    * @brief Floating-point matrix inverse.
5236*1b2596b5SMatthias Ringwald    * @param[in]  *src points to the instance of the input floating-point matrix structure.
5237*1b2596b5SMatthias Ringwald    * @param[out] *dst points to the instance of the output floating-point matrix structure.
5238*1b2596b5SMatthias Ringwald    * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
5239*1b2596b5SMatthias Ringwald    * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
5240*1b2596b5SMatthias Ringwald    */
5241*1b2596b5SMatthias Ringwald 
5242*1b2596b5SMatthias Ringwald   arm_status arm_mat_inverse_f64(
5243*1b2596b5SMatthias Ringwald   const arm_matrix_instance_f64 * src,
5244*1b2596b5SMatthias Ringwald   arm_matrix_instance_f64 * dst);
5245*1b2596b5SMatthias Ringwald 
5246*1b2596b5SMatthias Ringwald 
5247*1b2596b5SMatthias Ringwald 
5248*1b2596b5SMatthias Ringwald   /**
5249*1b2596b5SMatthias Ringwald    * @ingroup groupController
5250*1b2596b5SMatthias Ringwald    */
5251*1b2596b5SMatthias Ringwald 
5252*1b2596b5SMatthias Ringwald 
5253*1b2596b5SMatthias Ringwald   /**
5254*1b2596b5SMatthias Ringwald    * @defgroup clarke Vector Clarke Transform
5255*1b2596b5SMatthias Ringwald    * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
5256*1b2596b5SMatthias Ringwald    * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
5257*1b2596b5SMatthias Ringwald    * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
5258*1b2596b5SMatthias Ringwald    * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
5259*1b2596b5SMatthias Ringwald    * \image html clarke.gif Stator current space vector and its components in (a,b).
5260*1b2596b5SMatthias Ringwald    * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
5261*1b2596b5SMatthias Ringwald    * can be calculated using only <code>Ia</code> and <code>Ib</code>.
5262*1b2596b5SMatthias Ringwald    *
5263*1b2596b5SMatthias Ringwald    * The function operates on a single sample of data and each call to the function returns the processed output.
5264*1b2596b5SMatthias Ringwald    * The library provides separate functions for Q31 and floating-point data types.
5265*1b2596b5SMatthias Ringwald    * \par Algorithm
5266*1b2596b5SMatthias Ringwald    * \image html clarkeFormula.gif
5267*1b2596b5SMatthias Ringwald    * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
5268*1b2596b5SMatthias Ringwald    * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
5269*1b2596b5SMatthias Ringwald    * \par Fixed-Point Behavior
5270*1b2596b5SMatthias Ringwald    * Care must be taken when using the Q31 version of the Clarke transform.
5271*1b2596b5SMatthias Ringwald    * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5272*1b2596b5SMatthias Ringwald    * Refer to the function specific documentation below for usage guidelines.
5273*1b2596b5SMatthias Ringwald    */
5274*1b2596b5SMatthias Ringwald 
5275*1b2596b5SMatthias Ringwald   /**
5276*1b2596b5SMatthias Ringwald    * @addtogroup clarke
5277*1b2596b5SMatthias Ringwald    * @{
5278*1b2596b5SMatthias Ringwald    */
5279*1b2596b5SMatthias Ringwald 
5280*1b2596b5SMatthias Ringwald   /**
5281*1b2596b5SMatthias Ringwald    *
5282*1b2596b5SMatthias Ringwald    * @brief  Floating-point Clarke transform
5283*1b2596b5SMatthias Ringwald    * @param[in]       Ia       input three-phase coordinate <code>a</code>
5284*1b2596b5SMatthias Ringwald    * @param[in]       Ib       input three-phase coordinate <code>b</code>
5285*1b2596b5SMatthias Ringwald    * @param[out]      *pIalpha points to output two-phase orthogonal vector axis alpha
5286*1b2596b5SMatthias Ringwald    * @param[out]      *pIbeta  points to output two-phase orthogonal vector axis beta
5287*1b2596b5SMatthias Ringwald    * @return none.
5288*1b2596b5SMatthias Ringwald    */
5289*1b2596b5SMatthias Ringwald 
arm_clarke_f32(float32_t Ia,float32_t Ib,float32_t * pIalpha,float32_t * pIbeta)5290*1b2596b5SMatthias Ringwald   static __INLINE void arm_clarke_f32(
5291*1b2596b5SMatthias Ringwald   float32_t Ia,
5292*1b2596b5SMatthias Ringwald   float32_t Ib,
5293*1b2596b5SMatthias Ringwald   float32_t * pIalpha,
5294*1b2596b5SMatthias Ringwald   float32_t * pIbeta)
5295*1b2596b5SMatthias Ringwald   {
5296*1b2596b5SMatthias Ringwald     /* Calculate pIalpha using the equation, pIalpha = Ia */
5297*1b2596b5SMatthias Ringwald     *pIalpha = Ia;
5298*1b2596b5SMatthias Ringwald 
5299*1b2596b5SMatthias Ringwald     /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
5300*1b2596b5SMatthias Ringwald     *pIbeta =
5301*1b2596b5SMatthias Ringwald       ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
5302*1b2596b5SMatthias Ringwald 
5303*1b2596b5SMatthias Ringwald   }
5304*1b2596b5SMatthias Ringwald 
5305*1b2596b5SMatthias Ringwald   /**
5306*1b2596b5SMatthias Ringwald    * @brief  Clarke transform for Q31 version
5307*1b2596b5SMatthias Ringwald    * @param[in]       Ia       input three-phase coordinate <code>a</code>
5308*1b2596b5SMatthias Ringwald    * @param[in]       Ib       input three-phase coordinate <code>b</code>
5309*1b2596b5SMatthias Ringwald    * @param[out]      *pIalpha points to output two-phase orthogonal vector axis alpha
5310*1b2596b5SMatthias Ringwald    * @param[out]      *pIbeta  points to output two-phase orthogonal vector axis beta
5311*1b2596b5SMatthias Ringwald    * @return none.
5312*1b2596b5SMatthias Ringwald    *
5313*1b2596b5SMatthias Ringwald    * <b>Scaling and Overflow Behavior:</b>
5314*1b2596b5SMatthias Ringwald    * \par
5315*1b2596b5SMatthias Ringwald    * The function is implemented using an internal 32-bit accumulator.
5316*1b2596b5SMatthias Ringwald    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5317*1b2596b5SMatthias Ringwald    * There is saturation on the addition, hence there is no risk of overflow.
5318*1b2596b5SMatthias Ringwald    */
5319*1b2596b5SMatthias Ringwald 
arm_clarke_q31(q31_t Ia,q31_t Ib,q31_t * pIalpha,q31_t * pIbeta)5320*1b2596b5SMatthias Ringwald   static __INLINE void arm_clarke_q31(
5321*1b2596b5SMatthias Ringwald   q31_t Ia,
5322*1b2596b5SMatthias Ringwald   q31_t Ib,
5323*1b2596b5SMatthias Ringwald   q31_t * pIalpha,
5324*1b2596b5SMatthias Ringwald   q31_t * pIbeta)
5325*1b2596b5SMatthias Ringwald   {
5326*1b2596b5SMatthias Ringwald     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
5327*1b2596b5SMatthias Ringwald 
5328*1b2596b5SMatthias Ringwald     /* Calculating pIalpha from Ia by equation pIalpha = Ia */
5329*1b2596b5SMatthias Ringwald     *pIalpha = Ia;
5330*1b2596b5SMatthias Ringwald 
5331*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
5332*1b2596b5SMatthias Ringwald     product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
5333*1b2596b5SMatthias Ringwald 
5334*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
5335*1b2596b5SMatthias Ringwald     product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
5336*1b2596b5SMatthias Ringwald 
5337*1b2596b5SMatthias Ringwald     /* pIbeta is calculated by adding the intermediate products */
5338*1b2596b5SMatthias Ringwald     *pIbeta = __QADD(product1, product2);
5339*1b2596b5SMatthias Ringwald   }
5340*1b2596b5SMatthias Ringwald 
5341*1b2596b5SMatthias Ringwald   /**
5342*1b2596b5SMatthias Ringwald    * @} end of clarke group
5343*1b2596b5SMatthias Ringwald    */
5344*1b2596b5SMatthias Ringwald 
5345*1b2596b5SMatthias Ringwald   /**
5346*1b2596b5SMatthias Ringwald    * @brief  Converts the elements of the Q7 vector to Q31 vector.
5347*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc     input pointer
5348*1b2596b5SMatthias Ringwald    * @param[out]  *pDst    output pointer
5349*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
5350*1b2596b5SMatthias Ringwald    * @return none.
5351*1b2596b5SMatthias Ringwald    */
5352*1b2596b5SMatthias Ringwald   void arm_q7_to_q31(
5353*1b2596b5SMatthias Ringwald   q7_t * pSrc,
5354*1b2596b5SMatthias Ringwald   q31_t * pDst,
5355*1b2596b5SMatthias Ringwald   uint32_t blockSize);
5356*1b2596b5SMatthias Ringwald 
5357*1b2596b5SMatthias Ringwald 
5358*1b2596b5SMatthias Ringwald 
5359*1b2596b5SMatthias Ringwald 
5360*1b2596b5SMatthias Ringwald   /**
5361*1b2596b5SMatthias Ringwald    * @ingroup groupController
5362*1b2596b5SMatthias Ringwald    */
5363*1b2596b5SMatthias Ringwald 
5364*1b2596b5SMatthias Ringwald   /**
5365*1b2596b5SMatthias Ringwald    * @defgroup inv_clarke Vector Inverse Clarke Transform
5366*1b2596b5SMatthias Ringwald    * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
5367*1b2596b5SMatthias Ringwald    *
5368*1b2596b5SMatthias Ringwald    * The function operates on a single sample of data and each call to the function returns the processed output.
5369*1b2596b5SMatthias Ringwald    * The library provides separate functions for Q31 and floating-point data types.
5370*1b2596b5SMatthias Ringwald    * \par Algorithm
5371*1b2596b5SMatthias Ringwald    * \image html clarkeInvFormula.gif
5372*1b2596b5SMatthias Ringwald    * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
5373*1b2596b5SMatthias Ringwald    * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
5374*1b2596b5SMatthias Ringwald    * \par Fixed-Point Behavior
5375*1b2596b5SMatthias Ringwald    * Care must be taken when using the Q31 version of the Clarke transform.
5376*1b2596b5SMatthias Ringwald    * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5377*1b2596b5SMatthias Ringwald    * Refer to the function specific documentation below for usage guidelines.
5378*1b2596b5SMatthias Ringwald    */
5379*1b2596b5SMatthias Ringwald 
5380*1b2596b5SMatthias Ringwald   /**
5381*1b2596b5SMatthias Ringwald    * @addtogroup inv_clarke
5382*1b2596b5SMatthias Ringwald    * @{
5383*1b2596b5SMatthias Ringwald    */
5384*1b2596b5SMatthias Ringwald 
5385*1b2596b5SMatthias Ringwald    /**
5386*1b2596b5SMatthias Ringwald    * @brief  Floating-point Inverse Clarke transform
5387*1b2596b5SMatthias Ringwald    * @param[in]       Ialpha  input two-phase orthogonal vector axis alpha
5388*1b2596b5SMatthias Ringwald    * @param[in]       Ibeta   input two-phase orthogonal vector axis beta
5389*1b2596b5SMatthias Ringwald    * @param[out]      *pIa    points to output three-phase coordinate <code>a</code>
5390*1b2596b5SMatthias Ringwald    * @param[out]      *pIb    points to output three-phase coordinate <code>b</code>
5391*1b2596b5SMatthias Ringwald    * @return none.
5392*1b2596b5SMatthias Ringwald    */
5393*1b2596b5SMatthias Ringwald 
5394*1b2596b5SMatthias Ringwald 
arm_inv_clarke_f32(float32_t Ialpha,float32_t Ibeta,float32_t * pIa,float32_t * pIb)5395*1b2596b5SMatthias Ringwald   static __INLINE void arm_inv_clarke_f32(
5396*1b2596b5SMatthias Ringwald   float32_t Ialpha,
5397*1b2596b5SMatthias Ringwald   float32_t Ibeta,
5398*1b2596b5SMatthias Ringwald   float32_t * pIa,
5399*1b2596b5SMatthias Ringwald   float32_t * pIb)
5400*1b2596b5SMatthias Ringwald   {
5401*1b2596b5SMatthias Ringwald     /* Calculating pIa from Ialpha by equation pIa = Ialpha */
5402*1b2596b5SMatthias Ringwald     *pIa = Ialpha;
5403*1b2596b5SMatthias Ringwald 
5404*1b2596b5SMatthias Ringwald     /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
5405*1b2596b5SMatthias Ringwald     *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
5406*1b2596b5SMatthias Ringwald 
5407*1b2596b5SMatthias Ringwald   }
5408*1b2596b5SMatthias Ringwald 
5409*1b2596b5SMatthias Ringwald   /**
5410*1b2596b5SMatthias Ringwald    * @brief  Inverse Clarke transform for Q31 version
5411*1b2596b5SMatthias Ringwald    * @param[in]       Ialpha  input two-phase orthogonal vector axis alpha
5412*1b2596b5SMatthias Ringwald    * @param[in]       Ibeta   input two-phase orthogonal vector axis beta
5413*1b2596b5SMatthias Ringwald    * @param[out]      *pIa    points to output three-phase coordinate <code>a</code>
5414*1b2596b5SMatthias Ringwald    * @param[out]      *pIb    points to output three-phase coordinate <code>b</code>
5415*1b2596b5SMatthias Ringwald    * @return none.
5416*1b2596b5SMatthias Ringwald    *
5417*1b2596b5SMatthias Ringwald    * <b>Scaling and Overflow Behavior:</b>
5418*1b2596b5SMatthias Ringwald    * \par
5419*1b2596b5SMatthias Ringwald    * The function is implemented using an internal 32-bit accumulator.
5420*1b2596b5SMatthias Ringwald    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5421*1b2596b5SMatthias Ringwald    * There is saturation on the subtraction, hence there is no risk of overflow.
5422*1b2596b5SMatthias Ringwald    */
5423*1b2596b5SMatthias Ringwald 
arm_inv_clarke_q31(q31_t Ialpha,q31_t Ibeta,q31_t * pIa,q31_t * pIb)5424*1b2596b5SMatthias Ringwald   static __INLINE void arm_inv_clarke_q31(
5425*1b2596b5SMatthias Ringwald   q31_t Ialpha,
5426*1b2596b5SMatthias Ringwald   q31_t Ibeta,
5427*1b2596b5SMatthias Ringwald   q31_t * pIa,
5428*1b2596b5SMatthias Ringwald   q31_t * pIb)
5429*1b2596b5SMatthias Ringwald   {
5430*1b2596b5SMatthias Ringwald     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
5431*1b2596b5SMatthias Ringwald 
5432*1b2596b5SMatthias Ringwald     /* Calculating pIa from Ialpha by equation pIa = Ialpha */
5433*1b2596b5SMatthias Ringwald     *pIa = Ialpha;
5434*1b2596b5SMatthias Ringwald 
5435*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
5436*1b2596b5SMatthias Ringwald     product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
5437*1b2596b5SMatthias Ringwald 
5438*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
5439*1b2596b5SMatthias Ringwald     product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
5440*1b2596b5SMatthias Ringwald 
5441*1b2596b5SMatthias Ringwald     /* pIb is calculated by subtracting the products */
5442*1b2596b5SMatthias Ringwald     *pIb = __QSUB(product2, product1);
5443*1b2596b5SMatthias Ringwald 
5444*1b2596b5SMatthias Ringwald   }
5445*1b2596b5SMatthias Ringwald 
5446*1b2596b5SMatthias Ringwald   /**
5447*1b2596b5SMatthias Ringwald    * @} end of inv_clarke group
5448*1b2596b5SMatthias Ringwald    */
5449*1b2596b5SMatthias Ringwald 
5450*1b2596b5SMatthias Ringwald   /**
5451*1b2596b5SMatthias Ringwald    * @brief  Converts the elements of the Q7 vector to Q15 vector.
5452*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc     input pointer
5453*1b2596b5SMatthias Ringwald    * @param[out] *pDst     output pointer
5454*1b2596b5SMatthias Ringwald    * @param[in]  blockSize number of samples to process
5455*1b2596b5SMatthias Ringwald    * @return none.
5456*1b2596b5SMatthias Ringwald    */
5457*1b2596b5SMatthias Ringwald   void arm_q7_to_q15(
5458*1b2596b5SMatthias Ringwald   q7_t * pSrc,
5459*1b2596b5SMatthias Ringwald   q15_t * pDst,
5460*1b2596b5SMatthias Ringwald   uint32_t blockSize);
5461*1b2596b5SMatthias Ringwald 
5462*1b2596b5SMatthias Ringwald 
5463*1b2596b5SMatthias Ringwald 
5464*1b2596b5SMatthias Ringwald   /**
5465*1b2596b5SMatthias Ringwald    * @ingroup groupController
5466*1b2596b5SMatthias Ringwald    */
5467*1b2596b5SMatthias Ringwald 
5468*1b2596b5SMatthias Ringwald   /**
5469*1b2596b5SMatthias Ringwald    * @defgroup park Vector Park Transform
5470*1b2596b5SMatthias Ringwald    *
5471*1b2596b5SMatthias Ringwald    * Forward Park transform converts the input two-coordinate vector to flux and torque components.
5472*1b2596b5SMatthias Ringwald    * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
5473*1b2596b5SMatthias Ringwald    * from the stationary to the moving reference frame and control the spatial relationship between
5474*1b2596b5SMatthias Ringwald    * the stator vector current and rotor flux vector.
5475*1b2596b5SMatthias Ringwald    * If we consider the d axis aligned with the rotor flux, the diagram below shows the
5476*1b2596b5SMatthias Ringwald    * current vector and the relationship from the two reference frames:
5477*1b2596b5SMatthias Ringwald    * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
5478*1b2596b5SMatthias Ringwald    *
5479*1b2596b5SMatthias Ringwald    * The function operates on a single sample of data and each call to the function returns the processed output.
5480*1b2596b5SMatthias Ringwald    * The library provides separate functions for Q31 and floating-point data types.
5481*1b2596b5SMatthias Ringwald    * \par Algorithm
5482*1b2596b5SMatthias Ringwald    * \image html parkFormula.gif
5483*1b2596b5SMatthias Ringwald    * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
5484*1b2596b5SMatthias Ringwald    * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
5485*1b2596b5SMatthias Ringwald    * cosine and sine values of theta (rotor flux position).
5486*1b2596b5SMatthias Ringwald    * \par Fixed-Point Behavior
5487*1b2596b5SMatthias Ringwald    * Care must be taken when using the Q31 version of the Park transform.
5488*1b2596b5SMatthias Ringwald    * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5489*1b2596b5SMatthias Ringwald    * Refer to the function specific documentation below for usage guidelines.
5490*1b2596b5SMatthias Ringwald    */
5491*1b2596b5SMatthias Ringwald 
5492*1b2596b5SMatthias Ringwald   /**
5493*1b2596b5SMatthias Ringwald    * @addtogroup park
5494*1b2596b5SMatthias Ringwald    * @{
5495*1b2596b5SMatthias Ringwald    */
5496*1b2596b5SMatthias Ringwald 
5497*1b2596b5SMatthias Ringwald   /**
5498*1b2596b5SMatthias Ringwald    * @brief Floating-point Park transform
5499*1b2596b5SMatthias Ringwald    * @param[in]       Ialpha input two-phase vector coordinate alpha
5500*1b2596b5SMatthias Ringwald    * @param[in]       Ibeta  input two-phase vector coordinate beta
5501*1b2596b5SMatthias Ringwald    * @param[out]      *pId   points to output	rotor reference frame d
5502*1b2596b5SMatthias Ringwald    * @param[out]      *pIq   points to output	rotor reference frame q
5503*1b2596b5SMatthias Ringwald    * @param[in]       sinVal sine value of rotation angle theta
5504*1b2596b5SMatthias Ringwald    * @param[in]       cosVal cosine value of rotation angle theta
5505*1b2596b5SMatthias Ringwald    * @return none.
5506*1b2596b5SMatthias Ringwald    *
5507*1b2596b5SMatthias Ringwald    * The function implements the forward Park transform.
5508*1b2596b5SMatthias Ringwald    *
5509*1b2596b5SMatthias Ringwald    */
5510*1b2596b5SMatthias Ringwald 
arm_park_f32(float32_t Ialpha,float32_t Ibeta,float32_t * pId,float32_t * pIq,float32_t sinVal,float32_t cosVal)5511*1b2596b5SMatthias Ringwald   static __INLINE void arm_park_f32(
5512*1b2596b5SMatthias Ringwald   float32_t Ialpha,
5513*1b2596b5SMatthias Ringwald   float32_t Ibeta,
5514*1b2596b5SMatthias Ringwald   float32_t * pId,
5515*1b2596b5SMatthias Ringwald   float32_t * pIq,
5516*1b2596b5SMatthias Ringwald   float32_t sinVal,
5517*1b2596b5SMatthias Ringwald   float32_t cosVal)
5518*1b2596b5SMatthias Ringwald   {
5519*1b2596b5SMatthias Ringwald     /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
5520*1b2596b5SMatthias Ringwald     *pId = Ialpha * cosVal + Ibeta * sinVal;
5521*1b2596b5SMatthias Ringwald 
5522*1b2596b5SMatthias Ringwald     /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
5523*1b2596b5SMatthias Ringwald     *pIq = -Ialpha * sinVal + Ibeta * cosVal;
5524*1b2596b5SMatthias Ringwald 
5525*1b2596b5SMatthias Ringwald   }
5526*1b2596b5SMatthias Ringwald 
5527*1b2596b5SMatthias Ringwald   /**
5528*1b2596b5SMatthias Ringwald    * @brief  Park transform for Q31 version
5529*1b2596b5SMatthias Ringwald    * @param[in]       Ialpha input two-phase vector coordinate alpha
5530*1b2596b5SMatthias Ringwald    * @param[in]       Ibeta  input two-phase vector coordinate beta
5531*1b2596b5SMatthias Ringwald    * @param[out]      *pId   points to output rotor reference frame d
5532*1b2596b5SMatthias Ringwald    * @param[out]      *pIq   points to output rotor reference frame q
5533*1b2596b5SMatthias Ringwald    * @param[in]       sinVal sine value of rotation angle theta
5534*1b2596b5SMatthias Ringwald    * @param[in]       cosVal cosine value of rotation angle theta
5535*1b2596b5SMatthias Ringwald    * @return none.
5536*1b2596b5SMatthias Ringwald    *
5537*1b2596b5SMatthias Ringwald    * <b>Scaling and Overflow Behavior:</b>
5538*1b2596b5SMatthias Ringwald    * \par
5539*1b2596b5SMatthias Ringwald    * The function is implemented using an internal 32-bit accumulator.
5540*1b2596b5SMatthias Ringwald    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5541*1b2596b5SMatthias Ringwald    * There is saturation on the addition and subtraction, hence there is no risk of overflow.
5542*1b2596b5SMatthias Ringwald    */
5543*1b2596b5SMatthias Ringwald 
5544*1b2596b5SMatthias Ringwald 
arm_park_q31(q31_t Ialpha,q31_t Ibeta,q31_t * pId,q31_t * pIq,q31_t sinVal,q31_t cosVal)5545*1b2596b5SMatthias Ringwald   static __INLINE void arm_park_q31(
5546*1b2596b5SMatthias Ringwald   q31_t Ialpha,
5547*1b2596b5SMatthias Ringwald   q31_t Ibeta,
5548*1b2596b5SMatthias Ringwald   q31_t * pId,
5549*1b2596b5SMatthias Ringwald   q31_t * pIq,
5550*1b2596b5SMatthias Ringwald   q31_t sinVal,
5551*1b2596b5SMatthias Ringwald   q31_t cosVal)
5552*1b2596b5SMatthias Ringwald   {
5553*1b2596b5SMatthias Ringwald     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
5554*1b2596b5SMatthias Ringwald     q31_t product3, product4;                    /* Temporary variables used to store intermediate results */
5555*1b2596b5SMatthias Ringwald 
5556*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (Ialpha * cosVal) */
5557*1b2596b5SMatthias Ringwald     product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
5558*1b2596b5SMatthias Ringwald 
5559*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (Ibeta * sinVal) */
5560*1b2596b5SMatthias Ringwald     product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
5561*1b2596b5SMatthias Ringwald 
5562*1b2596b5SMatthias Ringwald 
5563*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (Ialpha * sinVal) */
5564*1b2596b5SMatthias Ringwald     product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
5565*1b2596b5SMatthias Ringwald 
5566*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (Ibeta * cosVal) */
5567*1b2596b5SMatthias Ringwald     product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
5568*1b2596b5SMatthias Ringwald 
5569*1b2596b5SMatthias Ringwald     /* Calculate pId by adding the two intermediate products 1 and 2 */
5570*1b2596b5SMatthias Ringwald     *pId = __QADD(product1, product2);
5571*1b2596b5SMatthias Ringwald 
5572*1b2596b5SMatthias Ringwald     /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
5573*1b2596b5SMatthias Ringwald     *pIq = __QSUB(product4, product3);
5574*1b2596b5SMatthias Ringwald   }
5575*1b2596b5SMatthias Ringwald 
5576*1b2596b5SMatthias Ringwald   /**
5577*1b2596b5SMatthias Ringwald    * @} end of park group
5578*1b2596b5SMatthias Ringwald    */
5579*1b2596b5SMatthias Ringwald 
5580*1b2596b5SMatthias Ringwald   /**
5581*1b2596b5SMatthias Ringwald    * @brief  Converts the elements of the Q7 vector to floating-point vector.
5582*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
5583*1b2596b5SMatthias Ringwald    * @param[out]  *pDst is output pointer
5584*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
5585*1b2596b5SMatthias Ringwald    * @return none.
5586*1b2596b5SMatthias Ringwald    */
5587*1b2596b5SMatthias Ringwald   void arm_q7_to_float(
5588*1b2596b5SMatthias Ringwald   q7_t * pSrc,
5589*1b2596b5SMatthias Ringwald   float32_t * pDst,
5590*1b2596b5SMatthias Ringwald   uint32_t blockSize);
5591*1b2596b5SMatthias Ringwald 
5592*1b2596b5SMatthias Ringwald 
5593*1b2596b5SMatthias Ringwald   /**
5594*1b2596b5SMatthias Ringwald    * @ingroup groupController
5595*1b2596b5SMatthias Ringwald    */
5596*1b2596b5SMatthias Ringwald 
5597*1b2596b5SMatthias Ringwald   /**
5598*1b2596b5SMatthias Ringwald    * @defgroup inv_park Vector Inverse Park transform
5599*1b2596b5SMatthias Ringwald    * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
5600*1b2596b5SMatthias Ringwald    *
5601*1b2596b5SMatthias Ringwald    * The function operates on a single sample of data and each call to the function returns the processed output.
5602*1b2596b5SMatthias Ringwald    * The library provides separate functions for Q31 and floating-point data types.
5603*1b2596b5SMatthias Ringwald    * \par Algorithm
5604*1b2596b5SMatthias Ringwald    * \image html parkInvFormula.gif
5605*1b2596b5SMatthias Ringwald    * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
5606*1b2596b5SMatthias Ringwald    * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
5607*1b2596b5SMatthias Ringwald    * cosine and sine values of theta (rotor flux position).
5608*1b2596b5SMatthias Ringwald    * \par Fixed-Point Behavior
5609*1b2596b5SMatthias Ringwald    * Care must be taken when using the Q31 version of the Park transform.
5610*1b2596b5SMatthias Ringwald    * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5611*1b2596b5SMatthias Ringwald    * Refer to the function specific documentation below for usage guidelines.
5612*1b2596b5SMatthias Ringwald    */
5613*1b2596b5SMatthias Ringwald 
5614*1b2596b5SMatthias Ringwald   /**
5615*1b2596b5SMatthias Ringwald    * @addtogroup inv_park
5616*1b2596b5SMatthias Ringwald    * @{
5617*1b2596b5SMatthias Ringwald    */
5618*1b2596b5SMatthias Ringwald 
5619*1b2596b5SMatthias Ringwald    /**
5620*1b2596b5SMatthias Ringwald    * @brief  Floating-point Inverse Park transform
5621*1b2596b5SMatthias Ringwald    * @param[in]       Id        input coordinate of rotor reference frame d
5622*1b2596b5SMatthias Ringwald    * @param[in]       Iq        input coordinate of rotor reference frame q
5623*1b2596b5SMatthias Ringwald    * @param[out]      *pIalpha  points to output two-phase orthogonal vector axis alpha
5624*1b2596b5SMatthias Ringwald    * @param[out]      *pIbeta   points to output two-phase orthogonal vector axis beta
5625*1b2596b5SMatthias Ringwald    * @param[in]       sinVal    sine value of rotation angle theta
5626*1b2596b5SMatthias Ringwald    * @param[in]       cosVal    cosine value of rotation angle theta
5627*1b2596b5SMatthias Ringwald    * @return none.
5628*1b2596b5SMatthias Ringwald    */
5629*1b2596b5SMatthias Ringwald 
arm_inv_park_f32(float32_t Id,float32_t Iq,float32_t * pIalpha,float32_t * pIbeta,float32_t sinVal,float32_t cosVal)5630*1b2596b5SMatthias Ringwald   static __INLINE void arm_inv_park_f32(
5631*1b2596b5SMatthias Ringwald   float32_t Id,
5632*1b2596b5SMatthias Ringwald   float32_t Iq,
5633*1b2596b5SMatthias Ringwald   float32_t * pIalpha,
5634*1b2596b5SMatthias Ringwald   float32_t * pIbeta,
5635*1b2596b5SMatthias Ringwald   float32_t sinVal,
5636*1b2596b5SMatthias Ringwald   float32_t cosVal)
5637*1b2596b5SMatthias Ringwald   {
5638*1b2596b5SMatthias Ringwald     /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
5639*1b2596b5SMatthias Ringwald     *pIalpha = Id * cosVal - Iq * sinVal;
5640*1b2596b5SMatthias Ringwald 
5641*1b2596b5SMatthias Ringwald     /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
5642*1b2596b5SMatthias Ringwald     *pIbeta = Id * sinVal + Iq * cosVal;
5643*1b2596b5SMatthias Ringwald 
5644*1b2596b5SMatthias Ringwald   }
5645*1b2596b5SMatthias Ringwald 
5646*1b2596b5SMatthias Ringwald 
5647*1b2596b5SMatthias Ringwald   /**
5648*1b2596b5SMatthias Ringwald    * @brief  Inverse Park transform for	Q31 version
5649*1b2596b5SMatthias Ringwald    * @param[in]       Id        input coordinate of rotor reference frame d
5650*1b2596b5SMatthias Ringwald    * @param[in]       Iq        input coordinate of rotor reference frame q
5651*1b2596b5SMatthias Ringwald    * @param[out]      *pIalpha  points to output two-phase orthogonal vector axis alpha
5652*1b2596b5SMatthias Ringwald    * @param[out]      *pIbeta   points to output two-phase orthogonal vector axis beta
5653*1b2596b5SMatthias Ringwald    * @param[in]       sinVal    sine value of rotation angle theta
5654*1b2596b5SMatthias Ringwald    * @param[in]       cosVal    cosine value of rotation angle theta
5655*1b2596b5SMatthias Ringwald    * @return none.
5656*1b2596b5SMatthias Ringwald    *
5657*1b2596b5SMatthias Ringwald    * <b>Scaling and Overflow Behavior:</b>
5658*1b2596b5SMatthias Ringwald    * \par
5659*1b2596b5SMatthias Ringwald    * The function is implemented using an internal 32-bit accumulator.
5660*1b2596b5SMatthias Ringwald    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5661*1b2596b5SMatthias Ringwald    * There is saturation on the addition, hence there is no risk of overflow.
5662*1b2596b5SMatthias Ringwald    */
5663*1b2596b5SMatthias Ringwald 
5664*1b2596b5SMatthias Ringwald 
arm_inv_park_q31(q31_t Id,q31_t Iq,q31_t * pIalpha,q31_t * pIbeta,q31_t sinVal,q31_t cosVal)5665*1b2596b5SMatthias Ringwald   static __INLINE void arm_inv_park_q31(
5666*1b2596b5SMatthias Ringwald   q31_t Id,
5667*1b2596b5SMatthias Ringwald   q31_t Iq,
5668*1b2596b5SMatthias Ringwald   q31_t * pIalpha,
5669*1b2596b5SMatthias Ringwald   q31_t * pIbeta,
5670*1b2596b5SMatthias Ringwald   q31_t sinVal,
5671*1b2596b5SMatthias Ringwald   q31_t cosVal)
5672*1b2596b5SMatthias Ringwald   {
5673*1b2596b5SMatthias Ringwald     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */
5674*1b2596b5SMatthias Ringwald     q31_t product3, product4;                    /* Temporary variables used to store intermediate results */
5675*1b2596b5SMatthias Ringwald 
5676*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (Id * cosVal) */
5677*1b2596b5SMatthias Ringwald     product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
5678*1b2596b5SMatthias Ringwald 
5679*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (Iq * sinVal) */
5680*1b2596b5SMatthias Ringwald     product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
5681*1b2596b5SMatthias Ringwald 
5682*1b2596b5SMatthias Ringwald 
5683*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (Id * sinVal) */
5684*1b2596b5SMatthias Ringwald     product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
5685*1b2596b5SMatthias Ringwald 
5686*1b2596b5SMatthias Ringwald     /* Intermediate product is calculated by (Iq * cosVal) */
5687*1b2596b5SMatthias Ringwald     product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
5688*1b2596b5SMatthias Ringwald 
5689*1b2596b5SMatthias Ringwald     /* Calculate pIalpha by using the two intermediate products 1 and 2 */
5690*1b2596b5SMatthias Ringwald     *pIalpha = __QSUB(product1, product2);
5691*1b2596b5SMatthias Ringwald 
5692*1b2596b5SMatthias Ringwald     /* Calculate pIbeta by using the two intermediate products 3 and 4 */
5693*1b2596b5SMatthias Ringwald     *pIbeta = __QADD(product4, product3);
5694*1b2596b5SMatthias Ringwald 
5695*1b2596b5SMatthias Ringwald   }
5696*1b2596b5SMatthias Ringwald 
5697*1b2596b5SMatthias Ringwald   /**
5698*1b2596b5SMatthias Ringwald    * @} end of Inverse park group
5699*1b2596b5SMatthias Ringwald    */
5700*1b2596b5SMatthias Ringwald 
5701*1b2596b5SMatthias Ringwald 
5702*1b2596b5SMatthias Ringwald   /**
5703*1b2596b5SMatthias Ringwald    * @brief  Converts the elements of the Q31 vector to floating-point vector.
5704*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
5705*1b2596b5SMatthias Ringwald    * @param[out]  *pDst is output pointer
5706*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
5707*1b2596b5SMatthias Ringwald    * @return none.
5708*1b2596b5SMatthias Ringwald    */
5709*1b2596b5SMatthias Ringwald   void arm_q31_to_float(
5710*1b2596b5SMatthias Ringwald   q31_t * pSrc,
5711*1b2596b5SMatthias Ringwald   float32_t * pDst,
5712*1b2596b5SMatthias Ringwald   uint32_t blockSize);
5713*1b2596b5SMatthias Ringwald 
5714*1b2596b5SMatthias Ringwald   /**
5715*1b2596b5SMatthias Ringwald    * @ingroup groupInterpolation
5716*1b2596b5SMatthias Ringwald    */
5717*1b2596b5SMatthias Ringwald 
5718*1b2596b5SMatthias Ringwald   /**
5719*1b2596b5SMatthias Ringwald    * @defgroup LinearInterpolate Linear Interpolation
5720*1b2596b5SMatthias Ringwald    *
5721*1b2596b5SMatthias Ringwald    * Linear interpolation is a method of curve fitting using linear polynomials.
5722*1b2596b5SMatthias Ringwald    * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
5723*1b2596b5SMatthias Ringwald    *
5724*1b2596b5SMatthias Ringwald    * \par
5725*1b2596b5SMatthias Ringwald    * \image html LinearInterp.gif "Linear interpolation"
5726*1b2596b5SMatthias Ringwald    *
5727*1b2596b5SMatthias Ringwald    * \par
5728*1b2596b5SMatthias Ringwald    * A  Linear Interpolate function calculates an output value(y), for the input(x)
5729*1b2596b5SMatthias Ringwald    * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
5730*1b2596b5SMatthias Ringwald    *
5731*1b2596b5SMatthias Ringwald    * \par Algorithm:
5732*1b2596b5SMatthias Ringwald    * <pre>
5733*1b2596b5SMatthias Ringwald    *       y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
5734*1b2596b5SMatthias Ringwald    *       where x0, x1 are nearest values of input x
5735*1b2596b5SMatthias Ringwald    *             y0, y1 are nearest values to output y
5736*1b2596b5SMatthias Ringwald    * </pre>
5737*1b2596b5SMatthias Ringwald    *
5738*1b2596b5SMatthias Ringwald    * \par
5739*1b2596b5SMatthias Ringwald    * This set of functions implements Linear interpolation process
5740*1b2596b5SMatthias Ringwald    * for Q7, Q15, Q31, and floating-point data types.  The functions operate on a single
5741*1b2596b5SMatthias Ringwald    * sample of data and each call to the function returns a single processed value.
5742*1b2596b5SMatthias Ringwald    * <code>S</code> points to an instance of the Linear Interpolate function data structure.
5743*1b2596b5SMatthias Ringwald    * <code>x</code> is the input sample value. The functions returns the output value.
5744*1b2596b5SMatthias Ringwald    *
5745*1b2596b5SMatthias Ringwald    * \par
5746*1b2596b5SMatthias Ringwald    * if x is outside of the table boundary, Linear interpolation returns first value of the table
5747*1b2596b5SMatthias Ringwald    * if x is below input range and returns last value of table if x is above range.
5748*1b2596b5SMatthias Ringwald    */
5749*1b2596b5SMatthias Ringwald 
5750*1b2596b5SMatthias Ringwald   /**
5751*1b2596b5SMatthias Ringwald    * @addtogroup LinearInterpolate
5752*1b2596b5SMatthias Ringwald    * @{
5753*1b2596b5SMatthias Ringwald    */
5754*1b2596b5SMatthias Ringwald 
5755*1b2596b5SMatthias Ringwald   /**
5756*1b2596b5SMatthias Ringwald    * @brief  Process function for the floating-point Linear Interpolation Function.
5757*1b2596b5SMatthias Ringwald    * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
5758*1b2596b5SMatthias Ringwald    * @param[in] x input sample to process
5759*1b2596b5SMatthias Ringwald    * @return y processed output sample.
5760*1b2596b5SMatthias Ringwald    *
5761*1b2596b5SMatthias Ringwald    */
5762*1b2596b5SMatthias Ringwald 
arm_linear_interp_f32(arm_linear_interp_instance_f32 * S,float32_t x)5763*1b2596b5SMatthias Ringwald   static __INLINE float32_t arm_linear_interp_f32(
5764*1b2596b5SMatthias Ringwald   arm_linear_interp_instance_f32 * S,
5765*1b2596b5SMatthias Ringwald   float32_t x)
5766*1b2596b5SMatthias Ringwald   {
5767*1b2596b5SMatthias Ringwald 
5768*1b2596b5SMatthias Ringwald     float32_t y;
5769*1b2596b5SMatthias Ringwald     float32_t x0, x1;                            /* Nearest input values */
5770*1b2596b5SMatthias Ringwald     float32_t y0, y1;                            /* Nearest output values */
5771*1b2596b5SMatthias Ringwald     float32_t xSpacing = S->xSpacing;            /* spacing between input values */
5772*1b2596b5SMatthias Ringwald     int32_t i;                                   /* Index variable */
5773*1b2596b5SMatthias Ringwald     float32_t *pYData = S->pYData;               /* pointer to output table */
5774*1b2596b5SMatthias Ringwald 
5775*1b2596b5SMatthias Ringwald     /* Calculation of index */
5776*1b2596b5SMatthias Ringwald     i = (int32_t) ((x - S->x1) / xSpacing);
5777*1b2596b5SMatthias Ringwald 
5778*1b2596b5SMatthias Ringwald     if(i < 0)
5779*1b2596b5SMatthias Ringwald     {
5780*1b2596b5SMatthias Ringwald       /* Iniatilize output for below specified range as least output value of table */
5781*1b2596b5SMatthias Ringwald       y = pYData[0];
5782*1b2596b5SMatthias Ringwald     }
5783*1b2596b5SMatthias Ringwald     else if((uint32_t)i >= S->nValues)
5784*1b2596b5SMatthias Ringwald     {
5785*1b2596b5SMatthias Ringwald       /* Iniatilize output for above specified range as last output value of table */
5786*1b2596b5SMatthias Ringwald       y = pYData[S->nValues - 1];
5787*1b2596b5SMatthias Ringwald     }
5788*1b2596b5SMatthias Ringwald     else
5789*1b2596b5SMatthias Ringwald     {
5790*1b2596b5SMatthias Ringwald       /* Calculation of nearest input values */
5791*1b2596b5SMatthias Ringwald       x0 = S->x1 + i * xSpacing;
5792*1b2596b5SMatthias Ringwald       x1 = S->x1 + (i + 1) * xSpacing;
5793*1b2596b5SMatthias Ringwald 
5794*1b2596b5SMatthias Ringwald       /* Read of nearest output values */
5795*1b2596b5SMatthias Ringwald       y0 = pYData[i];
5796*1b2596b5SMatthias Ringwald       y1 = pYData[i + 1];
5797*1b2596b5SMatthias Ringwald 
5798*1b2596b5SMatthias Ringwald       /* Calculation of output */
5799*1b2596b5SMatthias Ringwald       y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
5800*1b2596b5SMatthias Ringwald 
5801*1b2596b5SMatthias Ringwald     }
5802*1b2596b5SMatthias Ringwald 
5803*1b2596b5SMatthias Ringwald     /* returns output value */
5804*1b2596b5SMatthias Ringwald     return (y);
5805*1b2596b5SMatthias Ringwald   }
5806*1b2596b5SMatthias Ringwald 
5807*1b2596b5SMatthias Ringwald    /**
5808*1b2596b5SMatthias Ringwald    *
5809*1b2596b5SMatthias Ringwald    * @brief  Process function for the Q31 Linear Interpolation Function.
5810*1b2596b5SMatthias Ringwald    * @param[in] *pYData  pointer to Q31 Linear Interpolation table
5811*1b2596b5SMatthias Ringwald    * @param[in] x input sample to process
5812*1b2596b5SMatthias Ringwald    * @param[in] nValues number of table values
5813*1b2596b5SMatthias Ringwald    * @return y processed output sample.
5814*1b2596b5SMatthias Ringwald    *
5815*1b2596b5SMatthias Ringwald    * \par
5816*1b2596b5SMatthias Ringwald    * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
5817*1b2596b5SMatthias Ringwald    * This function can support maximum of table size 2^12.
5818*1b2596b5SMatthias Ringwald    *
5819*1b2596b5SMatthias Ringwald    */
5820*1b2596b5SMatthias Ringwald 
5821*1b2596b5SMatthias Ringwald 
arm_linear_interp_q31(q31_t * pYData,q31_t x,uint32_t nValues)5822*1b2596b5SMatthias Ringwald   static __INLINE q31_t arm_linear_interp_q31(
5823*1b2596b5SMatthias Ringwald   q31_t * pYData,
5824*1b2596b5SMatthias Ringwald   q31_t x,
5825*1b2596b5SMatthias Ringwald   uint32_t nValues)
5826*1b2596b5SMatthias Ringwald   {
5827*1b2596b5SMatthias Ringwald     q31_t y;                                     /* output */
5828*1b2596b5SMatthias Ringwald     q31_t y0, y1;                                /* Nearest output values */
5829*1b2596b5SMatthias Ringwald     q31_t fract;                                 /* fractional part */
5830*1b2596b5SMatthias Ringwald     int32_t index;                               /* Index to read nearest output values */
5831*1b2596b5SMatthias Ringwald 
5832*1b2596b5SMatthias Ringwald     /* Input is in 12.20 format */
5833*1b2596b5SMatthias Ringwald     /* 12 bits for the table index */
5834*1b2596b5SMatthias Ringwald     /* Index value calculation */
5835*1b2596b5SMatthias Ringwald     index = ((x & 0xFFF00000) >> 20);
5836*1b2596b5SMatthias Ringwald 
5837*1b2596b5SMatthias Ringwald     if(index >= (int32_t)(nValues - 1))
5838*1b2596b5SMatthias Ringwald     {
5839*1b2596b5SMatthias Ringwald       return (pYData[nValues - 1]);
5840*1b2596b5SMatthias Ringwald     }
5841*1b2596b5SMatthias Ringwald     else if(index < 0)
5842*1b2596b5SMatthias Ringwald     {
5843*1b2596b5SMatthias Ringwald       return (pYData[0]);
5844*1b2596b5SMatthias Ringwald     }
5845*1b2596b5SMatthias Ringwald     else
5846*1b2596b5SMatthias Ringwald     {
5847*1b2596b5SMatthias Ringwald 
5848*1b2596b5SMatthias Ringwald       /* 20 bits for the fractional part */
5849*1b2596b5SMatthias Ringwald       /* shift left by 11 to keep fract in 1.31 format */
5850*1b2596b5SMatthias Ringwald       fract = (x & 0x000FFFFF) << 11;
5851*1b2596b5SMatthias Ringwald 
5852*1b2596b5SMatthias Ringwald       /* Read two nearest output values from the index in 1.31(q31) format */
5853*1b2596b5SMatthias Ringwald       y0 = pYData[index];
5854*1b2596b5SMatthias Ringwald       y1 = pYData[index + 1u];
5855*1b2596b5SMatthias Ringwald 
5856*1b2596b5SMatthias Ringwald       /* Calculation of y0 * (1-fract) and y is in 2.30 format */
5857*1b2596b5SMatthias Ringwald       y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
5858*1b2596b5SMatthias Ringwald 
5859*1b2596b5SMatthias Ringwald       /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
5860*1b2596b5SMatthias Ringwald       y += ((q31_t) (((q63_t) y1 * fract) >> 32));
5861*1b2596b5SMatthias Ringwald 
5862*1b2596b5SMatthias Ringwald       /* Convert y to 1.31 format */
5863*1b2596b5SMatthias Ringwald       return (y << 1u);
5864*1b2596b5SMatthias Ringwald 
5865*1b2596b5SMatthias Ringwald     }
5866*1b2596b5SMatthias Ringwald 
5867*1b2596b5SMatthias Ringwald   }
5868*1b2596b5SMatthias Ringwald 
5869*1b2596b5SMatthias Ringwald   /**
5870*1b2596b5SMatthias Ringwald    *
5871*1b2596b5SMatthias Ringwald    * @brief  Process function for the Q15 Linear Interpolation Function.
5872*1b2596b5SMatthias Ringwald    * @param[in] *pYData  pointer to Q15 Linear Interpolation table
5873*1b2596b5SMatthias Ringwald    * @param[in] x input sample to process
5874*1b2596b5SMatthias Ringwald    * @param[in] nValues number of table values
5875*1b2596b5SMatthias Ringwald    * @return y processed output sample.
5876*1b2596b5SMatthias Ringwald    *
5877*1b2596b5SMatthias Ringwald    * \par
5878*1b2596b5SMatthias Ringwald    * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
5879*1b2596b5SMatthias Ringwald    * This function can support maximum of table size 2^12.
5880*1b2596b5SMatthias Ringwald    *
5881*1b2596b5SMatthias Ringwald    */
5882*1b2596b5SMatthias Ringwald 
5883*1b2596b5SMatthias Ringwald 
arm_linear_interp_q15(q15_t * pYData,q31_t x,uint32_t nValues)5884*1b2596b5SMatthias Ringwald   static __INLINE q15_t arm_linear_interp_q15(
5885*1b2596b5SMatthias Ringwald   q15_t * pYData,
5886*1b2596b5SMatthias Ringwald   q31_t x,
5887*1b2596b5SMatthias Ringwald   uint32_t nValues)
5888*1b2596b5SMatthias Ringwald   {
5889*1b2596b5SMatthias Ringwald     q63_t y;                                     /* output */
5890*1b2596b5SMatthias Ringwald     q15_t y0, y1;                                /* Nearest output values */
5891*1b2596b5SMatthias Ringwald     q31_t fract;                                 /* fractional part */
5892*1b2596b5SMatthias Ringwald     int32_t index;                               /* Index to read nearest output values */
5893*1b2596b5SMatthias Ringwald 
5894*1b2596b5SMatthias Ringwald     /* Input is in 12.20 format */
5895*1b2596b5SMatthias Ringwald     /* 12 bits for the table index */
5896*1b2596b5SMatthias Ringwald     /* Index value calculation */
5897*1b2596b5SMatthias Ringwald     index = ((x & 0xFFF00000) >> 20u);
5898*1b2596b5SMatthias Ringwald 
5899*1b2596b5SMatthias Ringwald     if(index >= (int32_t)(nValues - 1))
5900*1b2596b5SMatthias Ringwald     {
5901*1b2596b5SMatthias Ringwald       return (pYData[nValues - 1]);
5902*1b2596b5SMatthias Ringwald     }
5903*1b2596b5SMatthias Ringwald     else if(index < 0)
5904*1b2596b5SMatthias Ringwald     {
5905*1b2596b5SMatthias Ringwald       return (pYData[0]);
5906*1b2596b5SMatthias Ringwald     }
5907*1b2596b5SMatthias Ringwald     else
5908*1b2596b5SMatthias Ringwald     {
5909*1b2596b5SMatthias Ringwald       /* 20 bits for the fractional part */
5910*1b2596b5SMatthias Ringwald       /* fract is in 12.20 format */
5911*1b2596b5SMatthias Ringwald       fract = (x & 0x000FFFFF);
5912*1b2596b5SMatthias Ringwald 
5913*1b2596b5SMatthias Ringwald       /* Read two nearest output values from the index */
5914*1b2596b5SMatthias Ringwald       y0 = pYData[index];
5915*1b2596b5SMatthias Ringwald       y1 = pYData[index + 1u];
5916*1b2596b5SMatthias Ringwald 
5917*1b2596b5SMatthias Ringwald       /* Calculation of y0 * (1-fract) and y is in 13.35 format */
5918*1b2596b5SMatthias Ringwald       y = ((q63_t) y0 * (0xFFFFF - fract));
5919*1b2596b5SMatthias Ringwald 
5920*1b2596b5SMatthias Ringwald       /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
5921*1b2596b5SMatthias Ringwald       y += ((q63_t) y1 * (fract));
5922*1b2596b5SMatthias Ringwald 
5923*1b2596b5SMatthias Ringwald       /* convert y to 1.15 format */
5924*1b2596b5SMatthias Ringwald       return (y >> 20);
5925*1b2596b5SMatthias Ringwald     }
5926*1b2596b5SMatthias Ringwald 
5927*1b2596b5SMatthias Ringwald 
5928*1b2596b5SMatthias Ringwald   }
5929*1b2596b5SMatthias Ringwald 
5930*1b2596b5SMatthias Ringwald   /**
5931*1b2596b5SMatthias Ringwald    *
5932*1b2596b5SMatthias Ringwald    * @brief  Process function for the Q7 Linear Interpolation Function.
5933*1b2596b5SMatthias Ringwald    * @param[in] *pYData  pointer to Q7 Linear Interpolation table
5934*1b2596b5SMatthias Ringwald    * @param[in] x input sample to process
5935*1b2596b5SMatthias Ringwald    * @param[in] nValues number of table values
5936*1b2596b5SMatthias Ringwald    * @return y processed output sample.
5937*1b2596b5SMatthias Ringwald    *
5938*1b2596b5SMatthias Ringwald    * \par
5939*1b2596b5SMatthias Ringwald    * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
5940*1b2596b5SMatthias Ringwald    * This function can support maximum of table size 2^12.
5941*1b2596b5SMatthias Ringwald    */
5942*1b2596b5SMatthias Ringwald 
5943*1b2596b5SMatthias Ringwald 
arm_linear_interp_q7(q7_t * pYData,q31_t x,uint32_t nValues)5944*1b2596b5SMatthias Ringwald   static __INLINE q7_t arm_linear_interp_q7(
5945*1b2596b5SMatthias Ringwald   q7_t * pYData,
5946*1b2596b5SMatthias Ringwald   q31_t x,
5947*1b2596b5SMatthias Ringwald   uint32_t nValues)
5948*1b2596b5SMatthias Ringwald   {
5949*1b2596b5SMatthias Ringwald     q31_t y;                                     /* output */
5950*1b2596b5SMatthias Ringwald     q7_t y0, y1;                                 /* Nearest output values */
5951*1b2596b5SMatthias Ringwald     q31_t fract;                                 /* fractional part */
5952*1b2596b5SMatthias Ringwald     uint32_t index;                              /* Index to read nearest output values */
5953*1b2596b5SMatthias Ringwald 
5954*1b2596b5SMatthias Ringwald     /* Input is in 12.20 format */
5955*1b2596b5SMatthias Ringwald     /* 12 bits for the table index */
5956*1b2596b5SMatthias Ringwald     /* Index value calculation */
5957*1b2596b5SMatthias Ringwald     if (x < 0)
5958*1b2596b5SMatthias Ringwald     {
5959*1b2596b5SMatthias Ringwald       return (pYData[0]);
5960*1b2596b5SMatthias Ringwald     }
5961*1b2596b5SMatthias Ringwald     index = (x >> 20) & 0xfff;
5962*1b2596b5SMatthias Ringwald 
5963*1b2596b5SMatthias Ringwald 
5964*1b2596b5SMatthias Ringwald     if(index >= (nValues - 1))
5965*1b2596b5SMatthias Ringwald     {
5966*1b2596b5SMatthias Ringwald       return (pYData[nValues - 1]);
5967*1b2596b5SMatthias Ringwald     }
5968*1b2596b5SMatthias Ringwald     else
5969*1b2596b5SMatthias Ringwald     {
5970*1b2596b5SMatthias Ringwald 
5971*1b2596b5SMatthias Ringwald       /* 20 bits for the fractional part */
5972*1b2596b5SMatthias Ringwald       /* fract is in 12.20 format */
5973*1b2596b5SMatthias Ringwald       fract = (x & 0x000FFFFF);
5974*1b2596b5SMatthias Ringwald 
5975*1b2596b5SMatthias Ringwald       /* Read two nearest output values from the index and are in 1.7(q7) format */
5976*1b2596b5SMatthias Ringwald       y0 = pYData[index];
5977*1b2596b5SMatthias Ringwald       y1 = pYData[index + 1u];
5978*1b2596b5SMatthias Ringwald 
5979*1b2596b5SMatthias Ringwald       /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
5980*1b2596b5SMatthias Ringwald       y = ((y0 * (0xFFFFF - fract)));
5981*1b2596b5SMatthias Ringwald 
5982*1b2596b5SMatthias Ringwald       /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
5983*1b2596b5SMatthias Ringwald       y += (y1 * fract);
5984*1b2596b5SMatthias Ringwald 
5985*1b2596b5SMatthias Ringwald       /* convert y to 1.7(q7) format */
5986*1b2596b5SMatthias Ringwald       return (y >> 20u);
5987*1b2596b5SMatthias Ringwald 
5988*1b2596b5SMatthias Ringwald     }
5989*1b2596b5SMatthias Ringwald 
5990*1b2596b5SMatthias Ringwald   }
5991*1b2596b5SMatthias Ringwald   /**
5992*1b2596b5SMatthias Ringwald    * @} end of LinearInterpolate group
5993*1b2596b5SMatthias Ringwald    */
5994*1b2596b5SMatthias Ringwald 
5995*1b2596b5SMatthias Ringwald   /**
5996*1b2596b5SMatthias Ringwald    * @brief  Fast approximation to the trigonometric sine function for floating-point data.
5997*1b2596b5SMatthias Ringwald    * @param[in] x input value in radians.
5998*1b2596b5SMatthias Ringwald    * @return  sin(x).
5999*1b2596b5SMatthias Ringwald    */
6000*1b2596b5SMatthias Ringwald 
6001*1b2596b5SMatthias Ringwald   float32_t arm_sin_f32(
6002*1b2596b5SMatthias Ringwald   float32_t x);
6003*1b2596b5SMatthias Ringwald 
6004*1b2596b5SMatthias Ringwald   /**
6005*1b2596b5SMatthias Ringwald    * @brief  Fast approximation to the trigonometric sine function for Q31 data.
6006*1b2596b5SMatthias Ringwald    * @param[in] x Scaled input value in radians.
6007*1b2596b5SMatthias Ringwald    * @return  sin(x).
6008*1b2596b5SMatthias Ringwald    */
6009*1b2596b5SMatthias Ringwald 
6010*1b2596b5SMatthias Ringwald   q31_t arm_sin_q31(
6011*1b2596b5SMatthias Ringwald   q31_t x);
6012*1b2596b5SMatthias Ringwald 
6013*1b2596b5SMatthias Ringwald   /**
6014*1b2596b5SMatthias Ringwald    * @brief  Fast approximation to the trigonometric sine function for Q15 data.
6015*1b2596b5SMatthias Ringwald    * @param[in] x Scaled input value in radians.
6016*1b2596b5SMatthias Ringwald    * @return  sin(x).
6017*1b2596b5SMatthias Ringwald    */
6018*1b2596b5SMatthias Ringwald 
6019*1b2596b5SMatthias Ringwald   q15_t arm_sin_q15(
6020*1b2596b5SMatthias Ringwald   q15_t x);
6021*1b2596b5SMatthias Ringwald 
6022*1b2596b5SMatthias Ringwald   /**
6023*1b2596b5SMatthias Ringwald    * @brief  Fast approximation to the trigonometric cosine function for floating-point data.
6024*1b2596b5SMatthias Ringwald    * @param[in] x input value in radians.
6025*1b2596b5SMatthias Ringwald    * @return  cos(x).
6026*1b2596b5SMatthias Ringwald    */
6027*1b2596b5SMatthias Ringwald 
6028*1b2596b5SMatthias Ringwald   float32_t arm_cos_f32(
6029*1b2596b5SMatthias Ringwald   float32_t x);
6030*1b2596b5SMatthias Ringwald 
6031*1b2596b5SMatthias Ringwald   /**
6032*1b2596b5SMatthias Ringwald    * @brief Fast approximation to the trigonometric cosine function for Q31 data.
6033*1b2596b5SMatthias Ringwald    * @param[in] x Scaled input value in radians.
6034*1b2596b5SMatthias Ringwald    * @return  cos(x).
6035*1b2596b5SMatthias Ringwald    */
6036*1b2596b5SMatthias Ringwald 
6037*1b2596b5SMatthias Ringwald   q31_t arm_cos_q31(
6038*1b2596b5SMatthias Ringwald   q31_t x);
6039*1b2596b5SMatthias Ringwald 
6040*1b2596b5SMatthias Ringwald   /**
6041*1b2596b5SMatthias Ringwald    * @brief  Fast approximation to the trigonometric cosine function for Q15 data.
6042*1b2596b5SMatthias Ringwald    * @param[in] x Scaled input value in radians.
6043*1b2596b5SMatthias Ringwald    * @return  cos(x).
6044*1b2596b5SMatthias Ringwald    */
6045*1b2596b5SMatthias Ringwald 
6046*1b2596b5SMatthias Ringwald   q15_t arm_cos_q15(
6047*1b2596b5SMatthias Ringwald   q15_t x);
6048*1b2596b5SMatthias Ringwald 
6049*1b2596b5SMatthias Ringwald 
6050*1b2596b5SMatthias Ringwald   /**
6051*1b2596b5SMatthias Ringwald    * @ingroup groupFastMath
6052*1b2596b5SMatthias Ringwald    */
6053*1b2596b5SMatthias Ringwald 
6054*1b2596b5SMatthias Ringwald 
6055*1b2596b5SMatthias Ringwald   /**
6056*1b2596b5SMatthias Ringwald    * @defgroup SQRT Square Root
6057*1b2596b5SMatthias Ringwald    *
6058*1b2596b5SMatthias Ringwald    * Computes the square root of a number.
6059*1b2596b5SMatthias Ringwald    * There are separate functions for Q15, Q31, and floating-point data types.
6060*1b2596b5SMatthias Ringwald    * The square root function is computed using the Newton-Raphson algorithm.
6061*1b2596b5SMatthias Ringwald    * This is an iterative algorithm of the form:
6062*1b2596b5SMatthias Ringwald    * <pre>
6063*1b2596b5SMatthias Ringwald    *      x1 = x0 - f(x0)/f'(x0)
6064*1b2596b5SMatthias Ringwald    * </pre>
6065*1b2596b5SMatthias Ringwald    * where <code>x1</code> is the current estimate,
6066*1b2596b5SMatthias Ringwald    * <code>x0</code> is the previous estimate, and
6067*1b2596b5SMatthias Ringwald    * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
6068*1b2596b5SMatthias Ringwald    * For the square root function, the algorithm reduces to:
6069*1b2596b5SMatthias Ringwald    * <pre>
6070*1b2596b5SMatthias Ringwald    *     x0 = in/2                         [initial guess]
6071*1b2596b5SMatthias Ringwald    *     x1 = 1/2 * ( x0 + in / x0)        [each iteration]
6072*1b2596b5SMatthias Ringwald    * </pre>
6073*1b2596b5SMatthias Ringwald    */
6074*1b2596b5SMatthias Ringwald 
6075*1b2596b5SMatthias Ringwald 
6076*1b2596b5SMatthias Ringwald   /**
6077*1b2596b5SMatthias Ringwald    * @addtogroup SQRT
6078*1b2596b5SMatthias Ringwald    * @{
6079*1b2596b5SMatthias Ringwald    */
6080*1b2596b5SMatthias Ringwald 
6081*1b2596b5SMatthias Ringwald   /**
6082*1b2596b5SMatthias Ringwald    * @brief  Floating-point square root function.
6083*1b2596b5SMatthias Ringwald    * @param[in]  in     input value.
6084*1b2596b5SMatthias Ringwald    * @param[out] *pOut  square root of input value.
6085*1b2596b5SMatthias Ringwald    * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
6086*1b2596b5SMatthias Ringwald    * <code>in</code> is negative value and returns zero output for negative values.
6087*1b2596b5SMatthias Ringwald    */
6088*1b2596b5SMatthias Ringwald 
arm_sqrt_f32(float32_t in,float32_t * pOut)6089*1b2596b5SMatthias Ringwald   static __INLINE arm_status arm_sqrt_f32(
6090*1b2596b5SMatthias Ringwald   float32_t in,
6091*1b2596b5SMatthias Ringwald   float32_t * pOut)
6092*1b2596b5SMatthias Ringwald   {
6093*1b2596b5SMatthias Ringwald     if(in > 0)
6094*1b2596b5SMatthias Ringwald     {
6095*1b2596b5SMatthias Ringwald 
6096*1b2596b5SMatthias Ringwald //      #if __FPU_USED
6097*1b2596b5SMatthias Ringwald #if (__FPU_USED == 1) && defined ( __CC_ARM   )
6098*1b2596b5SMatthias Ringwald       *pOut = __sqrtf(in);
6099*1b2596b5SMatthias Ringwald #else
6100*1b2596b5SMatthias Ringwald       *pOut = sqrtf(in);
6101*1b2596b5SMatthias Ringwald #endif
6102*1b2596b5SMatthias Ringwald 
6103*1b2596b5SMatthias Ringwald       return (ARM_MATH_SUCCESS);
6104*1b2596b5SMatthias Ringwald     }
6105*1b2596b5SMatthias Ringwald     else
6106*1b2596b5SMatthias Ringwald     {
6107*1b2596b5SMatthias Ringwald       *pOut = 0.0f;
6108*1b2596b5SMatthias Ringwald       return (ARM_MATH_ARGUMENT_ERROR);
6109*1b2596b5SMatthias Ringwald     }
6110*1b2596b5SMatthias Ringwald 
6111*1b2596b5SMatthias Ringwald   }
6112*1b2596b5SMatthias Ringwald 
6113*1b2596b5SMatthias Ringwald 
6114*1b2596b5SMatthias Ringwald   /**
6115*1b2596b5SMatthias Ringwald    * @brief Q31 square root function.
6116*1b2596b5SMatthias Ringwald    * @param[in]   in    input value.  The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
6117*1b2596b5SMatthias Ringwald    * @param[out]  *pOut square root of input value.
6118*1b2596b5SMatthias Ringwald    * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
6119*1b2596b5SMatthias Ringwald    * <code>in</code> is negative value and returns zero output for negative values.
6120*1b2596b5SMatthias Ringwald    */
6121*1b2596b5SMatthias Ringwald   arm_status arm_sqrt_q31(
6122*1b2596b5SMatthias Ringwald   q31_t in,
6123*1b2596b5SMatthias Ringwald   q31_t * pOut);
6124*1b2596b5SMatthias Ringwald 
6125*1b2596b5SMatthias Ringwald   /**
6126*1b2596b5SMatthias Ringwald    * @brief  Q15 square root function.
6127*1b2596b5SMatthias Ringwald    * @param[in]   in     input value.  The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
6128*1b2596b5SMatthias Ringwald    * @param[out]  *pOut  square root of input value.
6129*1b2596b5SMatthias Ringwald    * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
6130*1b2596b5SMatthias Ringwald    * <code>in</code> is negative value and returns zero output for negative values.
6131*1b2596b5SMatthias Ringwald    */
6132*1b2596b5SMatthias Ringwald   arm_status arm_sqrt_q15(
6133*1b2596b5SMatthias Ringwald   q15_t in,
6134*1b2596b5SMatthias Ringwald   q15_t * pOut);
6135*1b2596b5SMatthias Ringwald 
6136*1b2596b5SMatthias Ringwald   /**
6137*1b2596b5SMatthias Ringwald    * @} end of SQRT group
6138*1b2596b5SMatthias Ringwald    */
6139*1b2596b5SMatthias Ringwald 
6140*1b2596b5SMatthias Ringwald 
6141*1b2596b5SMatthias Ringwald 
6142*1b2596b5SMatthias Ringwald 
6143*1b2596b5SMatthias Ringwald 
6144*1b2596b5SMatthias Ringwald 
6145*1b2596b5SMatthias Ringwald   /**
6146*1b2596b5SMatthias Ringwald    * @brief floating-point Circular write function.
6147*1b2596b5SMatthias Ringwald    */
6148*1b2596b5SMatthias Ringwald 
arm_circularWrite_f32(int32_t * circBuffer,int32_t L,uint16_t * writeOffset,int32_t bufferInc,const int32_t * src,int32_t srcInc,uint32_t blockSize)6149*1b2596b5SMatthias Ringwald   static __INLINE void arm_circularWrite_f32(
6150*1b2596b5SMatthias Ringwald   int32_t * circBuffer,
6151*1b2596b5SMatthias Ringwald   int32_t L,
6152*1b2596b5SMatthias Ringwald   uint16_t * writeOffset,
6153*1b2596b5SMatthias Ringwald   int32_t bufferInc,
6154*1b2596b5SMatthias Ringwald   const int32_t * src,
6155*1b2596b5SMatthias Ringwald   int32_t srcInc,
6156*1b2596b5SMatthias Ringwald   uint32_t blockSize)
6157*1b2596b5SMatthias Ringwald   {
6158*1b2596b5SMatthias Ringwald     uint32_t i = 0u;
6159*1b2596b5SMatthias Ringwald     int32_t wOffset;
6160*1b2596b5SMatthias Ringwald 
6161*1b2596b5SMatthias Ringwald     /* Copy the value of Index pointer that points
6162*1b2596b5SMatthias Ringwald      * to the current location where the input samples to be copied */
6163*1b2596b5SMatthias Ringwald     wOffset = *writeOffset;
6164*1b2596b5SMatthias Ringwald 
6165*1b2596b5SMatthias Ringwald     /* Loop over the blockSize */
6166*1b2596b5SMatthias Ringwald     i = blockSize;
6167*1b2596b5SMatthias Ringwald 
6168*1b2596b5SMatthias Ringwald     while(i > 0u)
6169*1b2596b5SMatthias Ringwald     {
6170*1b2596b5SMatthias Ringwald       /* copy the input sample to the circular buffer */
6171*1b2596b5SMatthias Ringwald       circBuffer[wOffset] = *src;
6172*1b2596b5SMatthias Ringwald 
6173*1b2596b5SMatthias Ringwald       /* Update the input pointer */
6174*1b2596b5SMatthias Ringwald       src += srcInc;
6175*1b2596b5SMatthias Ringwald 
6176*1b2596b5SMatthias Ringwald       /* Circularly update wOffset.  Watch out for positive and negative value */
6177*1b2596b5SMatthias Ringwald       wOffset += bufferInc;
6178*1b2596b5SMatthias Ringwald       if(wOffset >= L)
6179*1b2596b5SMatthias Ringwald         wOffset -= L;
6180*1b2596b5SMatthias Ringwald 
6181*1b2596b5SMatthias Ringwald       /* Decrement the loop counter */
6182*1b2596b5SMatthias Ringwald       i--;
6183*1b2596b5SMatthias Ringwald     }
6184*1b2596b5SMatthias Ringwald 
6185*1b2596b5SMatthias Ringwald     /* Update the index pointer */
6186*1b2596b5SMatthias Ringwald     *writeOffset = wOffset;
6187*1b2596b5SMatthias Ringwald   }
6188*1b2596b5SMatthias Ringwald 
6189*1b2596b5SMatthias Ringwald 
6190*1b2596b5SMatthias Ringwald 
6191*1b2596b5SMatthias Ringwald   /**
6192*1b2596b5SMatthias Ringwald    * @brief floating-point Circular Read function.
6193*1b2596b5SMatthias Ringwald    */
arm_circularRead_f32(int32_t * circBuffer,int32_t L,int32_t * readOffset,int32_t bufferInc,int32_t * dst,int32_t * dst_base,int32_t dst_length,int32_t dstInc,uint32_t blockSize)6194*1b2596b5SMatthias Ringwald   static __INLINE void arm_circularRead_f32(
6195*1b2596b5SMatthias Ringwald   int32_t * circBuffer,
6196*1b2596b5SMatthias Ringwald   int32_t L,
6197*1b2596b5SMatthias Ringwald   int32_t * readOffset,
6198*1b2596b5SMatthias Ringwald   int32_t bufferInc,
6199*1b2596b5SMatthias Ringwald   int32_t * dst,
6200*1b2596b5SMatthias Ringwald   int32_t * dst_base,
6201*1b2596b5SMatthias Ringwald   int32_t dst_length,
6202*1b2596b5SMatthias Ringwald   int32_t dstInc,
6203*1b2596b5SMatthias Ringwald   uint32_t blockSize)
6204*1b2596b5SMatthias Ringwald   {
6205*1b2596b5SMatthias Ringwald     uint32_t i = 0u;
6206*1b2596b5SMatthias Ringwald     int32_t rOffset, dst_end;
6207*1b2596b5SMatthias Ringwald 
6208*1b2596b5SMatthias Ringwald     /* Copy the value of Index pointer that points
6209*1b2596b5SMatthias Ringwald      * to the current location from where the input samples to be read */
6210*1b2596b5SMatthias Ringwald     rOffset = *readOffset;
6211*1b2596b5SMatthias Ringwald     dst_end = (int32_t) (dst_base + dst_length);
6212*1b2596b5SMatthias Ringwald 
6213*1b2596b5SMatthias Ringwald     /* Loop over the blockSize */
6214*1b2596b5SMatthias Ringwald     i = blockSize;
6215*1b2596b5SMatthias Ringwald 
6216*1b2596b5SMatthias Ringwald     while(i > 0u)
6217*1b2596b5SMatthias Ringwald     {
6218*1b2596b5SMatthias Ringwald       /* copy the sample from the circular buffer to the destination buffer */
6219*1b2596b5SMatthias Ringwald       *dst = circBuffer[rOffset];
6220*1b2596b5SMatthias Ringwald 
6221*1b2596b5SMatthias Ringwald       /* Update the input pointer */
6222*1b2596b5SMatthias Ringwald       dst += dstInc;
6223*1b2596b5SMatthias Ringwald 
6224*1b2596b5SMatthias Ringwald       if(dst == (int32_t *) dst_end)
6225*1b2596b5SMatthias Ringwald       {
6226*1b2596b5SMatthias Ringwald         dst = dst_base;
6227*1b2596b5SMatthias Ringwald       }
6228*1b2596b5SMatthias Ringwald 
6229*1b2596b5SMatthias Ringwald       /* Circularly update rOffset.  Watch out for positive and negative value  */
6230*1b2596b5SMatthias Ringwald       rOffset += bufferInc;
6231*1b2596b5SMatthias Ringwald 
6232*1b2596b5SMatthias Ringwald       if(rOffset >= L)
6233*1b2596b5SMatthias Ringwald       {
6234*1b2596b5SMatthias Ringwald         rOffset -= L;
6235*1b2596b5SMatthias Ringwald       }
6236*1b2596b5SMatthias Ringwald 
6237*1b2596b5SMatthias Ringwald       /* Decrement the loop counter */
6238*1b2596b5SMatthias Ringwald       i--;
6239*1b2596b5SMatthias Ringwald     }
6240*1b2596b5SMatthias Ringwald 
6241*1b2596b5SMatthias Ringwald     /* Update the index pointer */
6242*1b2596b5SMatthias Ringwald     *readOffset = rOffset;
6243*1b2596b5SMatthias Ringwald   }
6244*1b2596b5SMatthias Ringwald 
6245*1b2596b5SMatthias Ringwald   /**
6246*1b2596b5SMatthias Ringwald    * @brief Q15 Circular write function.
6247*1b2596b5SMatthias Ringwald    */
6248*1b2596b5SMatthias Ringwald 
arm_circularWrite_q15(q15_t * circBuffer,int32_t L,uint16_t * writeOffset,int32_t bufferInc,const q15_t * src,int32_t srcInc,uint32_t blockSize)6249*1b2596b5SMatthias Ringwald   static __INLINE void arm_circularWrite_q15(
6250*1b2596b5SMatthias Ringwald   q15_t * circBuffer,
6251*1b2596b5SMatthias Ringwald   int32_t L,
6252*1b2596b5SMatthias Ringwald   uint16_t * writeOffset,
6253*1b2596b5SMatthias Ringwald   int32_t bufferInc,
6254*1b2596b5SMatthias Ringwald   const q15_t * src,
6255*1b2596b5SMatthias Ringwald   int32_t srcInc,
6256*1b2596b5SMatthias Ringwald   uint32_t blockSize)
6257*1b2596b5SMatthias Ringwald   {
6258*1b2596b5SMatthias Ringwald     uint32_t i = 0u;
6259*1b2596b5SMatthias Ringwald     int32_t wOffset;
6260*1b2596b5SMatthias Ringwald 
6261*1b2596b5SMatthias Ringwald     /* Copy the value of Index pointer that points
6262*1b2596b5SMatthias Ringwald      * to the current location where the input samples to be copied */
6263*1b2596b5SMatthias Ringwald     wOffset = *writeOffset;
6264*1b2596b5SMatthias Ringwald 
6265*1b2596b5SMatthias Ringwald     /* Loop over the blockSize */
6266*1b2596b5SMatthias Ringwald     i = blockSize;
6267*1b2596b5SMatthias Ringwald 
6268*1b2596b5SMatthias Ringwald     while(i > 0u)
6269*1b2596b5SMatthias Ringwald     {
6270*1b2596b5SMatthias Ringwald       /* copy the input sample to the circular buffer */
6271*1b2596b5SMatthias Ringwald       circBuffer[wOffset] = *src;
6272*1b2596b5SMatthias Ringwald 
6273*1b2596b5SMatthias Ringwald       /* Update the input pointer */
6274*1b2596b5SMatthias Ringwald       src += srcInc;
6275*1b2596b5SMatthias Ringwald 
6276*1b2596b5SMatthias Ringwald       /* Circularly update wOffset.  Watch out for positive and negative value */
6277*1b2596b5SMatthias Ringwald       wOffset += bufferInc;
6278*1b2596b5SMatthias Ringwald       if(wOffset >= L)
6279*1b2596b5SMatthias Ringwald         wOffset -= L;
6280*1b2596b5SMatthias Ringwald 
6281*1b2596b5SMatthias Ringwald       /* Decrement the loop counter */
6282*1b2596b5SMatthias Ringwald       i--;
6283*1b2596b5SMatthias Ringwald     }
6284*1b2596b5SMatthias Ringwald 
6285*1b2596b5SMatthias Ringwald     /* Update the index pointer */
6286*1b2596b5SMatthias Ringwald     *writeOffset = wOffset;
6287*1b2596b5SMatthias Ringwald   }
6288*1b2596b5SMatthias Ringwald 
6289*1b2596b5SMatthias Ringwald 
6290*1b2596b5SMatthias Ringwald 
6291*1b2596b5SMatthias Ringwald   /**
6292*1b2596b5SMatthias Ringwald    * @brief Q15 Circular Read function.
6293*1b2596b5SMatthias Ringwald    */
arm_circularRead_q15(q15_t * circBuffer,int32_t L,int32_t * readOffset,int32_t bufferInc,q15_t * dst,q15_t * dst_base,int32_t dst_length,int32_t dstInc,uint32_t blockSize)6294*1b2596b5SMatthias Ringwald   static __INLINE void arm_circularRead_q15(
6295*1b2596b5SMatthias Ringwald   q15_t * circBuffer,
6296*1b2596b5SMatthias Ringwald   int32_t L,
6297*1b2596b5SMatthias Ringwald   int32_t * readOffset,
6298*1b2596b5SMatthias Ringwald   int32_t bufferInc,
6299*1b2596b5SMatthias Ringwald   q15_t * dst,
6300*1b2596b5SMatthias Ringwald   q15_t * dst_base,
6301*1b2596b5SMatthias Ringwald   int32_t dst_length,
6302*1b2596b5SMatthias Ringwald   int32_t dstInc,
6303*1b2596b5SMatthias Ringwald   uint32_t blockSize)
6304*1b2596b5SMatthias Ringwald   {
6305*1b2596b5SMatthias Ringwald     uint32_t i = 0;
6306*1b2596b5SMatthias Ringwald     int32_t rOffset, dst_end;
6307*1b2596b5SMatthias Ringwald 
6308*1b2596b5SMatthias Ringwald     /* Copy the value of Index pointer that points
6309*1b2596b5SMatthias Ringwald      * to the current location from where the input samples to be read */
6310*1b2596b5SMatthias Ringwald     rOffset = *readOffset;
6311*1b2596b5SMatthias Ringwald 
6312*1b2596b5SMatthias Ringwald     dst_end = (int32_t) (dst_base + dst_length);
6313*1b2596b5SMatthias Ringwald 
6314*1b2596b5SMatthias Ringwald     /* Loop over the blockSize */
6315*1b2596b5SMatthias Ringwald     i = blockSize;
6316*1b2596b5SMatthias Ringwald 
6317*1b2596b5SMatthias Ringwald     while(i > 0u)
6318*1b2596b5SMatthias Ringwald     {
6319*1b2596b5SMatthias Ringwald       /* copy the sample from the circular buffer to the destination buffer */
6320*1b2596b5SMatthias Ringwald       *dst = circBuffer[rOffset];
6321*1b2596b5SMatthias Ringwald 
6322*1b2596b5SMatthias Ringwald       /* Update the input pointer */
6323*1b2596b5SMatthias Ringwald       dst += dstInc;
6324*1b2596b5SMatthias Ringwald 
6325*1b2596b5SMatthias Ringwald       if(dst == (q15_t *) dst_end)
6326*1b2596b5SMatthias Ringwald       {
6327*1b2596b5SMatthias Ringwald         dst = dst_base;
6328*1b2596b5SMatthias Ringwald       }
6329*1b2596b5SMatthias Ringwald 
6330*1b2596b5SMatthias Ringwald       /* Circularly update wOffset.  Watch out for positive and negative value */
6331*1b2596b5SMatthias Ringwald       rOffset += bufferInc;
6332*1b2596b5SMatthias Ringwald 
6333*1b2596b5SMatthias Ringwald       if(rOffset >= L)
6334*1b2596b5SMatthias Ringwald       {
6335*1b2596b5SMatthias Ringwald         rOffset -= L;
6336*1b2596b5SMatthias Ringwald       }
6337*1b2596b5SMatthias Ringwald 
6338*1b2596b5SMatthias Ringwald       /* Decrement the loop counter */
6339*1b2596b5SMatthias Ringwald       i--;
6340*1b2596b5SMatthias Ringwald     }
6341*1b2596b5SMatthias Ringwald 
6342*1b2596b5SMatthias Ringwald     /* Update the index pointer */
6343*1b2596b5SMatthias Ringwald     *readOffset = rOffset;
6344*1b2596b5SMatthias Ringwald   }
6345*1b2596b5SMatthias Ringwald 
6346*1b2596b5SMatthias Ringwald 
6347*1b2596b5SMatthias Ringwald   /**
6348*1b2596b5SMatthias Ringwald    * @brief Q7 Circular write function.
6349*1b2596b5SMatthias Ringwald    */
6350*1b2596b5SMatthias Ringwald 
arm_circularWrite_q7(q7_t * circBuffer,int32_t L,uint16_t * writeOffset,int32_t bufferInc,const q7_t * src,int32_t srcInc,uint32_t blockSize)6351*1b2596b5SMatthias Ringwald   static __INLINE void arm_circularWrite_q7(
6352*1b2596b5SMatthias Ringwald   q7_t * circBuffer,
6353*1b2596b5SMatthias Ringwald   int32_t L,
6354*1b2596b5SMatthias Ringwald   uint16_t * writeOffset,
6355*1b2596b5SMatthias Ringwald   int32_t bufferInc,
6356*1b2596b5SMatthias Ringwald   const q7_t * src,
6357*1b2596b5SMatthias Ringwald   int32_t srcInc,
6358*1b2596b5SMatthias Ringwald   uint32_t blockSize)
6359*1b2596b5SMatthias Ringwald   {
6360*1b2596b5SMatthias Ringwald     uint32_t i = 0u;
6361*1b2596b5SMatthias Ringwald     int32_t wOffset;
6362*1b2596b5SMatthias Ringwald 
6363*1b2596b5SMatthias Ringwald     /* Copy the value of Index pointer that points
6364*1b2596b5SMatthias Ringwald      * to the current location where the input samples to be copied */
6365*1b2596b5SMatthias Ringwald     wOffset = *writeOffset;
6366*1b2596b5SMatthias Ringwald 
6367*1b2596b5SMatthias Ringwald     /* Loop over the blockSize */
6368*1b2596b5SMatthias Ringwald     i = blockSize;
6369*1b2596b5SMatthias Ringwald 
6370*1b2596b5SMatthias Ringwald     while(i > 0u)
6371*1b2596b5SMatthias Ringwald     {
6372*1b2596b5SMatthias Ringwald       /* copy the input sample to the circular buffer */
6373*1b2596b5SMatthias Ringwald       circBuffer[wOffset] = *src;
6374*1b2596b5SMatthias Ringwald 
6375*1b2596b5SMatthias Ringwald       /* Update the input pointer */
6376*1b2596b5SMatthias Ringwald       src += srcInc;
6377*1b2596b5SMatthias Ringwald 
6378*1b2596b5SMatthias Ringwald       /* Circularly update wOffset.  Watch out for positive and negative value */
6379*1b2596b5SMatthias Ringwald       wOffset += bufferInc;
6380*1b2596b5SMatthias Ringwald       if(wOffset >= L)
6381*1b2596b5SMatthias Ringwald         wOffset -= L;
6382*1b2596b5SMatthias Ringwald 
6383*1b2596b5SMatthias Ringwald       /* Decrement the loop counter */
6384*1b2596b5SMatthias Ringwald       i--;
6385*1b2596b5SMatthias Ringwald     }
6386*1b2596b5SMatthias Ringwald 
6387*1b2596b5SMatthias Ringwald     /* Update the index pointer */
6388*1b2596b5SMatthias Ringwald     *writeOffset = wOffset;
6389*1b2596b5SMatthias Ringwald   }
6390*1b2596b5SMatthias Ringwald 
6391*1b2596b5SMatthias Ringwald 
6392*1b2596b5SMatthias Ringwald 
6393*1b2596b5SMatthias Ringwald   /**
6394*1b2596b5SMatthias Ringwald    * @brief Q7 Circular Read function.
6395*1b2596b5SMatthias Ringwald    */
arm_circularRead_q7(q7_t * circBuffer,int32_t L,int32_t * readOffset,int32_t bufferInc,q7_t * dst,q7_t * dst_base,int32_t dst_length,int32_t dstInc,uint32_t blockSize)6396*1b2596b5SMatthias Ringwald   static __INLINE void arm_circularRead_q7(
6397*1b2596b5SMatthias Ringwald   q7_t * circBuffer,
6398*1b2596b5SMatthias Ringwald   int32_t L,
6399*1b2596b5SMatthias Ringwald   int32_t * readOffset,
6400*1b2596b5SMatthias Ringwald   int32_t bufferInc,
6401*1b2596b5SMatthias Ringwald   q7_t * dst,
6402*1b2596b5SMatthias Ringwald   q7_t * dst_base,
6403*1b2596b5SMatthias Ringwald   int32_t dst_length,
6404*1b2596b5SMatthias Ringwald   int32_t dstInc,
6405*1b2596b5SMatthias Ringwald   uint32_t blockSize)
6406*1b2596b5SMatthias Ringwald   {
6407*1b2596b5SMatthias Ringwald     uint32_t i = 0;
6408*1b2596b5SMatthias Ringwald     int32_t rOffset, dst_end;
6409*1b2596b5SMatthias Ringwald 
6410*1b2596b5SMatthias Ringwald     /* Copy the value of Index pointer that points
6411*1b2596b5SMatthias Ringwald      * to the current location from where the input samples to be read */
6412*1b2596b5SMatthias Ringwald     rOffset = *readOffset;
6413*1b2596b5SMatthias Ringwald 
6414*1b2596b5SMatthias Ringwald     dst_end = (int32_t) (dst_base + dst_length);
6415*1b2596b5SMatthias Ringwald 
6416*1b2596b5SMatthias Ringwald     /* Loop over the blockSize */
6417*1b2596b5SMatthias Ringwald     i = blockSize;
6418*1b2596b5SMatthias Ringwald 
6419*1b2596b5SMatthias Ringwald     while(i > 0u)
6420*1b2596b5SMatthias Ringwald     {
6421*1b2596b5SMatthias Ringwald       /* copy the sample from the circular buffer to the destination buffer */
6422*1b2596b5SMatthias Ringwald       *dst = circBuffer[rOffset];
6423*1b2596b5SMatthias Ringwald 
6424*1b2596b5SMatthias Ringwald       /* Update the input pointer */
6425*1b2596b5SMatthias Ringwald       dst += dstInc;
6426*1b2596b5SMatthias Ringwald 
6427*1b2596b5SMatthias Ringwald       if(dst == (q7_t *) dst_end)
6428*1b2596b5SMatthias Ringwald       {
6429*1b2596b5SMatthias Ringwald         dst = dst_base;
6430*1b2596b5SMatthias Ringwald       }
6431*1b2596b5SMatthias Ringwald 
6432*1b2596b5SMatthias Ringwald       /* Circularly update rOffset.  Watch out for positive and negative value */
6433*1b2596b5SMatthias Ringwald       rOffset += bufferInc;
6434*1b2596b5SMatthias Ringwald 
6435*1b2596b5SMatthias Ringwald       if(rOffset >= L)
6436*1b2596b5SMatthias Ringwald       {
6437*1b2596b5SMatthias Ringwald         rOffset -= L;
6438*1b2596b5SMatthias Ringwald       }
6439*1b2596b5SMatthias Ringwald 
6440*1b2596b5SMatthias Ringwald       /* Decrement the loop counter */
6441*1b2596b5SMatthias Ringwald       i--;
6442*1b2596b5SMatthias Ringwald     }
6443*1b2596b5SMatthias Ringwald 
6444*1b2596b5SMatthias Ringwald     /* Update the index pointer */
6445*1b2596b5SMatthias Ringwald     *readOffset = rOffset;
6446*1b2596b5SMatthias Ringwald   }
6447*1b2596b5SMatthias Ringwald 
6448*1b2596b5SMatthias Ringwald 
6449*1b2596b5SMatthias Ringwald   /**
6450*1b2596b5SMatthias Ringwald    * @brief  Sum of the squares of the elements of a Q31 vector.
6451*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6452*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6453*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6454*1b2596b5SMatthias Ringwald    * @return none.
6455*1b2596b5SMatthias Ringwald    */
6456*1b2596b5SMatthias Ringwald 
6457*1b2596b5SMatthias Ringwald   void arm_power_q31(
6458*1b2596b5SMatthias Ringwald   q31_t * pSrc,
6459*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6460*1b2596b5SMatthias Ringwald   q63_t * pResult);
6461*1b2596b5SMatthias Ringwald 
6462*1b2596b5SMatthias Ringwald   /**
6463*1b2596b5SMatthias Ringwald    * @brief  Sum of the squares of the elements of a floating-point vector.
6464*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6465*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6466*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6467*1b2596b5SMatthias Ringwald    * @return none.
6468*1b2596b5SMatthias Ringwald    */
6469*1b2596b5SMatthias Ringwald 
6470*1b2596b5SMatthias Ringwald   void arm_power_f32(
6471*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6472*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6473*1b2596b5SMatthias Ringwald   float32_t * pResult);
6474*1b2596b5SMatthias Ringwald 
6475*1b2596b5SMatthias Ringwald   /**
6476*1b2596b5SMatthias Ringwald    * @brief  Sum of the squares of the elements of a Q15 vector.
6477*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6478*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6479*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6480*1b2596b5SMatthias Ringwald    * @return none.
6481*1b2596b5SMatthias Ringwald    */
6482*1b2596b5SMatthias Ringwald 
6483*1b2596b5SMatthias Ringwald   void arm_power_q15(
6484*1b2596b5SMatthias Ringwald   q15_t * pSrc,
6485*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6486*1b2596b5SMatthias Ringwald   q63_t * pResult);
6487*1b2596b5SMatthias Ringwald 
6488*1b2596b5SMatthias Ringwald   /**
6489*1b2596b5SMatthias Ringwald    * @brief  Sum of the squares of the elements of a Q7 vector.
6490*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6491*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6492*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6493*1b2596b5SMatthias Ringwald    * @return none.
6494*1b2596b5SMatthias Ringwald    */
6495*1b2596b5SMatthias Ringwald 
6496*1b2596b5SMatthias Ringwald   void arm_power_q7(
6497*1b2596b5SMatthias Ringwald   q7_t * pSrc,
6498*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6499*1b2596b5SMatthias Ringwald   q31_t * pResult);
6500*1b2596b5SMatthias Ringwald 
6501*1b2596b5SMatthias Ringwald   /**
6502*1b2596b5SMatthias Ringwald    * @brief  Mean value of a Q7 vector.
6503*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6504*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6505*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6506*1b2596b5SMatthias Ringwald    * @return none.
6507*1b2596b5SMatthias Ringwald    */
6508*1b2596b5SMatthias Ringwald 
6509*1b2596b5SMatthias Ringwald   void arm_mean_q7(
6510*1b2596b5SMatthias Ringwald   q7_t * pSrc,
6511*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6512*1b2596b5SMatthias Ringwald   q7_t * pResult);
6513*1b2596b5SMatthias Ringwald 
6514*1b2596b5SMatthias Ringwald   /**
6515*1b2596b5SMatthias Ringwald    * @brief  Mean value of a Q15 vector.
6516*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6517*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6518*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6519*1b2596b5SMatthias Ringwald    * @return none.
6520*1b2596b5SMatthias Ringwald    */
6521*1b2596b5SMatthias Ringwald   void arm_mean_q15(
6522*1b2596b5SMatthias Ringwald   q15_t * pSrc,
6523*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6524*1b2596b5SMatthias Ringwald   q15_t * pResult);
6525*1b2596b5SMatthias Ringwald 
6526*1b2596b5SMatthias Ringwald   /**
6527*1b2596b5SMatthias Ringwald    * @brief  Mean value of a Q31 vector.
6528*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6529*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6530*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6531*1b2596b5SMatthias Ringwald    * @return none.
6532*1b2596b5SMatthias Ringwald    */
6533*1b2596b5SMatthias Ringwald   void arm_mean_q31(
6534*1b2596b5SMatthias Ringwald   q31_t * pSrc,
6535*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6536*1b2596b5SMatthias Ringwald   q31_t * pResult);
6537*1b2596b5SMatthias Ringwald 
6538*1b2596b5SMatthias Ringwald   /**
6539*1b2596b5SMatthias Ringwald    * @brief  Mean value of a floating-point vector.
6540*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6541*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6542*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6543*1b2596b5SMatthias Ringwald    * @return none.
6544*1b2596b5SMatthias Ringwald    */
6545*1b2596b5SMatthias Ringwald   void arm_mean_f32(
6546*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6547*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6548*1b2596b5SMatthias Ringwald   float32_t * pResult);
6549*1b2596b5SMatthias Ringwald 
6550*1b2596b5SMatthias Ringwald   /**
6551*1b2596b5SMatthias Ringwald    * @brief  Variance of the elements of a floating-point vector.
6552*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6553*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6554*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6555*1b2596b5SMatthias Ringwald    * @return none.
6556*1b2596b5SMatthias Ringwald    */
6557*1b2596b5SMatthias Ringwald 
6558*1b2596b5SMatthias Ringwald   void arm_var_f32(
6559*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6560*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6561*1b2596b5SMatthias Ringwald   float32_t * pResult);
6562*1b2596b5SMatthias Ringwald 
6563*1b2596b5SMatthias Ringwald   /**
6564*1b2596b5SMatthias Ringwald    * @brief  Variance of the elements of a Q31 vector.
6565*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6566*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6567*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6568*1b2596b5SMatthias Ringwald    * @return none.
6569*1b2596b5SMatthias Ringwald    */
6570*1b2596b5SMatthias Ringwald 
6571*1b2596b5SMatthias Ringwald   void arm_var_q31(
6572*1b2596b5SMatthias Ringwald   q31_t * pSrc,
6573*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6574*1b2596b5SMatthias Ringwald   q31_t * pResult);
6575*1b2596b5SMatthias Ringwald 
6576*1b2596b5SMatthias Ringwald   /**
6577*1b2596b5SMatthias Ringwald    * @brief  Variance of the elements of a Q15 vector.
6578*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6579*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6580*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6581*1b2596b5SMatthias Ringwald    * @return none.
6582*1b2596b5SMatthias Ringwald    */
6583*1b2596b5SMatthias Ringwald 
6584*1b2596b5SMatthias Ringwald   void arm_var_q15(
6585*1b2596b5SMatthias Ringwald   q15_t * pSrc,
6586*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6587*1b2596b5SMatthias Ringwald   q15_t * pResult);
6588*1b2596b5SMatthias Ringwald 
6589*1b2596b5SMatthias Ringwald   /**
6590*1b2596b5SMatthias Ringwald    * @brief  Root Mean Square of the elements of a floating-point vector.
6591*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6592*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6593*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6594*1b2596b5SMatthias Ringwald    * @return none.
6595*1b2596b5SMatthias Ringwald    */
6596*1b2596b5SMatthias Ringwald 
6597*1b2596b5SMatthias Ringwald   void arm_rms_f32(
6598*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6599*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6600*1b2596b5SMatthias Ringwald   float32_t * pResult);
6601*1b2596b5SMatthias Ringwald 
6602*1b2596b5SMatthias Ringwald   /**
6603*1b2596b5SMatthias Ringwald    * @brief  Root Mean Square of the elements of a Q31 vector.
6604*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6605*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6606*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6607*1b2596b5SMatthias Ringwald    * @return none.
6608*1b2596b5SMatthias Ringwald    */
6609*1b2596b5SMatthias Ringwald 
6610*1b2596b5SMatthias Ringwald   void arm_rms_q31(
6611*1b2596b5SMatthias Ringwald   q31_t * pSrc,
6612*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6613*1b2596b5SMatthias Ringwald   q31_t * pResult);
6614*1b2596b5SMatthias Ringwald 
6615*1b2596b5SMatthias Ringwald   /**
6616*1b2596b5SMatthias Ringwald    * @brief  Root Mean Square of the elements of a Q15 vector.
6617*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6618*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6619*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6620*1b2596b5SMatthias Ringwald    * @return none.
6621*1b2596b5SMatthias Ringwald    */
6622*1b2596b5SMatthias Ringwald 
6623*1b2596b5SMatthias Ringwald   void arm_rms_q15(
6624*1b2596b5SMatthias Ringwald   q15_t * pSrc,
6625*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6626*1b2596b5SMatthias Ringwald   q15_t * pResult);
6627*1b2596b5SMatthias Ringwald 
6628*1b2596b5SMatthias Ringwald   /**
6629*1b2596b5SMatthias Ringwald    * @brief  Standard deviation of the elements of a floating-point vector.
6630*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6631*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6632*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6633*1b2596b5SMatthias Ringwald    * @return none.
6634*1b2596b5SMatthias Ringwald    */
6635*1b2596b5SMatthias Ringwald 
6636*1b2596b5SMatthias Ringwald   void arm_std_f32(
6637*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6638*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6639*1b2596b5SMatthias Ringwald   float32_t * pResult);
6640*1b2596b5SMatthias Ringwald 
6641*1b2596b5SMatthias Ringwald   /**
6642*1b2596b5SMatthias Ringwald    * @brief  Standard deviation of the elements of a Q31 vector.
6643*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6644*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6645*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6646*1b2596b5SMatthias Ringwald    * @return none.
6647*1b2596b5SMatthias Ringwald    */
6648*1b2596b5SMatthias Ringwald 
6649*1b2596b5SMatthias Ringwald   void arm_std_q31(
6650*1b2596b5SMatthias Ringwald   q31_t * pSrc,
6651*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6652*1b2596b5SMatthias Ringwald   q31_t * pResult);
6653*1b2596b5SMatthias Ringwald 
6654*1b2596b5SMatthias Ringwald   /**
6655*1b2596b5SMatthias Ringwald    * @brief  Standard deviation of the elements of a Q15 vector.
6656*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6657*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6658*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output value.
6659*1b2596b5SMatthias Ringwald    * @return none.
6660*1b2596b5SMatthias Ringwald    */
6661*1b2596b5SMatthias Ringwald 
6662*1b2596b5SMatthias Ringwald   void arm_std_q15(
6663*1b2596b5SMatthias Ringwald   q15_t * pSrc,
6664*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6665*1b2596b5SMatthias Ringwald   q15_t * pResult);
6666*1b2596b5SMatthias Ringwald 
6667*1b2596b5SMatthias Ringwald   /**
6668*1b2596b5SMatthias Ringwald    * @brief  Floating-point complex magnitude
6669*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the complex input vector
6670*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the real output vector
6671*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in the input vector
6672*1b2596b5SMatthias Ringwald    * @return none.
6673*1b2596b5SMatthias Ringwald    */
6674*1b2596b5SMatthias Ringwald 
6675*1b2596b5SMatthias Ringwald   void arm_cmplx_mag_f32(
6676*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6677*1b2596b5SMatthias Ringwald   float32_t * pDst,
6678*1b2596b5SMatthias Ringwald   uint32_t numSamples);
6679*1b2596b5SMatthias Ringwald 
6680*1b2596b5SMatthias Ringwald   /**
6681*1b2596b5SMatthias Ringwald    * @brief  Q31 complex magnitude
6682*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the complex input vector
6683*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the real output vector
6684*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in the input vector
6685*1b2596b5SMatthias Ringwald    * @return none.
6686*1b2596b5SMatthias Ringwald    */
6687*1b2596b5SMatthias Ringwald 
6688*1b2596b5SMatthias Ringwald   void arm_cmplx_mag_q31(
6689*1b2596b5SMatthias Ringwald   q31_t * pSrc,
6690*1b2596b5SMatthias Ringwald   q31_t * pDst,
6691*1b2596b5SMatthias Ringwald   uint32_t numSamples);
6692*1b2596b5SMatthias Ringwald 
6693*1b2596b5SMatthias Ringwald   /**
6694*1b2596b5SMatthias Ringwald    * @brief  Q15 complex magnitude
6695*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc points to the complex input vector
6696*1b2596b5SMatthias Ringwald    * @param[out]  *pDst points to the real output vector
6697*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in the input vector
6698*1b2596b5SMatthias Ringwald    * @return none.
6699*1b2596b5SMatthias Ringwald    */
6700*1b2596b5SMatthias Ringwald 
6701*1b2596b5SMatthias Ringwald   void arm_cmplx_mag_q15(
6702*1b2596b5SMatthias Ringwald   q15_t * pSrc,
6703*1b2596b5SMatthias Ringwald   q15_t * pDst,
6704*1b2596b5SMatthias Ringwald   uint32_t numSamples);
6705*1b2596b5SMatthias Ringwald 
6706*1b2596b5SMatthias Ringwald   /**
6707*1b2596b5SMatthias Ringwald    * @brief  Q15 complex dot product
6708*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcA points to the first input vector
6709*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcB points to the second input vector
6710*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in each vector
6711*1b2596b5SMatthias Ringwald    * @param[out]  *realResult real part of the result returned here
6712*1b2596b5SMatthias Ringwald    * @param[out]  *imagResult imaginary part of the result returned here
6713*1b2596b5SMatthias Ringwald    * @return none.
6714*1b2596b5SMatthias Ringwald    */
6715*1b2596b5SMatthias Ringwald 
6716*1b2596b5SMatthias Ringwald   void arm_cmplx_dot_prod_q15(
6717*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
6718*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
6719*1b2596b5SMatthias Ringwald   uint32_t numSamples,
6720*1b2596b5SMatthias Ringwald   q31_t * realResult,
6721*1b2596b5SMatthias Ringwald   q31_t * imagResult);
6722*1b2596b5SMatthias Ringwald 
6723*1b2596b5SMatthias Ringwald   /**
6724*1b2596b5SMatthias Ringwald    * @brief  Q31 complex dot product
6725*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcA points to the first input vector
6726*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcB points to the second input vector
6727*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in each vector
6728*1b2596b5SMatthias Ringwald    * @param[out]  *realResult real part of the result returned here
6729*1b2596b5SMatthias Ringwald    * @param[out]  *imagResult imaginary part of the result returned here
6730*1b2596b5SMatthias Ringwald    * @return none.
6731*1b2596b5SMatthias Ringwald    */
6732*1b2596b5SMatthias Ringwald 
6733*1b2596b5SMatthias Ringwald   void arm_cmplx_dot_prod_q31(
6734*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
6735*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
6736*1b2596b5SMatthias Ringwald   uint32_t numSamples,
6737*1b2596b5SMatthias Ringwald   q63_t * realResult,
6738*1b2596b5SMatthias Ringwald   q63_t * imagResult);
6739*1b2596b5SMatthias Ringwald 
6740*1b2596b5SMatthias Ringwald   /**
6741*1b2596b5SMatthias Ringwald    * @brief  Floating-point complex dot product
6742*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcA points to the first input vector
6743*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcB points to the second input vector
6744*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in each vector
6745*1b2596b5SMatthias Ringwald    * @param[out]  *realResult real part of the result returned here
6746*1b2596b5SMatthias Ringwald    * @param[out]  *imagResult imaginary part of the result returned here
6747*1b2596b5SMatthias Ringwald    * @return none.
6748*1b2596b5SMatthias Ringwald    */
6749*1b2596b5SMatthias Ringwald 
6750*1b2596b5SMatthias Ringwald   void arm_cmplx_dot_prod_f32(
6751*1b2596b5SMatthias Ringwald   float32_t * pSrcA,
6752*1b2596b5SMatthias Ringwald   float32_t * pSrcB,
6753*1b2596b5SMatthias Ringwald   uint32_t numSamples,
6754*1b2596b5SMatthias Ringwald   float32_t * realResult,
6755*1b2596b5SMatthias Ringwald   float32_t * imagResult);
6756*1b2596b5SMatthias Ringwald 
6757*1b2596b5SMatthias Ringwald   /**
6758*1b2596b5SMatthias Ringwald    * @brief  Q15 complex-by-real multiplication
6759*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcCmplx points to the complex input vector
6760*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcReal points to the real input vector
6761*1b2596b5SMatthias Ringwald    * @param[out]  *pCmplxDst points to the complex output vector
6762*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of samples in each vector
6763*1b2596b5SMatthias Ringwald    * @return none.
6764*1b2596b5SMatthias Ringwald    */
6765*1b2596b5SMatthias Ringwald 
6766*1b2596b5SMatthias Ringwald   void arm_cmplx_mult_real_q15(
6767*1b2596b5SMatthias Ringwald   q15_t * pSrcCmplx,
6768*1b2596b5SMatthias Ringwald   q15_t * pSrcReal,
6769*1b2596b5SMatthias Ringwald   q15_t * pCmplxDst,
6770*1b2596b5SMatthias Ringwald   uint32_t numSamples);
6771*1b2596b5SMatthias Ringwald 
6772*1b2596b5SMatthias Ringwald   /**
6773*1b2596b5SMatthias Ringwald    * @brief  Q31 complex-by-real multiplication
6774*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcCmplx points to the complex input vector
6775*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcReal points to the real input vector
6776*1b2596b5SMatthias Ringwald    * @param[out]  *pCmplxDst points to the complex output vector
6777*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of samples in each vector
6778*1b2596b5SMatthias Ringwald    * @return none.
6779*1b2596b5SMatthias Ringwald    */
6780*1b2596b5SMatthias Ringwald 
6781*1b2596b5SMatthias Ringwald   void arm_cmplx_mult_real_q31(
6782*1b2596b5SMatthias Ringwald   q31_t * pSrcCmplx,
6783*1b2596b5SMatthias Ringwald   q31_t * pSrcReal,
6784*1b2596b5SMatthias Ringwald   q31_t * pCmplxDst,
6785*1b2596b5SMatthias Ringwald   uint32_t numSamples);
6786*1b2596b5SMatthias Ringwald 
6787*1b2596b5SMatthias Ringwald   /**
6788*1b2596b5SMatthias Ringwald    * @brief  Floating-point complex-by-real multiplication
6789*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcCmplx points to the complex input vector
6790*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcReal points to the real input vector
6791*1b2596b5SMatthias Ringwald    * @param[out]  *pCmplxDst points to the complex output vector
6792*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of samples in each vector
6793*1b2596b5SMatthias Ringwald    * @return none.
6794*1b2596b5SMatthias Ringwald    */
6795*1b2596b5SMatthias Ringwald 
6796*1b2596b5SMatthias Ringwald   void arm_cmplx_mult_real_f32(
6797*1b2596b5SMatthias Ringwald   float32_t * pSrcCmplx,
6798*1b2596b5SMatthias Ringwald   float32_t * pSrcReal,
6799*1b2596b5SMatthias Ringwald   float32_t * pCmplxDst,
6800*1b2596b5SMatthias Ringwald   uint32_t numSamples);
6801*1b2596b5SMatthias Ringwald 
6802*1b2596b5SMatthias Ringwald   /**
6803*1b2596b5SMatthias Ringwald    * @brief  Minimum value of a Q7 vector.
6804*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6805*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6806*1b2596b5SMatthias Ringwald    * @param[out]  *result is output pointer
6807*1b2596b5SMatthias Ringwald    * @param[in]  index is the array index of the minimum value in the input buffer.
6808*1b2596b5SMatthias Ringwald    * @return none.
6809*1b2596b5SMatthias Ringwald    */
6810*1b2596b5SMatthias Ringwald 
6811*1b2596b5SMatthias Ringwald   void arm_min_q7(
6812*1b2596b5SMatthias Ringwald   q7_t * pSrc,
6813*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6814*1b2596b5SMatthias Ringwald   q7_t * result,
6815*1b2596b5SMatthias Ringwald   uint32_t * index);
6816*1b2596b5SMatthias Ringwald 
6817*1b2596b5SMatthias Ringwald   /**
6818*1b2596b5SMatthias Ringwald    * @brief  Minimum value of a Q15 vector.
6819*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6820*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6821*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output pointer
6822*1b2596b5SMatthias Ringwald    * @param[in]  *pIndex is the array index of the minimum value in the input buffer.
6823*1b2596b5SMatthias Ringwald    * @return none.
6824*1b2596b5SMatthias Ringwald    */
6825*1b2596b5SMatthias Ringwald 
6826*1b2596b5SMatthias Ringwald   void arm_min_q15(
6827*1b2596b5SMatthias Ringwald   q15_t * pSrc,
6828*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6829*1b2596b5SMatthias Ringwald   q15_t * pResult,
6830*1b2596b5SMatthias Ringwald   uint32_t * pIndex);
6831*1b2596b5SMatthias Ringwald 
6832*1b2596b5SMatthias Ringwald   /**
6833*1b2596b5SMatthias Ringwald    * @brief  Minimum value of a Q31 vector.
6834*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6835*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6836*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output pointer
6837*1b2596b5SMatthias Ringwald    * @param[out]  *pIndex is the array index of the minimum value in the input buffer.
6838*1b2596b5SMatthias Ringwald    * @return none.
6839*1b2596b5SMatthias Ringwald    */
6840*1b2596b5SMatthias Ringwald   void arm_min_q31(
6841*1b2596b5SMatthias Ringwald   q31_t * pSrc,
6842*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6843*1b2596b5SMatthias Ringwald   q31_t * pResult,
6844*1b2596b5SMatthias Ringwald   uint32_t * pIndex);
6845*1b2596b5SMatthias Ringwald 
6846*1b2596b5SMatthias Ringwald   /**
6847*1b2596b5SMatthias Ringwald    * @brief  Minimum value of a floating-point vector.
6848*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
6849*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
6850*1b2596b5SMatthias Ringwald    * @param[out]  *pResult is output pointer
6851*1b2596b5SMatthias Ringwald    * @param[out]  *pIndex is the array index of the minimum value in the input buffer.
6852*1b2596b5SMatthias Ringwald    * @return none.
6853*1b2596b5SMatthias Ringwald    */
6854*1b2596b5SMatthias Ringwald 
6855*1b2596b5SMatthias Ringwald   void arm_min_f32(
6856*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6857*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6858*1b2596b5SMatthias Ringwald   float32_t * pResult,
6859*1b2596b5SMatthias Ringwald   uint32_t * pIndex);
6860*1b2596b5SMatthias Ringwald 
6861*1b2596b5SMatthias Ringwald /**
6862*1b2596b5SMatthias Ringwald  * @brief Maximum value of a Q7 vector.
6863*1b2596b5SMatthias Ringwald  * @param[in]       *pSrc points to the input buffer
6864*1b2596b5SMatthias Ringwald  * @param[in]       blockSize length of the input vector
6865*1b2596b5SMatthias Ringwald  * @param[out]      *pResult maximum value returned here
6866*1b2596b5SMatthias Ringwald  * @param[out]      *pIndex index of maximum value returned here
6867*1b2596b5SMatthias Ringwald  * @return none.
6868*1b2596b5SMatthias Ringwald  */
6869*1b2596b5SMatthias Ringwald 
6870*1b2596b5SMatthias Ringwald   void arm_max_q7(
6871*1b2596b5SMatthias Ringwald   q7_t * pSrc,
6872*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6873*1b2596b5SMatthias Ringwald   q7_t * pResult,
6874*1b2596b5SMatthias Ringwald   uint32_t * pIndex);
6875*1b2596b5SMatthias Ringwald 
6876*1b2596b5SMatthias Ringwald /**
6877*1b2596b5SMatthias Ringwald  * @brief Maximum value of a Q15 vector.
6878*1b2596b5SMatthias Ringwald  * @param[in]       *pSrc points to the input buffer
6879*1b2596b5SMatthias Ringwald  * @param[in]       blockSize length of the input vector
6880*1b2596b5SMatthias Ringwald  * @param[out]      *pResult maximum value returned here
6881*1b2596b5SMatthias Ringwald  * @param[out]      *pIndex index of maximum value returned here
6882*1b2596b5SMatthias Ringwald  * @return none.
6883*1b2596b5SMatthias Ringwald  */
6884*1b2596b5SMatthias Ringwald 
6885*1b2596b5SMatthias Ringwald   void arm_max_q15(
6886*1b2596b5SMatthias Ringwald   q15_t * pSrc,
6887*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6888*1b2596b5SMatthias Ringwald   q15_t * pResult,
6889*1b2596b5SMatthias Ringwald   uint32_t * pIndex);
6890*1b2596b5SMatthias Ringwald 
6891*1b2596b5SMatthias Ringwald /**
6892*1b2596b5SMatthias Ringwald  * @brief Maximum value of a Q31 vector.
6893*1b2596b5SMatthias Ringwald  * @param[in]       *pSrc points to the input buffer
6894*1b2596b5SMatthias Ringwald  * @param[in]       blockSize length of the input vector
6895*1b2596b5SMatthias Ringwald  * @param[out]      *pResult maximum value returned here
6896*1b2596b5SMatthias Ringwald  * @param[out]      *pIndex index of maximum value returned here
6897*1b2596b5SMatthias Ringwald  * @return none.
6898*1b2596b5SMatthias Ringwald  */
6899*1b2596b5SMatthias Ringwald 
6900*1b2596b5SMatthias Ringwald   void arm_max_q31(
6901*1b2596b5SMatthias Ringwald   q31_t * pSrc,
6902*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6903*1b2596b5SMatthias Ringwald   q31_t * pResult,
6904*1b2596b5SMatthias Ringwald   uint32_t * pIndex);
6905*1b2596b5SMatthias Ringwald 
6906*1b2596b5SMatthias Ringwald /**
6907*1b2596b5SMatthias Ringwald  * @brief Maximum value of a floating-point vector.
6908*1b2596b5SMatthias Ringwald  * @param[in]       *pSrc points to the input buffer
6909*1b2596b5SMatthias Ringwald  * @param[in]       blockSize length of the input vector
6910*1b2596b5SMatthias Ringwald  * @param[out]      *pResult maximum value returned here
6911*1b2596b5SMatthias Ringwald  * @param[out]      *pIndex index of maximum value returned here
6912*1b2596b5SMatthias Ringwald  * @return none.
6913*1b2596b5SMatthias Ringwald  */
6914*1b2596b5SMatthias Ringwald 
6915*1b2596b5SMatthias Ringwald   void arm_max_f32(
6916*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6917*1b2596b5SMatthias Ringwald   uint32_t blockSize,
6918*1b2596b5SMatthias Ringwald   float32_t * pResult,
6919*1b2596b5SMatthias Ringwald   uint32_t * pIndex);
6920*1b2596b5SMatthias Ringwald 
6921*1b2596b5SMatthias Ringwald   /**
6922*1b2596b5SMatthias Ringwald    * @brief  Q15 complex-by-complex multiplication
6923*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcA points to the first input vector
6924*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcB points to the second input vector
6925*1b2596b5SMatthias Ringwald    * @param[out]  *pDst  points to the output vector
6926*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in each vector
6927*1b2596b5SMatthias Ringwald    * @return none.
6928*1b2596b5SMatthias Ringwald    */
6929*1b2596b5SMatthias Ringwald 
6930*1b2596b5SMatthias Ringwald   void arm_cmplx_mult_cmplx_q15(
6931*1b2596b5SMatthias Ringwald   q15_t * pSrcA,
6932*1b2596b5SMatthias Ringwald   q15_t * pSrcB,
6933*1b2596b5SMatthias Ringwald   q15_t * pDst,
6934*1b2596b5SMatthias Ringwald   uint32_t numSamples);
6935*1b2596b5SMatthias Ringwald 
6936*1b2596b5SMatthias Ringwald   /**
6937*1b2596b5SMatthias Ringwald    * @brief  Q31 complex-by-complex multiplication
6938*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcA points to the first input vector
6939*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcB points to the second input vector
6940*1b2596b5SMatthias Ringwald    * @param[out]  *pDst  points to the output vector
6941*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in each vector
6942*1b2596b5SMatthias Ringwald    * @return none.
6943*1b2596b5SMatthias Ringwald    */
6944*1b2596b5SMatthias Ringwald 
6945*1b2596b5SMatthias Ringwald   void arm_cmplx_mult_cmplx_q31(
6946*1b2596b5SMatthias Ringwald   q31_t * pSrcA,
6947*1b2596b5SMatthias Ringwald   q31_t * pSrcB,
6948*1b2596b5SMatthias Ringwald   q31_t * pDst,
6949*1b2596b5SMatthias Ringwald   uint32_t numSamples);
6950*1b2596b5SMatthias Ringwald 
6951*1b2596b5SMatthias Ringwald   /**
6952*1b2596b5SMatthias Ringwald    * @brief  Floating-point complex-by-complex multiplication
6953*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcA points to the first input vector
6954*1b2596b5SMatthias Ringwald    * @param[in]  *pSrcB points to the second input vector
6955*1b2596b5SMatthias Ringwald    * @param[out]  *pDst  points to the output vector
6956*1b2596b5SMatthias Ringwald    * @param[in]  numSamples number of complex samples in each vector
6957*1b2596b5SMatthias Ringwald    * @return none.
6958*1b2596b5SMatthias Ringwald    */
6959*1b2596b5SMatthias Ringwald 
6960*1b2596b5SMatthias Ringwald   void arm_cmplx_mult_cmplx_f32(
6961*1b2596b5SMatthias Ringwald   float32_t * pSrcA,
6962*1b2596b5SMatthias Ringwald   float32_t * pSrcB,
6963*1b2596b5SMatthias Ringwald   float32_t * pDst,
6964*1b2596b5SMatthias Ringwald   uint32_t numSamples);
6965*1b2596b5SMatthias Ringwald 
6966*1b2596b5SMatthias Ringwald   /**
6967*1b2596b5SMatthias Ringwald    * @brief Converts the elements of the floating-point vector to Q31 vector.
6968*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the floating-point input vector
6969*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the Q31 output vector
6970*1b2596b5SMatthias Ringwald    * @param[in]       blockSize length of the input vector
6971*1b2596b5SMatthias Ringwald    * @return none.
6972*1b2596b5SMatthias Ringwald    */
6973*1b2596b5SMatthias Ringwald   void arm_float_to_q31(
6974*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6975*1b2596b5SMatthias Ringwald   q31_t * pDst,
6976*1b2596b5SMatthias Ringwald   uint32_t blockSize);
6977*1b2596b5SMatthias Ringwald 
6978*1b2596b5SMatthias Ringwald   /**
6979*1b2596b5SMatthias Ringwald    * @brief Converts the elements of the floating-point vector to Q15 vector.
6980*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the floating-point input vector
6981*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the Q15 output vector
6982*1b2596b5SMatthias Ringwald    * @param[in]       blockSize length of the input vector
6983*1b2596b5SMatthias Ringwald    * @return          none
6984*1b2596b5SMatthias Ringwald    */
6985*1b2596b5SMatthias Ringwald   void arm_float_to_q15(
6986*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6987*1b2596b5SMatthias Ringwald   q15_t * pDst,
6988*1b2596b5SMatthias Ringwald   uint32_t blockSize);
6989*1b2596b5SMatthias Ringwald 
6990*1b2596b5SMatthias Ringwald   /**
6991*1b2596b5SMatthias Ringwald    * @brief Converts the elements of the floating-point vector to Q7 vector.
6992*1b2596b5SMatthias Ringwald    * @param[in]       *pSrc points to the floating-point input vector
6993*1b2596b5SMatthias Ringwald    * @param[out]      *pDst points to the Q7 output vector
6994*1b2596b5SMatthias Ringwald    * @param[in]       blockSize length of the input vector
6995*1b2596b5SMatthias Ringwald    * @return          none
6996*1b2596b5SMatthias Ringwald    */
6997*1b2596b5SMatthias Ringwald   void arm_float_to_q7(
6998*1b2596b5SMatthias Ringwald   float32_t * pSrc,
6999*1b2596b5SMatthias Ringwald   q7_t * pDst,
7000*1b2596b5SMatthias Ringwald   uint32_t blockSize);
7001*1b2596b5SMatthias Ringwald 
7002*1b2596b5SMatthias Ringwald 
7003*1b2596b5SMatthias Ringwald   /**
7004*1b2596b5SMatthias Ringwald    * @brief  Converts the elements of the Q31 vector to Q15 vector.
7005*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
7006*1b2596b5SMatthias Ringwald    * @param[out]  *pDst is output pointer
7007*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
7008*1b2596b5SMatthias Ringwald    * @return none.
7009*1b2596b5SMatthias Ringwald    */
7010*1b2596b5SMatthias Ringwald   void arm_q31_to_q15(
7011*1b2596b5SMatthias Ringwald   q31_t * pSrc,
7012*1b2596b5SMatthias Ringwald   q15_t * pDst,
7013*1b2596b5SMatthias Ringwald   uint32_t blockSize);
7014*1b2596b5SMatthias Ringwald 
7015*1b2596b5SMatthias Ringwald   /**
7016*1b2596b5SMatthias Ringwald    * @brief  Converts the elements of the Q31 vector to Q7 vector.
7017*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
7018*1b2596b5SMatthias Ringwald    * @param[out]  *pDst is output pointer
7019*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
7020*1b2596b5SMatthias Ringwald    * @return none.
7021*1b2596b5SMatthias Ringwald    */
7022*1b2596b5SMatthias Ringwald   void arm_q31_to_q7(
7023*1b2596b5SMatthias Ringwald   q31_t * pSrc,
7024*1b2596b5SMatthias Ringwald   q7_t * pDst,
7025*1b2596b5SMatthias Ringwald   uint32_t blockSize);
7026*1b2596b5SMatthias Ringwald 
7027*1b2596b5SMatthias Ringwald   /**
7028*1b2596b5SMatthias Ringwald    * @brief  Converts the elements of the Q15 vector to floating-point vector.
7029*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
7030*1b2596b5SMatthias Ringwald    * @param[out]  *pDst is output pointer
7031*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
7032*1b2596b5SMatthias Ringwald    * @return none.
7033*1b2596b5SMatthias Ringwald    */
7034*1b2596b5SMatthias Ringwald   void arm_q15_to_float(
7035*1b2596b5SMatthias Ringwald   q15_t * pSrc,
7036*1b2596b5SMatthias Ringwald   float32_t * pDst,
7037*1b2596b5SMatthias Ringwald   uint32_t blockSize);
7038*1b2596b5SMatthias Ringwald 
7039*1b2596b5SMatthias Ringwald 
7040*1b2596b5SMatthias Ringwald   /**
7041*1b2596b5SMatthias Ringwald    * @brief  Converts the elements of the Q15 vector to Q31 vector.
7042*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
7043*1b2596b5SMatthias Ringwald    * @param[out]  *pDst is output pointer
7044*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
7045*1b2596b5SMatthias Ringwald    * @return none.
7046*1b2596b5SMatthias Ringwald    */
7047*1b2596b5SMatthias Ringwald   void arm_q15_to_q31(
7048*1b2596b5SMatthias Ringwald   q15_t * pSrc,
7049*1b2596b5SMatthias Ringwald   q31_t * pDst,
7050*1b2596b5SMatthias Ringwald   uint32_t blockSize);
7051*1b2596b5SMatthias Ringwald 
7052*1b2596b5SMatthias Ringwald 
7053*1b2596b5SMatthias Ringwald   /**
7054*1b2596b5SMatthias Ringwald    * @brief  Converts the elements of the Q15 vector to Q7 vector.
7055*1b2596b5SMatthias Ringwald    * @param[in]  *pSrc is input pointer
7056*1b2596b5SMatthias Ringwald    * @param[out]  *pDst is output pointer
7057*1b2596b5SMatthias Ringwald    * @param[in]  blockSize is the number of samples to process
7058*1b2596b5SMatthias Ringwald    * @return none.
7059*1b2596b5SMatthias Ringwald    */
7060*1b2596b5SMatthias Ringwald   void arm_q15_to_q7(
7061*1b2596b5SMatthias Ringwald   q15_t * pSrc,
7062*1b2596b5SMatthias Ringwald   q7_t * pDst,
7063*1b2596b5SMatthias Ringwald   uint32_t blockSize);
7064*1b2596b5SMatthias Ringwald 
7065*1b2596b5SMatthias Ringwald 
7066*1b2596b5SMatthias Ringwald   /**
7067*1b2596b5SMatthias Ringwald    * @ingroup groupInterpolation
7068*1b2596b5SMatthias Ringwald    */
7069*1b2596b5SMatthias Ringwald 
7070*1b2596b5SMatthias Ringwald   /**
7071*1b2596b5SMatthias Ringwald    * @defgroup BilinearInterpolate Bilinear Interpolation
7072*1b2596b5SMatthias Ringwald    *
7073*1b2596b5SMatthias Ringwald    * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
7074*1b2596b5SMatthias Ringwald    * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
7075*1b2596b5SMatthias Ringwald    * determines values between the grid points.
7076*1b2596b5SMatthias Ringwald    * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
7077*1b2596b5SMatthias Ringwald    * Bilinear interpolation is often used in image processing to rescale images.
7078*1b2596b5SMatthias Ringwald    * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
7079*1b2596b5SMatthias Ringwald    *
7080*1b2596b5SMatthias Ringwald    * <b>Algorithm</b>
7081*1b2596b5SMatthias Ringwald    * \par
7082*1b2596b5SMatthias Ringwald    * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
7083*1b2596b5SMatthias Ringwald    * For floating-point, the instance structure is defined as:
7084*1b2596b5SMatthias Ringwald    * <pre>
7085*1b2596b5SMatthias Ringwald    *   typedef struct
7086*1b2596b5SMatthias Ringwald    *   {
7087*1b2596b5SMatthias Ringwald    *     uint16_t numRows;
7088*1b2596b5SMatthias Ringwald    *     uint16_t numCols;
7089*1b2596b5SMatthias Ringwald    *     float32_t *pData;
7090*1b2596b5SMatthias Ringwald    * } arm_bilinear_interp_instance_f32;
7091*1b2596b5SMatthias Ringwald    * </pre>
7092*1b2596b5SMatthias Ringwald    *
7093*1b2596b5SMatthias Ringwald    * \par
7094*1b2596b5SMatthias Ringwald    * where <code>numRows</code> specifies the number of rows in the table;
7095*1b2596b5SMatthias Ringwald    * <code>numCols</code> specifies the number of columns in the table;
7096*1b2596b5SMatthias Ringwald    * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
7097*1b2596b5SMatthias Ringwald    * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
7098*1b2596b5SMatthias Ringwald    * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
7099*1b2596b5SMatthias Ringwald    *
7100*1b2596b5SMatthias Ringwald    * \par
7101*1b2596b5SMatthias Ringwald    * Let <code>(x, y)</code> specify the desired interpolation point.  Then define:
7102*1b2596b5SMatthias Ringwald    * <pre>
7103*1b2596b5SMatthias Ringwald    *     XF = floor(x)
7104*1b2596b5SMatthias Ringwald    *     YF = floor(y)
7105*1b2596b5SMatthias Ringwald    * </pre>
7106*1b2596b5SMatthias Ringwald    * \par
7107*1b2596b5SMatthias Ringwald    * The interpolated output point is computed as:
7108*1b2596b5SMatthias Ringwald    * <pre>
7109*1b2596b5SMatthias Ringwald    *  f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
7110*1b2596b5SMatthias Ringwald    *           + f(XF+1, YF) * (x-XF)*(1-(y-YF))
7111*1b2596b5SMatthias Ringwald    *           + f(XF, YF+1) * (1-(x-XF))*(y-YF)
7112*1b2596b5SMatthias Ringwald    *           + f(XF+1, YF+1) * (x-XF)*(y-YF)
7113*1b2596b5SMatthias Ringwald    * </pre>
7114*1b2596b5SMatthias Ringwald    * Note that the coordinates (x, y) contain integer and fractional components.
7115*1b2596b5SMatthias Ringwald    * The integer components specify which portion of the table to use while the
7116*1b2596b5SMatthias Ringwald    * fractional components control the interpolation processor.
7117*1b2596b5SMatthias Ringwald    *
7118*1b2596b5SMatthias Ringwald    * \par
7119*1b2596b5SMatthias Ringwald    * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
7120*1b2596b5SMatthias Ringwald    */
7121*1b2596b5SMatthias Ringwald 
7122*1b2596b5SMatthias Ringwald   /**
7123*1b2596b5SMatthias Ringwald    * @addtogroup BilinearInterpolate
7124*1b2596b5SMatthias Ringwald    * @{
7125*1b2596b5SMatthias Ringwald    */
7126*1b2596b5SMatthias Ringwald 
7127*1b2596b5SMatthias Ringwald   /**
7128*1b2596b5SMatthias Ringwald   *
7129*1b2596b5SMatthias Ringwald   * @brief  Floating-point bilinear interpolation.
7130*1b2596b5SMatthias Ringwald   * @param[in,out] *S points to an instance of the interpolation structure.
7131*1b2596b5SMatthias Ringwald   * @param[in] X interpolation coordinate.
7132*1b2596b5SMatthias Ringwald   * @param[in] Y interpolation coordinate.
7133*1b2596b5SMatthias Ringwald   * @return out interpolated value.
7134*1b2596b5SMatthias Ringwald   */
7135*1b2596b5SMatthias Ringwald 
7136*1b2596b5SMatthias Ringwald 
arm_bilinear_interp_f32(const arm_bilinear_interp_instance_f32 * S,float32_t X,float32_t Y)7137*1b2596b5SMatthias Ringwald   static __INLINE float32_t arm_bilinear_interp_f32(
7138*1b2596b5SMatthias Ringwald   const arm_bilinear_interp_instance_f32 * S,
7139*1b2596b5SMatthias Ringwald   float32_t X,
7140*1b2596b5SMatthias Ringwald   float32_t Y)
7141*1b2596b5SMatthias Ringwald   {
7142*1b2596b5SMatthias Ringwald     float32_t out;
7143*1b2596b5SMatthias Ringwald     float32_t f00, f01, f10, f11;
7144*1b2596b5SMatthias Ringwald     float32_t *pData = S->pData;
7145*1b2596b5SMatthias Ringwald     int32_t xIndex, yIndex, index;
7146*1b2596b5SMatthias Ringwald     float32_t xdiff, ydiff;
7147*1b2596b5SMatthias Ringwald     float32_t b1, b2, b3, b4;
7148*1b2596b5SMatthias Ringwald 
7149*1b2596b5SMatthias Ringwald     xIndex = (int32_t) X;
7150*1b2596b5SMatthias Ringwald     yIndex = (int32_t) Y;
7151*1b2596b5SMatthias Ringwald 
7152*1b2596b5SMatthias Ringwald     /* Care taken for table outside boundary */
7153*1b2596b5SMatthias Ringwald     /* Returns zero output when values are outside table boundary */
7154*1b2596b5SMatthias Ringwald     if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
7155*1b2596b5SMatthias Ringwald        || yIndex > (S->numCols - 1))
7156*1b2596b5SMatthias Ringwald     {
7157*1b2596b5SMatthias Ringwald       return (0);
7158*1b2596b5SMatthias Ringwald     }
7159*1b2596b5SMatthias Ringwald 
7160*1b2596b5SMatthias Ringwald     /* Calculation of index for two nearest points in X-direction */
7161*1b2596b5SMatthias Ringwald     index = (xIndex - 1) + (yIndex - 1) * S->numCols;
7162*1b2596b5SMatthias Ringwald 
7163*1b2596b5SMatthias Ringwald 
7164*1b2596b5SMatthias Ringwald     /* Read two nearest points in X-direction */
7165*1b2596b5SMatthias Ringwald     f00 = pData[index];
7166*1b2596b5SMatthias Ringwald     f01 = pData[index + 1];
7167*1b2596b5SMatthias Ringwald 
7168*1b2596b5SMatthias Ringwald     /* Calculation of index for two nearest points in Y-direction */
7169*1b2596b5SMatthias Ringwald     index = (xIndex - 1) + (yIndex) * S->numCols;
7170*1b2596b5SMatthias Ringwald 
7171*1b2596b5SMatthias Ringwald 
7172*1b2596b5SMatthias Ringwald     /* Read two nearest points in Y-direction */
7173*1b2596b5SMatthias Ringwald     f10 = pData[index];
7174*1b2596b5SMatthias Ringwald     f11 = pData[index + 1];
7175*1b2596b5SMatthias Ringwald 
7176*1b2596b5SMatthias Ringwald     /* Calculation of intermediate values */
7177*1b2596b5SMatthias Ringwald     b1 = f00;
7178*1b2596b5SMatthias Ringwald     b2 = f01 - f00;
7179*1b2596b5SMatthias Ringwald     b3 = f10 - f00;
7180*1b2596b5SMatthias Ringwald     b4 = f00 - f01 - f10 + f11;
7181*1b2596b5SMatthias Ringwald 
7182*1b2596b5SMatthias Ringwald     /* Calculation of fractional part in X */
7183*1b2596b5SMatthias Ringwald     xdiff = X - xIndex;
7184*1b2596b5SMatthias Ringwald 
7185*1b2596b5SMatthias Ringwald     /* Calculation of fractional part in Y */
7186*1b2596b5SMatthias Ringwald     ydiff = Y - yIndex;
7187*1b2596b5SMatthias Ringwald 
7188*1b2596b5SMatthias Ringwald     /* Calculation of bi-linear interpolated output */
7189*1b2596b5SMatthias Ringwald     out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
7190*1b2596b5SMatthias Ringwald 
7191*1b2596b5SMatthias Ringwald     /* return to application */
7192*1b2596b5SMatthias Ringwald     return (out);
7193*1b2596b5SMatthias Ringwald 
7194*1b2596b5SMatthias Ringwald   }
7195*1b2596b5SMatthias Ringwald 
7196*1b2596b5SMatthias Ringwald   /**
7197*1b2596b5SMatthias Ringwald   *
7198*1b2596b5SMatthias Ringwald   * @brief  Q31 bilinear interpolation.
7199*1b2596b5SMatthias Ringwald   * @param[in,out] *S points to an instance of the interpolation structure.
7200*1b2596b5SMatthias Ringwald   * @param[in] X interpolation coordinate in 12.20 format.
7201*1b2596b5SMatthias Ringwald   * @param[in] Y interpolation coordinate in 12.20 format.
7202*1b2596b5SMatthias Ringwald   * @return out interpolated value.
7203*1b2596b5SMatthias Ringwald   */
7204*1b2596b5SMatthias Ringwald 
arm_bilinear_interp_q31(arm_bilinear_interp_instance_q31 * S,q31_t X,q31_t Y)7205*1b2596b5SMatthias Ringwald   static __INLINE q31_t arm_bilinear_interp_q31(
7206*1b2596b5SMatthias Ringwald   arm_bilinear_interp_instance_q31 * S,
7207*1b2596b5SMatthias Ringwald   q31_t X,
7208*1b2596b5SMatthias Ringwald   q31_t Y)
7209*1b2596b5SMatthias Ringwald   {
7210*1b2596b5SMatthias Ringwald     q31_t out;                                   /* Temporary output */
7211*1b2596b5SMatthias Ringwald     q31_t acc = 0;                               /* output */
7212*1b2596b5SMatthias Ringwald     q31_t xfract, yfract;                        /* X, Y fractional parts */
7213*1b2596b5SMatthias Ringwald     q31_t x1, x2, y1, y2;                        /* Nearest output values */
7214*1b2596b5SMatthias Ringwald     int32_t rI, cI;                              /* Row and column indices */
7215*1b2596b5SMatthias Ringwald     q31_t *pYData = S->pData;                    /* pointer to output table values */
7216*1b2596b5SMatthias Ringwald     uint32_t nCols = S->numCols;                 /* num of rows */
7217*1b2596b5SMatthias Ringwald 
7218*1b2596b5SMatthias Ringwald 
7219*1b2596b5SMatthias Ringwald     /* Input is in 12.20 format */
7220*1b2596b5SMatthias Ringwald     /* 12 bits for the table index */
7221*1b2596b5SMatthias Ringwald     /* Index value calculation */
7222*1b2596b5SMatthias Ringwald     rI = ((X & 0xFFF00000) >> 20u);
7223*1b2596b5SMatthias Ringwald 
7224*1b2596b5SMatthias Ringwald     /* Input is in 12.20 format */
7225*1b2596b5SMatthias Ringwald     /* 12 bits for the table index */
7226*1b2596b5SMatthias Ringwald     /* Index value calculation */
7227*1b2596b5SMatthias Ringwald     cI = ((Y & 0xFFF00000) >> 20u);
7228*1b2596b5SMatthias Ringwald 
7229*1b2596b5SMatthias Ringwald     /* Care taken for table outside boundary */
7230*1b2596b5SMatthias Ringwald     /* Returns zero output when values are outside table boundary */
7231*1b2596b5SMatthias Ringwald     if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
7232*1b2596b5SMatthias Ringwald     {
7233*1b2596b5SMatthias Ringwald       return (0);
7234*1b2596b5SMatthias Ringwald     }
7235*1b2596b5SMatthias Ringwald 
7236*1b2596b5SMatthias Ringwald     /* 20 bits for the fractional part */
7237*1b2596b5SMatthias Ringwald     /* shift left xfract by 11 to keep 1.31 format */
7238*1b2596b5SMatthias Ringwald     xfract = (X & 0x000FFFFF) << 11u;
7239*1b2596b5SMatthias Ringwald 
7240*1b2596b5SMatthias Ringwald     /* Read two nearest output values from the index */
7241*1b2596b5SMatthias Ringwald     x1 = pYData[(rI) + nCols * (cI)];
7242*1b2596b5SMatthias Ringwald     x2 = pYData[(rI) + nCols * (cI) + 1u];
7243*1b2596b5SMatthias Ringwald 
7244*1b2596b5SMatthias Ringwald     /* 20 bits for the fractional part */
7245*1b2596b5SMatthias Ringwald     /* shift left yfract by 11 to keep 1.31 format */
7246*1b2596b5SMatthias Ringwald     yfract = (Y & 0x000FFFFF) << 11u;
7247*1b2596b5SMatthias Ringwald 
7248*1b2596b5SMatthias Ringwald     /* Read two nearest output values from the index */
7249*1b2596b5SMatthias Ringwald     y1 = pYData[(rI) + nCols * (cI + 1)];
7250*1b2596b5SMatthias Ringwald     y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
7251*1b2596b5SMatthias Ringwald 
7252*1b2596b5SMatthias Ringwald     /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
7253*1b2596b5SMatthias Ringwald     out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
7254*1b2596b5SMatthias Ringwald     acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
7255*1b2596b5SMatthias Ringwald 
7256*1b2596b5SMatthias Ringwald     /* x2 * (xfract) * (1-yfract)  in 3.29(q29) and adding to acc */
7257*1b2596b5SMatthias Ringwald     out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
7258*1b2596b5SMatthias Ringwald     acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
7259*1b2596b5SMatthias Ringwald 
7260*1b2596b5SMatthias Ringwald     /* y1 * (1 - xfract) * (yfract)  in 3.29(q29) and adding to acc */
7261*1b2596b5SMatthias Ringwald     out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
7262*1b2596b5SMatthias Ringwald     acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
7263*1b2596b5SMatthias Ringwald 
7264*1b2596b5SMatthias Ringwald     /* y2 * (xfract) * (yfract)  in 3.29(q29) and adding to acc */
7265*1b2596b5SMatthias Ringwald     out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
7266*1b2596b5SMatthias Ringwald     acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
7267*1b2596b5SMatthias Ringwald 
7268*1b2596b5SMatthias Ringwald     /* Convert acc to 1.31(q31) format */
7269*1b2596b5SMatthias Ringwald     return (acc << 2u);
7270*1b2596b5SMatthias Ringwald 
7271*1b2596b5SMatthias Ringwald   }
7272*1b2596b5SMatthias Ringwald 
7273*1b2596b5SMatthias Ringwald   /**
7274*1b2596b5SMatthias Ringwald   * @brief  Q15 bilinear interpolation.
7275*1b2596b5SMatthias Ringwald   * @param[in,out] *S points to an instance of the interpolation structure.
7276*1b2596b5SMatthias Ringwald   * @param[in] X interpolation coordinate in 12.20 format.
7277*1b2596b5SMatthias Ringwald   * @param[in] Y interpolation coordinate in 12.20 format.
7278*1b2596b5SMatthias Ringwald   * @return out interpolated value.
7279*1b2596b5SMatthias Ringwald   */
7280*1b2596b5SMatthias Ringwald 
arm_bilinear_interp_q15(arm_bilinear_interp_instance_q15 * S,q31_t X,q31_t Y)7281*1b2596b5SMatthias Ringwald   static __INLINE q15_t arm_bilinear_interp_q15(
7282*1b2596b5SMatthias Ringwald   arm_bilinear_interp_instance_q15 * S,
7283*1b2596b5SMatthias Ringwald   q31_t X,
7284*1b2596b5SMatthias Ringwald   q31_t Y)
7285*1b2596b5SMatthias Ringwald   {
7286*1b2596b5SMatthias Ringwald     q63_t acc = 0;                               /* output */
7287*1b2596b5SMatthias Ringwald     q31_t out;                                   /* Temporary output */
7288*1b2596b5SMatthias Ringwald     q15_t x1, x2, y1, y2;                        /* Nearest output values */
7289*1b2596b5SMatthias Ringwald     q31_t xfract, yfract;                        /* X, Y fractional parts */
7290*1b2596b5SMatthias Ringwald     int32_t rI, cI;                              /* Row and column indices */
7291*1b2596b5SMatthias Ringwald     q15_t *pYData = S->pData;                    /* pointer to output table values */
7292*1b2596b5SMatthias Ringwald     uint32_t nCols = S->numCols;                 /* num of rows */
7293*1b2596b5SMatthias Ringwald 
7294*1b2596b5SMatthias Ringwald     /* Input is in 12.20 format */
7295*1b2596b5SMatthias Ringwald     /* 12 bits for the table index */
7296*1b2596b5SMatthias Ringwald     /* Index value calculation */
7297*1b2596b5SMatthias Ringwald     rI = ((X & 0xFFF00000) >> 20);
7298*1b2596b5SMatthias Ringwald 
7299*1b2596b5SMatthias Ringwald     /* Input is in 12.20 format */
7300*1b2596b5SMatthias Ringwald     /* 12 bits for the table index */
7301*1b2596b5SMatthias Ringwald     /* Index value calculation */
7302*1b2596b5SMatthias Ringwald     cI = ((Y & 0xFFF00000) >> 20);
7303*1b2596b5SMatthias Ringwald 
7304*1b2596b5SMatthias Ringwald     /* Care taken for table outside boundary */
7305*1b2596b5SMatthias Ringwald     /* Returns zero output when values are outside table boundary */
7306*1b2596b5SMatthias Ringwald     if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
7307*1b2596b5SMatthias Ringwald     {
7308*1b2596b5SMatthias Ringwald       return (0);
7309*1b2596b5SMatthias Ringwald     }
7310*1b2596b5SMatthias Ringwald 
7311*1b2596b5SMatthias Ringwald     /* 20 bits for the fractional part */
7312*1b2596b5SMatthias Ringwald     /* xfract should be in 12.20 format */
7313*1b2596b5SMatthias Ringwald     xfract = (X & 0x000FFFFF);
7314*1b2596b5SMatthias Ringwald 
7315*1b2596b5SMatthias Ringwald     /* Read two nearest output values from the index */
7316*1b2596b5SMatthias Ringwald     x1 = pYData[(rI) + nCols * (cI)];
7317*1b2596b5SMatthias Ringwald     x2 = pYData[(rI) + nCols * (cI) + 1u];
7318*1b2596b5SMatthias Ringwald 
7319*1b2596b5SMatthias Ringwald 
7320*1b2596b5SMatthias Ringwald     /* 20 bits for the fractional part */
7321*1b2596b5SMatthias Ringwald     /* yfract should be in 12.20 format */
7322*1b2596b5SMatthias Ringwald     yfract = (Y & 0x000FFFFF);
7323*1b2596b5SMatthias Ringwald 
7324*1b2596b5SMatthias Ringwald     /* Read two nearest output values from the index */
7325*1b2596b5SMatthias Ringwald     y1 = pYData[(rI) + nCols * (cI + 1)];
7326*1b2596b5SMatthias Ringwald     y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
7327*1b2596b5SMatthias Ringwald 
7328*1b2596b5SMatthias Ringwald     /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
7329*1b2596b5SMatthias Ringwald 
7330*1b2596b5SMatthias Ringwald     /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
7331*1b2596b5SMatthias Ringwald     /* convert 13.35 to 13.31 by right shifting  and out is in 1.31 */
7332*1b2596b5SMatthias Ringwald     out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
7333*1b2596b5SMatthias Ringwald     acc = ((q63_t) out * (0xFFFFF - yfract));
7334*1b2596b5SMatthias Ringwald 
7335*1b2596b5SMatthias Ringwald     /* x2 * (xfract) * (1-yfract)  in 1.51 and adding to acc */
7336*1b2596b5SMatthias Ringwald     out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
7337*1b2596b5SMatthias Ringwald     acc += ((q63_t) out * (xfract));
7338*1b2596b5SMatthias Ringwald 
7339*1b2596b5SMatthias Ringwald     /* y1 * (1 - xfract) * (yfract)  in 1.51 and adding to acc */
7340*1b2596b5SMatthias Ringwald     out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
7341*1b2596b5SMatthias Ringwald     acc += ((q63_t) out * (yfract));
7342*1b2596b5SMatthias Ringwald 
7343*1b2596b5SMatthias Ringwald     /* y2 * (xfract) * (yfract)  in 1.51 and adding to acc */
7344*1b2596b5SMatthias Ringwald     out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
7345*1b2596b5SMatthias Ringwald     acc += ((q63_t) out * (yfract));
7346*1b2596b5SMatthias Ringwald 
7347*1b2596b5SMatthias Ringwald     /* acc is in 13.51 format and down shift acc by 36 times */
7348*1b2596b5SMatthias Ringwald     /* Convert out to 1.15 format */
7349*1b2596b5SMatthias Ringwald     return (acc >> 36);
7350*1b2596b5SMatthias Ringwald 
7351*1b2596b5SMatthias Ringwald   }
7352*1b2596b5SMatthias Ringwald 
7353*1b2596b5SMatthias Ringwald   /**
7354*1b2596b5SMatthias Ringwald   * @brief  Q7 bilinear interpolation.
7355*1b2596b5SMatthias Ringwald   * @param[in,out] *S points to an instance of the interpolation structure.
7356*1b2596b5SMatthias Ringwald   * @param[in] X interpolation coordinate in 12.20 format.
7357*1b2596b5SMatthias Ringwald   * @param[in] Y interpolation coordinate in 12.20 format.
7358*1b2596b5SMatthias Ringwald   * @return out interpolated value.
7359*1b2596b5SMatthias Ringwald   */
7360*1b2596b5SMatthias Ringwald 
arm_bilinear_interp_q7(arm_bilinear_interp_instance_q7 * S,q31_t X,q31_t Y)7361*1b2596b5SMatthias Ringwald   static __INLINE q7_t arm_bilinear_interp_q7(
7362*1b2596b5SMatthias Ringwald   arm_bilinear_interp_instance_q7 * S,
7363*1b2596b5SMatthias Ringwald   q31_t X,
7364*1b2596b5SMatthias Ringwald   q31_t Y)
7365*1b2596b5SMatthias Ringwald   {
7366*1b2596b5SMatthias Ringwald     q63_t acc = 0;                               /* output */
7367*1b2596b5SMatthias Ringwald     q31_t out;                                   /* Temporary output */
7368*1b2596b5SMatthias Ringwald     q31_t xfract, yfract;                        /* X, Y fractional parts */
7369*1b2596b5SMatthias Ringwald     q7_t x1, x2, y1, y2;                         /* Nearest output values */
7370*1b2596b5SMatthias Ringwald     int32_t rI, cI;                              /* Row and column indices */
7371*1b2596b5SMatthias Ringwald     q7_t *pYData = S->pData;                     /* pointer to output table values */
7372*1b2596b5SMatthias Ringwald     uint32_t nCols = S->numCols;                 /* num of rows */
7373*1b2596b5SMatthias Ringwald 
7374*1b2596b5SMatthias Ringwald     /* Input is in 12.20 format */
7375*1b2596b5SMatthias Ringwald     /* 12 bits for the table index */
7376*1b2596b5SMatthias Ringwald     /* Index value calculation */
7377*1b2596b5SMatthias Ringwald     rI = ((X & 0xFFF00000) >> 20);
7378*1b2596b5SMatthias Ringwald 
7379*1b2596b5SMatthias Ringwald     /* Input is in 12.20 format */
7380*1b2596b5SMatthias Ringwald     /* 12 bits for the table index */
7381*1b2596b5SMatthias Ringwald     /* Index value calculation */
7382*1b2596b5SMatthias Ringwald     cI = ((Y & 0xFFF00000) >> 20);
7383*1b2596b5SMatthias Ringwald 
7384*1b2596b5SMatthias Ringwald     /* Care taken for table outside boundary */
7385*1b2596b5SMatthias Ringwald     /* Returns zero output when values are outside table boundary */
7386*1b2596b5SMatthias Ringwald     if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
7387*1b2596b5SMatthias Ringwald     {
7388*1b2596b5SMatthias Ringwald       return (0);
7389*1b2596b5SMatthias Ringwald     }
7390*1b2596b5SMatthias Ringwald 
7391*1b2596b5SMatthias Ringwald     /* 20 bits for the fractional part */
7392*1b2596b5SMatthias Ringwald     /* xfract should be in 12.20 format */
7393*1b2596b5SMatthias Ringwald     xfract = (X & 0x000FFFFF);
7394*1b2596b5SMatthias Ringwald 
7395*1b2596b5SMatthias Ringwald     /* Read two nearest output values from the index */
7396*1b2596b5SMatthias Ringwald     x1 = pYData[(rI) + nCols * (cI)];
7397*1b2596b5SMatthias Ringwald     x2 = pYData[(rI) + nCols * (cI) + 1u];
7398*1b2596b5SMatthias Ringwald 
7399*1b2596b5SMatthias Ringwald 
7400*1b2596b5SMatthias Ringwald     /* 20 bits for the fractional part */
7401*1b2596b5SMatthias Ringwald     /* yfract should be in 12.20 format */
7402*1b2596b5SMatthias Ringwald     yfract = (Y & 0x000FFFFF);
7403*1b2596b5SMatthias Ringwald 
7404*1b2596b5SMatthias Ringwald     /* Read two nearest output values from the index */
7405*1b2596b5SMatthias Ringwald     y1 = pYData[(rI) + nCols * (cI + 1)];
7406*1b2596b5SMatthias Ringwald     y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
7407*1b2596b5SMatthias Ringwald 
7408*1b2596b5SMatthias Ringwald     /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
7409*1b2596b5SMatthias Ringwald     out = ((x1 * (0xFFFFF - xfract)));
7410*1b2596b5SMatthias Ringwald     acc = (((q63_t) out * (0xFFFFF - yfract)));
7411*1b2596b5SMatthias Ringwald 
7412*1b2596b5SMatthias Ringwald     /* x2 * (xfract) * (1-yfract)  in 2.22 and adding to acc */
7413*1b2596b5SMatthias Ringwald     out = ((x2 * (0xFFFFF - yfract)));
7414*1b2596b5SMatthias Ringwald     acc += (((q63_t) out * (xfract)));
7415*1b2596b5SMatthias Ringwald 
7416*1b2596b5SMatthias Ringwald     /* y1 * (1 - xfract) * (yfract)  in 2.22 and adding to acc */
7417*1b2596b5SMatthias Ringwald     out = ((y1 * (0xFFFFF - xfract)));
7418*1b2596b5SMatthias Ringwald     acc += (((q63_t) out * (yfract)));
7419*1b2596b5SMatthias Ringwald 
7420*1b2596b5SMatthias Ringwald     /* y2 * (xfract) * (yfract)  in 2.22 and adding to acc */
7421*1b2596b5SMatthias Ringwald     out = ((y2 * (yfract)));
7422*1b2596b5SMatthias Ringwald     acc += (((q63_t) out * (xfract)));
7423*1b2596b5SMatthias Ringwald 
7424*1b2596b5SMatthias Ringwald     /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
7425*1b2596b5SMatthias Ringwald     return (acc >> 40);
7426*1b2596b5SMatthias Ringwald 
7427*1b2596b5SMatthias Ringwald   }
7428*1b2596b5SMatthias Ringwald 
7429*1b2596b5SMatthias Ringwald   /**
7430*1b2596b5SMatthias Ringwald    * @} end of BilinearInterpolate group
7431*1b2596b5SMatthias Ringwald    */
7432*1b2596b5SMatthias Ringwald 
7433*1b2596b5SMatthias Ringwald 
7434*1b2596b5SMatthias Ringwald //SMMLAR
7435*1b2596b5SMatthias Ringwald #define multAcc_32x32_keep32_R(a, x, y) \
7436*1b2596b5SMatthias Ringwald     a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
7437*1b2596b5SMatthias Ringwald 
7438*1b2596b5SMatthias Ringwald //SMMLSR
7439*1b2596b5SMatthias Ringwald #define multSub_32x32_keep32_R(a, x, y) \
7440*1b2596b5SMatthias Ringwald     a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
7441*1b2596b5SMatthias Ringwald 
7442*1b2596b5SMatthias Ringwald //SMMULR
7443*1b2596b5SMatthias Ringwald #define mult_32x32_keep32_R(a, x, y) \
7444*1b2596b5SMatthias Ringwald     a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
7445*1b2596b5SMatthias Ringwald 
7446*1b2596b5SMatthias Ringwald //SMMLA
7447*1b2596b5SMatthias Ringwald #define multAcc_32x32_keep32(a, x, y) \
7448*1b2596b5SMatthias Ringwald     a += (q31_t) (((q63_t) x * y) >> 32)
7449*1b2596b5SMatthias Ringwald 
7450*1b2596b5SMatthias Ringwald //SMMLS
7451*1b2596b5SMatthias Ringwald #define multSub_32x32_keep32(a, x, y) \
7452*1b2596b5SMatthias Ringwald     a -= (q31_t) (((q63_t) x * y) >> 32)
7453*1b2596b5SMatthias Ringwald 
7454*1b2596b5SMatthias Ringwald //SMMUL
7455*1b2596b5SMatthias Ringwald #define mult_32x32_keep32(a, x, y) \
7456*1b2596b5SMatthias Ringwald     a = (q31_t) (((q63_t) x * y ) >> 32)
7457*1b2596b5SMatthias Ringwald 
7458*1b2596b5SMatthias Ringwald 
7459*1b2596b5SMatthias Ringwald #if defined ( __CC_ARM ) //Keil
7460*1b2596b5SMatthias Ringwald 
7461*1b2596b5SMatthias Ringwald //Enter low optimization region - place directly above function definition
7462*1b2596b5SMatthias Ringwald     #ifdef ARM_MATH_CM4
7463*1b2596b5SMatthias Ringwald       #define LOW_OPTIMIZATION_ENTER \
7464*1b2596b5SMatthias Ringwald          _Pragma ("push")         \
7465*1b2596b5SMatthias Ringwald          _Pragma ("O1")
7466*1b2596b5SMatthias Ringwald     #else
7467*1b2596b5SMatthias Ringwald       #define LOW_OPTIMIZATION_ENTER
7468*1b2596b5SMatthias Ringwald     #endif
7469*1b2596b5SMatthias Ringwald 
7470*1b2596b5SMatthias Ringwald //Exit low optimization region - place directly after end of function definition
7471*1b2596b5SMatthias Ringwald     #ifdef ARM_MATH_CM4
7472*1b2596b5SMatthias Ringwald       #define LOW_OPTIMIZATION_EXIT \
7473*1b2596b5SMatthias Ringwald          _Pragma ("pop")
7474*1b2596b5SMatthias Ringwald     #else
7475*1b2596b5SMatthias Ringwald       #define LOW_OPTIMIZATION_EXIT
7476*1b2596b5SMatthias Ringwald     #endif
7477*1b2596b5SMatthias Ringwald 
7478*1b2596b5SMatthias Ringwald //Enter low optimization region - place directly above function definition
7479*1b2596b5SMatthias Ringwald   #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7480*1b2596b5SMatthias Ringwald 
7481*1b2596b5SMatthias Ringwald //Exit low optimization region - place directly after end of function definition
7482*1b2596b5SMatthias Ringwald   #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7483*1b2596b5SMatthias Ringwald 
7484*1b2596b5SMatthias Ringwald #elif defined(__ICCARM__) //IAR
7485*1b2596b5SMatthias Ringwald 
7486*1b2596b5SMatthias Ringwald //Enter low optimization region - place directly above function definition
7487*1b2596b5SMatthias Ringwald     #ifdef ARM_MATH_CM4
7488*1b2596b5SMatthias Ringwald       #define LOW_OPTIMIZATION_ENTER \
7489*1b2596b5SMatthias Ringwald          _Pragma ("optimize=low")
7490*1b2596b5SMatthias Ringwald     #else
7491*1b2596b5SMatthias Ringwald       #define LOW_OPTIMIZATION_ENTER
7492*1b2596b5SMatthias Ringwald     #endif
7493*1b2596b5SMatthias Ringwald 
7494*1b2596b5SMatthias Ringwald //Exit low optimization region - place directly after end of function definition
7495*1b2596b5SMatthias Ringwald   #define LOW_OPTIMIZATION_EXIT
7496*1b2596b5SMatthias Ringwald 
7497*1b2596b5SMatthias Ringwald //Enter low optimization region - place directly above function definition
7498*1b2596b5SMatthias Ringwald     #ifdef ARM_MATH_CM4
7499*1b2596b5SMatthias Ringwald       #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
7500*1b2596b5SMatthias Ringwald          _Pragma ("optimize=low")
7501*1b2596b5SMatthias Ringwald     #else
7502*1b2596b5SMatthias Ringwald       #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7503*1b2596b5SMatthias Ringwald     #endif
7504*1b2596b5SMatthias Ringwald 
7505*1b2596b5SMatthias Ringwald //Exit low optimization region - place directly after end of function definition
7506*1b2596b5SMatthias Ringwald   #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7507*1b2596b5SMatthias Ringwald 
7508*1b2596b5SMatthias Ringwald #elif defined(__GNUC__)
7509*1b2596b5SMatthias Ringwald 
7510*1b2596b5SMatthias Ringwald   #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
7511*1b2596b5SMatthias Ringwald 
7512*1b2596b5SMatthias Ringwald   #define LOW_OPTIMIZATION_EXIT
7513*1b2596b5SMatthias Ringwald 
7514*1b2596b5SMatthias Ringwald   #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7515*1b2596b5SMatthias Ringwald 
7516*1b2596b5SMatthias Ringwald   #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7517*1b2596b5SMatthias Ringwald 
7518*1b2596b5SMatthias Ringwald #elif defined(__CSMC__)		// Cosmic
7519*1b2596b5SMatthias Ringwald 
7520*1b2596b5SMatthias Ringwald #define LOW_OPTIMIZATION_ENTER
7521*1b2596b5SMatthias Ringwald #define LOW_OPTIMIZATION_EXIT
7522*1b2596b5SMatthias Ringwald #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7523*1b2596b5SMatthias Ringwald #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7524*1b2596b5SMatthias Ringwald 
7525*1b2596b5SMatthias Ringwald #endif
7526*1b2596b5SMatthias Ringwald 
7527*1b2596b5SMatthias Ringwald 
7528*1b2596b5SMatthias Ringwald #ifdef	__cplusplus
7529*1b2596b5SMatthias Ringwald }
7530*1b2596b5SMatthias Ringwald #endif
7531*1b2596b5SMatthias Ringwald 
7532*1b2596b5SMatthias Ringwald 
7533*1b2596b5SMatthias Ringwald #endif /* _ARM_MATH_H */
7534*1b2596b5SMatthias Ringwald 
7535*1b2596b5SMatthias Ringwald /**
7536*1b2596b5SMatthias Ringwald  *
7537*1b2596b5SMatthias Ringwald  * End of file.
7538*1b2596b5SMatthias Ringwald  */
7539