xref: /btstack/src/ble/sm.c (revision 0346c37cbeb60faf335e59e7cd19074049b35e01)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #include <stdio.h>
39 #include <string.h>
40 #include <inttypes.h>
41 
42 #include "ble/le_device_db.h"
43 #include "ble/core.h"
44 #include "ble/sm.h"
45 #include "btstack_debug.h"
46 #include "btstack_event.h"
47 #include "btstack_linked_list.h"
48 #include "btstack_memory.h"
49 #include "gap.h"
50 #include "hci.h"
51 #include "l2cap.h"
52 
53 #ifdef ENABLE_LE_SECURE_CONNECTIONS
54 // TODO: remove software AES
55 #include "rijndael.h"
56 #endif
57 
58 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(HAVE_HCI_CONTROLLER_DHKEY_SUPPORT)
59 #define USE_MBEDTLS_FOR_ECDH
60 #endif
61 
62 // Software ECDH implementation provided by mbedtls
63 #ifdef USE_MBEDTLS_FOR_ECDH
64 #if !defined(MBEDTLS_CONFIG_FILE)
65 #include "mbedtls/config.h"
66 #else
67 #include MBEDTLS_CONFIG_FILE
68 #endif
69 #if defined(MBEDTLS_PLATFORM_C)
70 #include "mbedtls/platform.h"
71 #else
72 #include <stdio.h>
73 #define mbedtls_printf     printf
74 #endif
75 #include "mbedtls/ecp.h"
76 #endif
77 
78 //
79 // SM internal types and globals
80 //
81 
82 typedef enum {
83     DKG_W4_WORKING,
84     DKG_CALC_IRK,
85     DKG_W4_IRK,
86     DKG_CALC_DHK,
87     DKG_W4_DHK,
88     DKG_READY
89 } derived_key_generation_t;
90 
91 typedef enum {
92     RAU_W4_WORKING,
93     RAU_IDLE,
94     RAU_GET_RANDOM,
95     RAU_W4_RANDOM,
96     RAU_GET_ENC,
97     RAU_W4_ENC,
98     RAU_SET_ADDRESS,
99 } random_address_update_t;
100 
101 typedef enum {
102     CMAC_IDLE,
103     CMAC_CALC_SUBKEYS,
104     CMAC_W4_SUBKEYS,
105     CMAC_CALC_MI,
106     CMAC_W4_MI,
107     CMAC_CALC_MLAST,
108     CMAC_W4_MLAST
109 } cmac_state_t;
110 
111 typedef enum {
112     JUST_WORKS,
113     PK_RESP_INPUT,  // Initiator displays PK, responder inputs PK
114     PK_INIT_INPUT,  // Responder displays PK, initiator inputs PK
115     OK_BOTH_INPUT,  // Only input on both, both input PK
116     NK_BOTH_INPUT,  // Only numerical compparison (yes/no) on on both sides
117     OOB             // OOB available on both sides
118 } stk_generation_method_t;
119 
120 typedef enum {
121     SM_USER_RESPONSE_IDLE,
122     SM_USER_RESPONSE_PENDING,
123     SM_USER_RESPONSE_CONFIRM,
124     SM_USER_RESPONSE_PASSKEY,
125     SM_USER_RESPONSE_DECLINE
126 } sm_user_response_t;
127 
128 typedef enum {
129     SM_AES128_IDLE,
130     SM_AES128_ACTIVE
131 } sm_aes128_state_t;
132 
133 typedef enum {
134     ADDRESS_RESOLUTION_IDLE,
135     ADDRESS_RESOLUTION_GENERAL,
136     ADDRESS_RESOLUTION_FOR_CONNECTION,
137 } address_resolution_mode_t;
138 
139 typedef enum {
140     ADDRESS_RESOLUTION_SUCEEDED,
141     ADDRESS_RESOLUTION_FAILED,
142 } address_resolution_event_t;
143 //
144 // GLOBAL DATA
145 //
146 
147 static uint8_t test_use_fixed_local_csrk;
148 
149 // configuration
150 static uint8_t sm_accepted_stk_generation_methods;
151 static uint8_t sm_max_encryption_key_size;
152 static uint8_t sm_min_encryption_key_size;
153 static uint8_t sm_auth_req = 0;
154 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
155 static uint8_t sm_slave_request_security;
156 
157 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
158 static sm_key_t sm_persistent_er;
159 static sm_key_t sm_persistent_ir;
160 
161 // derived from sm_persistent_ir
162 static sm_key_t sm_persistent_dhk;
163 static sm_key_t sm_persistent_irk;
164 static uint8_t  sm_persistent_irk_ready = 0;    // used for testing
165 static derived_key_generation_t dkg_state;
166 
167 // derived from sm_persistent_er
168 // ..
169 
170 // random address update
171 static random_address_update_t rau_state;
172 static bd_addr_t sm_random_address;
173 
174 // CMAC Calculation: General
175 static cmac_state_t sm_cmac_state;
176 static uint16_t     sm_cmac_message_len;
177 static sm_key_t     sm_cmac_k;
178 static sm_key_t     sm_cmac_x;
179 static sm_key_t     sm_cmac_m_last;
180 static uint8_t      sm_cmac_block_current;
181 static uint8_t      sm_cmac_block_count;
182 static uint8_t      (*sm_cmac_get_byte)(uint16_t offset);
183 static void         (*sm_cmac_done_handler)(uint8_t * hash);
184 
185 // CMAC for ATT Signed Writes
186 static uint8_t      sm_cmac_header[3];
187 static const uint8_t * sm_cmac_message;
188 static uint8_t      sm_cmac_sign_counter[4];
189 
190 // CMAC for Secure Connection functions
191 #ifdef ENABLE_LE_SECURE_CONNECTIONS
192 static sm_connection_t * sm_cmac_connection;
193 static uint8_t           sm_cmac_sc_buffer[80];
194 #endif
195 
196 // resolvable private address lookup / CSRK calculation
197 static int       sm_address_resolution_test;
198 static int       sm_address_resolution_ah_calculation_active;
199 static uint8_t   sm_address_resolution_addr_type;
200 static bd_addr_t sm_address_resolution_address;
201 static void *    sm_address_resolution_context;
202 static address_resolution_mode_t sm_address_resolution_mode;
203 static btstack_linked_list_t sm_address_resolution_general_queue;
204 
205 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context
206 static sm_aes128_state_t  sm_aes128_state;
207 static void *             sm_aes128_context;
208 
209 // random engine. store context (ususally sm_connection_t)
210 static void * sm_random_context;
211 
212 // to receive hci events
213 static btstack_packet_callback_registration_t hci_event_callback_registration;
214 
215 /* to dispatch sm event */
216 static btstack_linked_list_t sm_event_handlers;
217 
218 // Software ECDH implementation provided by mbedtls
219 #ifdef USE_MBEDTLS_FOR_ECDH
220 mbedtls_ecp_keypair le_keypair;
221 #endif
222 
223 //
224 // Volume 3, Part H, Chapter 24
225 // "Security shall be initiated by the Security Manager in the device in the master role.
226 // The device in the slave role shall be the responding device."
227 // -> master := initiator, slave := responder
228 //
229 
230 // data needed for security setup
231 typedef struct sm_setup_context {
232 
233     btstack_timer_source_t sm_timeout;
234 
235     // used in all phases
236     uint8_t   sm_pairing_failed_reason;
237 
238     // user response, (Phase 1 and/or 2)
239     uint8_t   sm_user_response;
240 
241     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
242     int       sm_key_distribution_send_set;
243     int       sm_key_distribution_received_set;
244 
245     // Phase 2 (Pairing over SMP)
246     stk_generation_method_t sm_stk_generation_method;
247     sm_key_t  sm_tk;
248     uint8_t   sm_use_secure_connections;
249 
250     sm_key_t  sm_c1_t3_value;   // c1 calculation
251     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
252     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
253     sm_key_t  sm_local_random;
254     sm_key_t  sm_local_confirm;
255     sm_key_t  sm_peer_random;
256     sm_key_t  sm_peer_confirm;
257     uint8_t   sm_m_addr_type;   // address and type can be removed
258     uint8_t   sm_s_addr_type;   //  ''
259     bd_addr_t sm_m_address;     //  ''
260     bd_addr_t sm_s_address;     //  ''
261     sm_key_t  sm_ltk;
262 
263 #ifdef ENABLE_LE_SECURE_CONNECTIONS
264     uint8_t   sm_peer_qx[32];
265     uint8_t   sm_peer_qy[32];
266     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
267     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
268     sm_key_t  sm_peer_dhkey_check;
269     sm_key_t  sm_local_dhkey_check;
270     sm_key_t  sm_ra;
271     sm_key_t  sm_rb;
272     sm_key_t  sm_t;             // used for f5
273     sm_key_t  sm_mackey;
274     uint8_t   sm_passkey_bit;
275 #endif
276 
277     // Phase 3
278 
279     // key distribution, we generate
280     uint16_t  sm_local_y;
281     uint16_t  sm_local_div;
282     uint16_t  sm_local_ediv;
283     uint8_t   sm_local_rand[8];
284     sm_key_t  sm_local_ltk;
285     sm_key_t  sm_local_csrk;
286     sm_key_t  sm_local_irk;
287     // sm_local_address/addr_type not needed
288 
289     // key distribution, received from peer
290     uint16_t  sm_peer_y;
291     uint16_t  sm_peer_div;
292     uint16_t  sm_peer_ediv;
293     uint8_t   sm_peer_rand[8];
294     sm_key_t  sm_peer_ltk;
295     sm_key_t  sm_peer_irk;
296     sm_key_t  sm_peer_csrk;
297     uint8_t   sm_peer_addr_type;
298     bd_addr_t sm_peer_address;
299 
300 } sm_setup_context_t;
301 
302 //
303 static sm_setup_context_t the_setup;
304 static sm_setup_context_t * setup = &the_setup;
305 
306 // active connection - the one for which the_setup is used for
307 static uint16_t sm_active_connection = 0;
308 
309 // @returns 1 if oob data is available
310 // stores oob data in provided 16 byte buffer if not null
311 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
312 
313 // used to notify applicationss that user interaction is neccessary, see sm_notify_t below
314 static btstack_packet_handler_t sm_client_packet_handler = NULL;
315 
316 // horizontal: initiator capabilities
317 // vertial:    responder capabilities
318 static const stk_generation_method_t stk_generation_method [5] [5] = {
319     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
320     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
321     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
322     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
323     { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
324 };
325 
326 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
327 #ifdef ENABLE_LE_SECURE_CONNECTIONS
328 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
329     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
330     { JUST_WORKS,      NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
331     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
332     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
333     { PK_RESP_INPUT,   NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
334 };
335 #endif
336 
337 static void sm_run(void);
338 static void sm_done_for_handle(hci_con_handle_t con_handle);
339 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
340 static inline int sm_calc_actual_encryption_key_size(int other);
341 static int sm_validate_stk_generation_method(void);
342 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data);
343 
344 static void log_info_hex16(const char * name, uint16_t value){
345     log_info("%-6s 0x%04x", name, value);
346 }
347 
348 // @returns 1 if all bytes are 0
349 static int sm_is_null_random(uint8_t random[8]){
350     int i;
351     for (i=0; i < 8 ; i++){
352         if (random[i]) return 0;
353     }
354     return 1;
355 }
356 
357 // Key utils
358 static void sm_reset_tk(void){
359     int i;
360     for (i=0;i<16;i++){
361         setup->sm_tk[i] = 0;
362     }
363 }
364 
365 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
366 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
367 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
368     int i;
369     for (i = max_encryption_size ; i < 16 ; i++){
370         key[15-i] = 0;
371     }
372 }
373 
374 // SMP Timeout implementation
375 
376 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
377 // the Security Manager Timer shall be reset and started.
378 //
379 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
380 //
381 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
382 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
383 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
384 // established.
385 
386 static void sm_timeout_handler(btstack_timer_source_t * timer){
387     log_info("SM timeout");
388     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
389     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
390     sm_done_for_handle(sm_conn->sm_handle);
391 
392     // trigger handling of next ready connection
393     sm_run();
394 }
395 static void sm_timeout_start(sm_connection_t * sm_conn){
396     btstack_run_loop_remove_timer(&setup->sm_timeout);
397     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
398     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
399     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
400     btstack_run_loop_add_timer(&setup->sm_timeout);
401 }
402 static void sm_timeout_stop(void){
403     btstack_run_loop_remove_timer(&setup->sm_timeout);
404 }
405 static void sm_timeout_reset(sm_connection_t * sm_conn){
406     sm_timeout_stop();
407     sm_timeout_start(sm_conn);
408 }
409 
410 // end of sm timeout
411 
412 // GAP Random Address updates
413 static gap_random_address_type_t gap_random_adress_type;
414 static btstack_timer_source_t gap_random_address_update_timer;
415 static uint32_t gap_random_adress_update_period;
416 
417 static void gap_random_address_trigger(void){
418     if (rau_state != RAU_IDLE) return;
419     log_info("gap_random_address_trigger");
420     rau_state = RAU_GET_RANDOM;
421     sm_run();
422 }
423 
424 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
425     log_info("GAP Random Address Update due");
426     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
427     btstack_run_loop_add_timer(&gap_random_address_update_timer);
428     gap_random_address_trigger();
429 }
430 
431 static void gap_random_address_update_start(void){
432     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
433     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
434     btstack_run_loop_add_timer(&gap_random_address_update_timer);
435 }
436 
437 static void gap_random_address_update_stop(void){
438     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
439 }
440 
441 
442 static void sm_random_start(void * context){
443     sm_random_context = context;
444     hci_send_cmd(&hci_le_rand);
445 }
446 
447 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1
448 // context is made availabe to aes128 result handler by this
449 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){
450     sm_aes128_state = SM_AES128_ACTIVE;
451     sm_key_t key_flipped, plaintext_flipped;
452     reverse_128(key, key_flipped);
453     reverse_128(plaintext, plaintext_flipped);
454     sm_aes128_context = context;
455     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
456 }
457 
458 // ah(k,r) helper
459 // r = padding || r
460 // r - 24 bit value
461 static void sm_ah_r_prime(uint8_t r[3], sm_key_t r_prime){
462     // r'= padding || r
463     memset(r_prime, 0, 16);
464     memcpy(&r_prime[13], r, 3);
465 }
466 
467 // d1 helper
468 // d' = padding || r || d
469 // d,r - 16 bit values
470 static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){
471     // d'= padding || r || d
472     memset(d1_prime, 0, 16);
473     big_endian_store_16(d1_prime, 12, r);
474     big_endian_store_16(d1_prime, 14, d);
475 }
476 
477 // dm helper
478 // r’ = padding || r
479 // r - 64 bit value
480 static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){
481     memset(r_prime, 0, 16);
482     memcpy(&r_prime[8], r, 8);
483 }
484 
485 // calculate arguments for first AES128 operation in C1 function
486 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){
487 
488     // p1 = pres || preq || rat’ || iat’
489     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
490     // cant octet of pres becomes the most significant octet of p1.
491     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
492     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
493     // p1 is 0x05000800000302070710000001010001."
494 
495     sm_key_t p1;
496     reverse_56(pres, &p1[0]);
497     reverse_56(preq, &p1[7]);
498     p1[14] = rat;
499     p1[15] = iat;
500     log_info_key("p1", p1);
501     log_info_key("r", r);
502 
503     // t1 = r xor p1
504     int i;
505     for (i=0;i<16;i++){
506         t1[i] = r[i] ^ p1[i];
507     }
508     log_info_key("t1", t1);
509 }
510 
511 // calculate arguments for second AES128 operation in C1 function
512 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){
513      // p2 = padding || ia || ra
514     // "The least significant octet of ra becomes the least significant octet of p2 and
515     // the most significant octet of padding becomes the most significant octet of p2.
516     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
517     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
518 
519     sm_key_t p2;
520     memset(p2, 0, 16);
521     memcpy(&p2[4],  ia, 6);
522     memcpy(&p2[10], ra, 6);
523     log_info_key("p2", p2);
524 
525     // c1 = e(k, t2_xor_p2)
526     int i;
527     for (i=0;i<16;i++){
528         t3[i] = t2[i] ^ p2[i];
529     }
530     log_info_key("t3", t3);
531 }
532 
533 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){
534     log_info_key("r1", r1);
535     log_info_key("r2", r2);
536     memcpy(&r_prime[8], &r2[8], 8);
537     memcpy(&r_prime[0], &r1[8], 8);
538 }
539 
540 #ifdef ENABLE_LE_SECURE_CONNECTIONS
541 // Software implementations of crypto toolbox for LE Secure Connection
542 // TODO: replace with code to use AES Engine of HCI Controller
543 typedef uint8_t sm_key24_t[3];
544 typedef uint8_t sm_key56_t[7];
545 typedef uint8_t sm_key256_t[32];
546 
547 static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){
548     uint32_t rk[RKLENGTH(KEYBITS)];
549     int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
550     rijndaelEncrypt(rk, nrounds, plaintext, cyphertext);
551 }
552 
553 static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
554     memcpy(k1, k0, 16);
555     sm_shift_left_by_one_bit_inplace(16, k1);
556     if (k0[0] & 0x80){
557         k1[15] ^= 0x87;
558     }
559     memcpy(k2, k1, 16);
560     sm_shift_left_by_one_bit_inplace(16, k2);
561     if (k1[0] & 0x80){
562         k2[15] ^= 0x87;
563     }
564 }
565 
566 static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){
567     sm_key_t k0, k1, k2, zero;
568     memset(zero, 0, 16);
569 
570     aes128_calc_cyphertext(key, zero, k0);
571     calc_subkeys(k0, k1, k2);
572 
573     int cmac_block_count = (cmac_message_len + 15) / 16;
574 
575     // step 3: ..
576     if (cmac_block_count==0){
577         cmac_block_count = 1;
578     }
579 
580     // step 4: set m_last
581     sm_key_t cmac_m_last;
582     int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0;
583     int i;
584     if (sm_cmac_last_block_complete){
585         for (i=0;i<16;i++){
586             cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i];
587         }
588     } else {
589         int valid_octets_in_last_block = cmac_message_len & 0x0f;
590         for (i=0;i<16;i++){
591             if (i < valid_octets_in_last_block){
592                 cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i];
593                 continue;
594             }
595             if (i == valid_octets_in_last_block){
596                 cmac_m_last[i] = 0x80 ^ k2[i];
597                 continue;
598             }
599             cmac_m_last[i] = k2[i];
600         }
601     }
602 
603     // printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count);
604     // LOG_KEY(cmac_m_last);
605 
606     // Step 5
607     sm_key_t cmac_x;
608     memset(cmac_x, 0, 16);
609 
610     // Step 6
611     sm_key_t sm_cmac_y;
612     for (int block = 0 ; block < cmac_block_count-1 ; block++){
613         for (i=0;i<16;i++){
614             sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i];
615         }
616         aes128_calc_cyphertext(key, sm_cmac_y, cmac_x);
617     }
618     for (i=0;i<16;i++){
619         sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
620     }
621 
622     // Step 7
623     aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac);
624 }
625 
626 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
627 // - U is 256 bits
628 // - V is 256 bits
629 // - X is 128 bits
630 // - Y is 128 bits
631 static uint32_t g2(const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
632     uint8_t buffer[80];
633     memcpy(buffer, u, 32);
634     memcpy(buffer+32, v, 32);
635     memcpy(buffer+64, y, 16);
636     sm_key_t cmac;
637     log_info("g2 key");
638     log_info_hexdump(x, 16);
639     log_info("g2 message");
640     log_info_hexdump(buffer, sizeof(buffer));
641     aes_cmac(cmac, x, buffer, sizeof(buffer));
642     log_info("g2 result");
643     log_info_hexdump(x, 16);
644     return big_endian_read_32(cmac, 12);
645 }
646 
647 #if 0
648 // h6(W, keyID) = AES-CMACW(keyID)
649 // - W is 128 bits
650 // - keyID is 32 bits
651 static void h6(sm_key_t res, const sm_key_t w, const uint32_t key_id){
652     uint8_t key_id_buffer[4];
653     big_endian_store_32(key_id_buffer, 0, key_id);
654     aes_cmac(res, w, key_id_buffer, 4);
655 }
656 #endif
657 #endif
658 
659 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
660     event[0] = type;
661     event[1] = event_size - 2;
662     little_endian_store_16(event, 2, con_handle);
663     event[4] = addr_type;
664     reverse_bd_addr(address, &event[5]);
665 }
666 
667 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
668     if (sm_client_packet_handler) {
669         sm_client_packet_handler(HCI_EVENT_PACKET, 0, packet, size);
670     }
671     // dispatch to all event handlers
672     btstack_linked_list_iterator_t it;
673     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
674     while (btstack_linked_list_iterator_has_next(&it)){
675         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
676         entry->callback(packet_type, 0, packet, size);
677     }
678 }
679 
680 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
681     uint8_t event[11];
682     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
683     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
684 }
685 
686 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
687     uint8_t event[15];
688     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
689     little_endian_store_32(event, 11, passkey);
690     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
691 }
692 
693 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
694     uint8_t event[13];
695     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
696     little_endian_store_16(event, 11, index);
697     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
698 }
699 
700 static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){
701 
702     uint8_t event[18];
703     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
704     event[11] = result;
705     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
706 }
707 
708 // decide on stk generation based on
709 // - pairing request
710 // - io capabilities
711 // - OOB data availability
712 static void sm_setup_tk(void){
713 
714     // default: just works
715     setup->sm_stk_generation_method = JUST_WORKS;
716 
717 #ifdef ENABLE_LE_SECURE_CONNECTIONS
718     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
719                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
720                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0;
721     memset(setup->sm_ra, 0, 16);
722     memset(setup->sm_rb, 0, 16);
723 #else
724     setup->sm_use_secure_connections = 0;
725 #endif
726 
727     // If both devices have not set the MITM option in the Authentication Requirements
728     // Flags, then the IO capabilities shall be ignored and the Just Works association
729     // model shall be used.
730     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0)
731     &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){
732         log_info("SM: MITM not required by both -> JUST WORKS");
733         return;
734     }
735 
736     // TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient
737 
738     // If both devices have out of band authentication data, then the Authentication
739     // Requirements Flags shall be ignored when selecting the pairing method and the
740     // Out of Band pairing method shall be used.
741     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq)
742     &&  sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){
743         log_info("SM: have OOB data");
744         log_info_key("OOB", setup->sm_tk);
745         setup->sm_stk_generation_method = OOB;
746         return;
747     }
748 
749     // Reset TK as it has been setup in sm_init_setup
750     sm_reset_tk();
751 
752     // Also use just works if unknown io capabilites
753     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
754         return;
755     }
756 
757     // Otherwise the IO capabilities of the devices shall be used to determine the
758     // pairing method as defined in Table 2.4.
759     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
760     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
761 
762 #ifdef ENABLE_LE_SECURE_CONNECTIONS
763     // table not define by default
764     if (setup->sm_use_secure_connections){
765         generation_method = stk_generation_method_with_secure_connection;
766     }
767 #endif
768     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
769 
770     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
771         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
772 }
773 
774 static int sm_key_distribution_flags_for_set(uint8_t key_set){
775     int flags = 0;
776     if (key_set & SM_KEYDIST_ENC_KEY){
777         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
778         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
779     }
780     if (key_set & SM_KEYDIST_ID_KEY){
781         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
782         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
783     }
784     if (key_set & SM_KEYDIST_SIGN){
785         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
786     }
787     return flags;
788 }
789 
790 static void sm_setup_key_distribution(uint8_t key_set){
791     setup->sm_key_distribution_received_set = 0;
792     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
793 }
794 
795 // CSRK Key Lookup
796 
797 
798 static int sm_address_resolution_idle(void){
799     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
800 }
801 
802 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
803     memcpy(sm_address_resolution_address, addr, 6);
804     sm_address_resolution_addr_type = addr_type;
805     sm_address_resolution_test = 0;
806     sm_address_resolution_mode = mode;
807     sm_address_resolution_context = context;
808     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
809 }
810 
811 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
812     // check if already in list
813     btstack_linked_list_iterator_t it;
814     sm_lookup_entry_t * entry;
815     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
816     while(btstack_linked_list_iterator_has_next(&it)){
817         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
818         if (entry->address_type != address_type) continue;
819         if (memcmp(entry->address, address, 6))  continue;
820         // already in list
821         return BTSTACK_BUSY;
822     }
823     entry = btstack_memory_sm_lookup_entry_get();
824     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
825     entry->address_type = (bd_addr_type_t) address_type;
826     memcpy(entry->address, address, 6);
827     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
828     sm_run();
829     return 0;
830 }
831 
832 // CMAC Implementation using AES128 engine
833 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
834     int i;
835     int carry = 0;
836     for (i=len-1; i >= 0 ; i--){
837         int new_carry = data[i] >> 7;
838         data[i] = data[i] << 1 | carry;
839         carry = new_carry;
840     }
841 }
842 
843 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now
844 static inline void sm_next_responding_state(sm_connection_t * sm_conn){
845     sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1);
846 }
847 static inline void dkg_next_state(void){
848     dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1);
849 }
850 static inline void rau_next_state(void){
851     rau_state = (random_address_update_t) (((int)rau_state) + 1);
852 }
853 
854 // CMAC calculation using AES Engine
855 
856 static inline void sm_cmac_next_state(void){
857     sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1);
858 }
859 
860 static int sm_cmac_last_block_complete(void){
861     if (sm_cmac_message_len == 0) return 0;
862     return (sm_cmac_message_len & 0x0f) == 0;
863 }
864 
865 static inline uint8_t sm_cmac_message_get_byte(uint16_t offset){
866     if (offset >= sm_cmac_message_len) {
867         log_error("sm_cmac_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len);
868         return 0;
869     }
870 
871     offset = sm_cmac_message_len - 1 - offset;
872 
873     // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4]
874     if (offset < 3){
875         return sm_cmac_header[offset];
876     }
877     int actual_message_len_incl_header = sm_cmac_message_len - 4;
878     if (offset <  actual_message_len_incl_header){
879         return sm_cmac_message[offset - 3];
880     }
881     return sm_cmac_sign_counter[offset - actual_message_len_incl_header];
882 }
883 
884 // generic cmac calculation
885 void sm_cmac_general_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t hash[8])){
886     // Generalized CMAC
887     memcpy(sm_cmac_k, key, 16);
888     memset(sm_cmac_x, 0, 16);
889     sm_cmac_block_current = 0;
890     sm_cmac_message_len  = message_len;
891     sm_cmac_done_handler = done_callback;
892     sm_cmac_get_byte     = get_byte_callback;
893 
894     // step 2: n := ceil(len/const_Bsize);
895     sm_cmac_block_count = (sm_cmac_message_len + 15) / 16;
896 
897     // step 3: ..
898     if (sm_cmac_block_count==0){
899         sm_cmac_block_count = 1;
900     }
901 
902     log_info("sm_cmac_general_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count);
903 
904     // first, we need to compute l for k1, k2, and m_last
905     sm_cmac_state = CMAC_CALC_SUBKEYS;
906 
907     // let's go
908     sm_run();
909 }
910 
911 // cmac for ATT Message signing
912 void sm_cmac_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
913     // ATT Message Signing
914     sm_cmac_header[0] = opcode;
915     little_endian_store_16(sm_cmac_header, 1, con_handle);
916     little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter);
917     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
918     sm_cmac_message = message;
919     sm_cmac_general_start(k, total_message_len, &sm_cmac_message_get_byte, done_handler);
920 }
921 
922 int sm_cmac_ready(void){
923     return sm_cmac_state == CMAC_IDLE;
924 }
925 
926 static void sm_cmac_handle_aes_engine_ready(void){
927     switch (sm_cmac_state){
928         case CMAC_CALC_SUBKEYS: {
929             sm_key_t const_zero;
930             memset(const_zero, 0, 16);
931             sm_cmac_next_state();
932             sm_aes128_start(sm_cmac_k, const_zero, NULL);
933             break;
934         }
935         case CMAC_CALC_MI: {
936             int j;
937             sm_key_t y;
938             for (j=0;j<16;j++){
939                 y[j] = sm_cmac_x[j] ^ sm_cmac_get_byte(sm_cmac_block_current*16 + j);
940             }
941             sm_cmac_block_current++;
942             sm_cmac_next_state();
943             sm_aes128_start(sm_cmac_k, y, NULL);
944             break;
945         }
946         case CMAC_CALC_MLAST: {
947             int i;
948             sm_key_t y;
949             for (i=0;i<16;i++){
950                 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
951             }
952             log_info_key("Y", y);
953             sm_cmac_block_current++;
954             sm_cmac_next_state();
955             sm_aes128_start(sm_cmac_k, y, NULL);
956             break;
957         }
958         default:
959             log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state);
960             break;
961     }
962 }
963 
964 static void sm_cmac_handle_encryption_result(sm_key_t data){
965     switch (sm_cmac_state){
966         case CMAC_W4_SUBKEYS: {
967             sm_key_t k1;
968             memcpy(k1, data, 16);
969             sm_shift_left_by_one_bit_inplace(16, k1);
970             if (data[0] & 0x80){
971                 k1[15] ^= 0x87;
972             }
973             sm_key_t k2;
974             memcpy(k2, k1, 16);
975             sm_shift_left_by_one_bit_inplace(16, k2);
976             if (k1[0] & 0x80){
977                 k2[15] ^= 0x87;
978             }
979 
980             log_info_key("k", sm_cmac_k);
981             log_info_key("k1", k1);
982             log_info_key("k2", k2);
983 
984             // step 4: set m_last
985             int i;
986             if (sm_cmac_last_block_complete()){
987                 for (i=0;i<16;i++){
988                     sm_cmac_m_last[i] = sm_cmac_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i];
989                 }
990             } else {
991                 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
992                 for (i=0;i<16;i++){
993                     if (i < valid_octets_in_last_block){
994                         sm_cmac_m_last[i] = sm_cmac_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i];
995                         continue;
996                     }
997                     if (i == valid_octets_in_last_block){
998                         sm_cmac_m_last[i] = 0x80 ^ k2[i];
999                         continue;
1000                     }
1001                     sm_cmac_m_last[i] = k2[i];
1002                 }
1003             }
1004 
1005             // next
1006             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1007             break;
1008         }
1009         case CMAC_W4_MI:
1010             memcpy(sm_cmac_x, data, 16);
1011             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1012             break;
1013         case CMAC_W4_MLAST:
1014             // done
1015             log_info("Setting CMAC Engine to IDLE");
1016             sm_cmac_state = CMAC_IDLE;
1017             log_info_key("CMAC", data);
1018             sm_cmac_done_handler(data);
1019             break;
1020         default:
1021             log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state);
1022             break;
1023     }
1024 }
1025 
1026 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1027     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1028     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1029     switch (setup->sm_stk_generation_method){
1030         case PK_RESP_INPUT:
1031             if (sm_conn->sm_role){
1032                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1033                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1034             } else {
1035                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1036             }
1037             break;
1038         case PK_INIT_INPUT:
1039             if (sm_conn->sm_role){
1040                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1041             } else {
1042                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1043                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1044             }
1045             break;
1046         case OK_BOTH_INPUT:
1047             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1048             sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1049             break;
1050         case NK_BOTH_INPUT:
1051             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1052             sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1053             break;
1054         case JUST_WORKS:
1055             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1056             sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1057             break;
1058         case OOB:
1059             // client already provided OOB data, let's skip notification.
1060             break;
1061     }
1062 }
1063 
1064 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
1065     int recv_flags;
1066     if (sm_conn->sm_role){
1067         // slave / responder
1068         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
1069     } else {
1070         // master / initiator
1071         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
1072     }
1073     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
1074     return recv_flags == setup->sm_key_distribution_received_set;
1075 }
1076 
1077 static void sm_done_for_handle(hci_con_handle_t con_handle){
1078     if (sm_active_connection == con_handle){
1079         sm_timeout_stop();
1080         sm_active_connection = 0;
1081         log_info("sm: connection 0x%x released setup context", con_handle);
1082     }
1083 }
1084 
1085 static int sm_key_distribution_flags_for_auth_req(void){
1086     int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN;
1087     if (sm_auth_req & SM_AUTHREQ_BONDING){
1088         // encryption information only if bonding requested
1089         flags |= SM_KEYDIST_ENC_KEY;
1090     }
1091     return flags;
1092 }
1093 
1094 static void sm_init_setup(sm_connection_t * sm_conn){
1095 
1096     // fill in sm setup
1097     sm_reset_tk();
1098     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1099     memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1100 
1101     // query client for OOB data
1102     int have_oob_data = 0;
1103     if (sm_get_oob_data) {
1104         have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1105     }
1106 
1107     sm_pairing_packet_t * local_packet;
1108     if (sm_conn->sm_role){
1109         // slave
1110         local_packet = &setup->sm_s_pres;
1111         gap_advertisements_get_address(&setup->sm_s_addr_type, setup->sm_s_address);
1112         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1113         memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1114     } else {
1115         // master
1116         local_packet = &setup->sm_m_preq;
1117         gap_advertisements_get_address(&setup->sm_m_addr_type, setup->sm_m_address);
1118         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1119         memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1120 
1121         int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1122         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1123         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1124     }
1125 
1126     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1127     sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data);
1128     sm_pairing_packet_set_auth_req(*local_packet, sm_auth_req);
1129     sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size);
1130 }
1131 
1132 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1133 
1134     sm_pairing_packet_t * remote_packet;
1135     int                   remote_key_request;
1136     if (sm_conn->sm_role){
1137         // slave / responder
1138         remote_packet      = &setup->sm_m_preq;
1139         remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1140     } else {
1141         // master / initiator
1142         remote_packet      = &setup->sm_s_pres;
1143         remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1144     }
1145 
1146     // check key size
1147     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1148     if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE;
1149 
1150     // decide on STK generation method
1151     sm_setup_tk();
1152     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1153 
1154     // check if STK generation method is acceptable by client
1155     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1156 
1157     // identical to responder
1158     sm_setup_key_distribution(remote_key_request);
1159 
1160     // JUST WORKS doens't provide authentication
1161     sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1;
1162 
1163     return 0;
1164 }
1165 
1166 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1167 
1168     // cache and reset context
1169     int matched_device_id = sm_address_resolution_test;
1170     address_resolution_mode_t mode = sm_address_resolution_mode;
1171     void * context = sm_address_resolution_context;
1172 
1173     // reset context
1174     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1175     sm_address_resolution_context = NULL;
1176     sm_address_resolution_test = -1;
1177     hci_con_handle_t con_handle = 0;
1178 
1179     sm_connection_t * sm_connection;
1180     uint16_t ediv;
1181     switch (mode){
1182         case ADDRESS_RESOLUTION_GENERAL:
1183             break;
1184         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1185             sm_connection = (sm_connection_t *) context;
1186             con_handle = sm_connection->sm_handle;
1187             switch (event){
1188                 case ADDRESS_RESOLUTION_SUCEEDED:
1189                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1190                     sm_connection->sm_le_db_index = matched_device_id;
1191                     log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index);
1192                     if (sm_connection->sm_role) break;
1193                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1194                     sm_connection->sm_security_request_received = 0;
1195                     sm_connection->sm_bonding_requested = 0;
1196                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
1197                     if (ediv){
1198                         sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
1199                     } else {
1200                         sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1201                     }
1202                     break;
1203                 case ADDRESS_RESOLUTION_FAILED:
1204                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1205                     if (sm_connection->sm_role) break;
1206                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1207                     sm_connection->sm_security_request_received = 0;
1208                     sm_connection->sm_bonding_requested = 0;
1209                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1210                     break;
1211             }
1212             break;
1213         default:
1214             break;
1215     }
1216 
1217     switch (event){
1218         case ADDRESS_RESOLUTION_SUCEEDED:
1219             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1220             break;
1221         case ADDRESS_RESOLUTION_FAILED:
1222             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1223             break;
1224     }
1225 }
1226 
1227 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1228 
1229     int le_db_index = -1;
1230 
1231     // lookup device based on IRK
1232     if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
1233         int i;
1234         for (i=0; i < le_device_db_count(); i++){
1235             sm_key_t irk;
1236             bd_addr_t address;
1237             int address_type;
1238             le_device_db_info(i, &address_type, address, irk);
1239             if (memcmp(irk, setup->sm_peer_irk, 16) == 0){
1240                 log_info("sm: device found for IRK, updating");
1241                 le_db_index = i;
1242                 break;
1243             }
1244         }
1245     }
1246 
1247     // if not found, lookup via public address if possible
1248     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1249     if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
1250         int i;
1251         for (i=0; i < le_device_db_count(); i++){
1252             bd_addr_t address;
1253             int address_type;
1254             le_device_db_info(i, &address_type, address, NULL);
1255             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1256             if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){
1257                 log_info("sm: device found for public address, updating");
1258                 le_db_index = i;
1259                 break;
1260             }
1261         }
1262     }
1263 
1264     // if not found, add to db
1265     if (le_db_index < 0) {
1266         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1267     }
1268 
1269     if (le_db_index >= 0){
1270         le_device_db_local_counter_set(le_db_index, 0);
1271 
1272         // store local CSRK
1273         if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1274             log_info("sm: store local CSRK");
1275             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1276             le_device_db_local_counter_set(le_db_index, 0);
1277         }
1278 
1279         // store remote CSRK
1280         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1281             log_info("sm: store remote CSRK");
1282             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1283             le_device_db_remote_counter_set(le_db_index, 0);
1284         }
1285 
1286         // store encryption information
1287         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION
1288             && setup->sm_key_distribution_received_set &  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1289             log_info("sm: set encryption information (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1290             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1291                 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
1292         }
1293     }
1294 
1295     // keep le_db_index
1296     sm_conn->sm_le_db_index = le_db_index;
1297 }
1298 
1299 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
1300     setup->sm_pairing_failed_reason = reason;
1301     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1302 }
1303 
1304 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
1305     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
1306 }
1307 
1308 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1309 
1310 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn);
1311 
1312 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){
1313     if (sm_conn->sm_role){
1314         // Responder
1315         sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
1316     } else {
1317         // Initiator role
1318         switch (setup->sm_stk_generation_method){
1319             case JUST_WORKS:
1320                 sm_sc_prepare_dhkey_check(sm_conn);
1321                 break;
1322 
1323             case NK_BOTH_INPUT: {
1324                 // calc Va if numeric comparison
1325                 // TODO: use AES Engine to calculate g2
1326                 uint8_t value[32];
1327                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1328                 uint32_t va = g2(value, setup->sm_peer_qx, setup->sm_local_nonce, setup->sm_peer_nonce) % 1000000;
1329                 big_endian_store_32(setup->sm_tk, 12, va);
1330                 sm_trigger_user_response(sm_conn);
1331                 break;
1332             }
1333             case PK_INIT_INPUT:
1334             case PK_RESP_INPUT:
1335             case OK_BOTH_INPUT:
1336                 if (setup->sm_passkey_bit < 20) {
1337                     sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1338                 } else {
1339                     sm_sc_prepare_dhkey_check(sm_conn);
1340                 }
1341                 break;
1342             case OOB:
1343                 // TODO: implement SC OOB
1344                 break;
1345         }
1346     }
1347 }
1348 
1349 static void sm_sc_state_after_receiving_dhkey_check(sm_connection_t * sm_conn){
1350     if (sm_conn->sm_role){
1351         // responder
1352         // for numeric comparison, we need to wait for user confirm
1353         if (setup->sm_stk_generation_method == NK_BOTH_INPUT && setup->sm_user_response != SM_USER_RESPONSE_CONFIRM){
1354             sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
1355         } else {
1356             sm_sc_prepare_dhkey_check(sm_conn);
1357         }
1358     } else {
1359         // initiator
1360         sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
1361     }
1362 }
1363 
1364 static uint8_t sm_sc_cmac_get_byte(uint16_t offset){
1365     return sm_cmac_sc_buffer[offset];
1366 }
1367 
1368 static void sm_sc_cmac_done(uint8_t * hash){
1369     log_info("sm_sc_cmac_done: ");
1370     log_info_hexdump(hash, 16);
1371 
1372     switch (sm_cmac_connection->sm_engine_state){
1373         case SM_SC_W4_CMAC_FOR_CONFIRMATION:
1374             memcpy(setup->sm_local_confirm, hash, 16);
1375             sm_cmac_connection->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1376             break;
1377         case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION:
1378             // check
1379             if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){
1380                 sm_pairing_error(sm_cmac_connection, SM_REASON_CONFIRM_VALUE_FAILED);
1381                 break;
1382             }
1383             sm_sc_state_after_receiving_random(sm_cmac_connection);
1384             break;
1385         case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
1386             memcpy(setup->sm_local_dhkey_check, hash, 16);
1387             sm_cmac_connection->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1388             break;
1389         case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
1390             if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){
1391                 sm_pairing_error(sm_cmac_connection, SM_REASON_DHKEY_CHECK_FAILED);
1392                 break;
1393             }
1394             sm_sc_state_after_receiving_dhkey_check(sm_cmac_connection);
1395             break;
1396         case SM_SC_W4_CALCULATE_F5_SALT:
1397             memcpy(setup->sm_t, hash, 16);
1398             sm_cmac_connection->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY;
1399             break;
1400         case SM_SC_W4_CALCULATE_F5_MACKEY:
1401             memcpy(setup->sm_mackey, hash, 16);
1402             sm_cmac_connection->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK;
1403             break;
1404         case SM_SC_W4_CALCULATE_F5_LTK:
1405             memcpy(setup->sm_ltk, hash, 16);
1406             sm_cmac_connection->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK;
1407             break;
1408         default:
1409             log_error("sm_sc_cmac_done in state %u", sm_cmac_connection->sm_engine_state);
1410             break;
1411     }
1412     sm_cmac_connection = 0;
1413     sm_run();
1414 }
1415 
1416 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
1417     const uint16_t message_len = 65;
1418     sm_cmac_connection = sm_conn;
1419     memcpy(sm_cmac_sc_buffer, u, 32);
1420     memcpy(sm_cmac_sc_buffer+32, v, 32);
1421     sm_cmac_sc_buffer[64] = z;
1422     log_info("f4 key");
1423     log_info_hexdump(x, 16);
1424     log_info("f4 message");
1425     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1426     sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1427 }
1428 
1429 static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
1430 static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
1431 static const uint8_t f5_length[] = { 0x01, 0x00};
1432 
1433 static void sm_sc_calculate_dhkey(sm_key256_t dhkey){
1434 #ifdef USE_MBEDTLS_FOR_ECDH
1435     // da * Pb
1436     mbedtls_ecp_group grp;
1437     mbedtls_ecp_group_init( &grp );
1438     mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
1439     mbedtls_ecp_point Q;
1440     mbedtls_ecp_point_init( &Q );
1441     mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
1442     mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
1443     mbedtls_mpi_read_string(&Q.Z, 16, "1" );
1444     mbedtls_ecp_point DH;
1445     mbedtls_ecp_point_init( &DH );
1446     mbedtls_ecp_mul(&grp, &DH, &le_keypair.d, &Q, NULL, NULL);
1447     mbedtls_mpi_write_binary(&DH.X, dhkey, 32);
1448 #endif
1449     log_info("dhkey");
1450     log_info_hexdump(dhkey, 32);
1451 }
1452 
1453 static void f5_calculate_salt(sm_connection_t * sm_conn){
1454     // calculate DHKEY
1455     sm_key256_t dhkey;
1456     sm_sc_calculate_dhkey(dhkey);
1457 
1458     // calculate salt for f5
1459     const uint16_t message_len = 32;
1460     sm_cmac_connection = sm_conn;
1461     memcpy(sm_cmac_sc_buffer, dhkey, message_len);
1462     sm_cmac_general_start(f5_salt, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1463 }
1464 
1465 static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
1466     const uint16_t message_len = 53;
1467     sm_cmac_connection = sm_conn;
1468 
1469     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
1470     sm_cmac_sc_buffer[0] = 0;
1471     memcpy(sm_cmac_sc_buffer+01, f5_key_id, 4);
1472     memcpy(sm_cmac_sc_buffer+05, n1, 16);
1473     memcpy(sm_cmac_sc_buffer+21, n2, 16);
1474     memcpy(sm_cmac_sc_buffer+37, a1, 7);
1475     memcpy(sm_cmac_sc_buffer+44, a2, 7);
1476     memcpy(sm_cmac_sc_buffer+51, f5_length, 2);
1477     log_info("f5 key");
1478     log_info_hexdump(t, 16);
1479     log_info("f5 message for MacKey");
1480     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1481     sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1482 }
1483 
1484 static void f5_calculate_mackey(sm_connection_t * sm_conn){
1485     sm_key56_t bd_addr_master, bd_addr_slave;
1486     bd_addr_master[0] =  setup->sm_m_addr_type;
1487     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1488     memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1489     memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1490     if (sm_conn->sm_role){
1491         // responder
1492         f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1493     } else {
1494         // initiator
1495         f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1496     }
1497 }
1498 
1499 // note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused
1500 static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){
1501     const uint16_t message_len = 53;
1502     sm_cmac_connection = sm_conn;
1503     sm_cmac_sc_buffer[0] = 1;
1504     // 1..52 setup before
1505     log_info("f5 key");
1506     log_info_hexdump(t, 16);
1507     log_info("f5 message for LTK");
1508     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1509     sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1510 }
1511 static void f5_calculate_ltk(sm_connection_t * sm_conn){
1512     f5_ltk(sm_conn, setup->sm_t);
1513 }
1514 
1515 static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
1516     const uint16_t message_len = 65;
1517     sm_cmac_connection = sm_conn;
1518     memcpy(sm_cmac_sc_buffer, n1, 16);
1519     memcpy(sm_cmac_sc_buffer+16, n2, 16);
1520     memcpy(sm_cmac_sc_buffer+32, r, 16);
1521     memcpy(sm_cmac_sc_buffer+48, io_cap, 3);
1522     memcpy(sm_cmac_sc_buffer+51, a1, 7);
1523     memcpy(sm_cmac_sc_buffer+58, a2, 7);
1524     log_info("f6 key");
1525     log_info_hexdump(w, 16);
1526     log_info("f6 message");
1527     log_info_hexdump(sm_cmac_sc_buffer, message_len);
1528     sm_cmac_general_start(w, 65, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1529 }
1530 
1531 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
1532     uint8_t z = 0;
1533     if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1534         // some form of passkey
1535         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1536         z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1);
1537         setup->sm_passkey_bit++;
1538     }
1539 #ifdef USE_MBEDTLS_FOR_ECDH
1540     uint8_t local_qx[32];
1541     mbedtls_mpi_write_binary(&le_keypair.Q.X, local_qx, sizeof(local_qx));
1542 #endif
1543     f4_engine(sm_conn, local_qx, setup->sm_peer_qx, setup->sm_local_nonce, z);
1544 }
1545 
1546 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){
1547     uint8_t z = 0;
1548     if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1549         // some form of passkey
1550         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1551         // sm_passkey_bit was increased before sending confirm value
1552         z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1);
1553     }
1554 #ifdef USE_MBEDTLS_FOR_ECDH
1555     uint8_t local_qx[32];
1556     mbedtls_mpi_write_binary(&le_keypair.Q.X, local_qx, sizeof(local_qx));
1557 #endif
1558     f4_engine(sm_conn, setup->sm_peer_qx, local_qx, setup->sm_peer_nonce, z);
1559 }
1560 
1561 static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){
1562 
1563     sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
1564 
1565     // TODO: use AES CMAC Engine
1566     // sm_sc_calculate_f5_for_dhkey_check(sm_conn);
1567 
1568     // second part
1569     // sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK;
1570 }
1571 
1572 static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){
1573     // calculate DHKCheck
1574     sm_key56_t bd_addr_master, bd_addr_slave;
1575     bd_addr_master[0] =  setup->sm_m_addr_type;
1576     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1577     memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1578     memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1579     uint8_t iocap_a[3];
1580     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1581     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1582     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1583     uint8_t iocap_b[3];
1584     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1585     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1586     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1587     if (sm_conn->sm_role){
1588         // responder
1589         f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1590     } else {
1591         // initiator
1592         f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1593     }
1594 }
1595 
1596 static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){
1597     // validate E = f6()
1598     sm_key56_t bd_addr_master, bd_addr_slave;
1599     bd_addr_master[0] =  setup->sm_m_addr_type;
1600     bd_addr_slave[0]  =  setup->sm_s_addr_type;
1601     memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1602     memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1603 
1604     uint8_t iocap_a[3];
1605     iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1606     iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1607     iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1608     uint8_t iocap_b[3];
1609     iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1610     iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1611     iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1612     if (sm_conn->sm_role){
1613         // responder
1614         f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1615     } else {
1616         // initiator
1617         f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1618     }
1619 }
1620 
1621 #endif
1622 
1623 static void sm_run(void){
1624 
1625     btstack_linked_list_iterator_t it;
1626 
1627     // assert that we can send at least commands
1628     if (!hci_can_send_command_packet_now()) return;
1629 
1630     //
1631     // non-connection related behaviour
1632     //
1633 
1634     // distributed key generation
1635     switch (dkg_state){
1636         case DKG_CALC_IRK:
1637             // already busy?
1638             if (sm_aes128_state == SM_AES128_IDLE) {
1639                 // IRK = d1(IR, 1, 0)
1640                 sm_key_t d1_prime;
1641                 sm_d1_d_prime(1, 0, d1_prime);  // plaintext
1642                 dkg_next_state();
1643                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1644                 return;
1645             }
1646             break;
1647         case DKG_CALC_DHK:
1648             // already busy?
1649             if (sm_aes128_state == SM_AES128_IDLE) {
1650                 // DHK = d1(IR, 3, 0)
1651                 sm_key_t d1_prime;
1652                 sm_d1_d_prime(3, 0, d1_prime);  // plaintext
1653                 dkg_next_state();
1654                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1655                 return;
1656             }
1657             break;
1658         default:
1659             break;
1660     }
1661 
1662     // random address updates
1663     switch (rau_state){
1664         case RAU_GET_RANDOM:
1665             rau_next_state();
1666             sm_random_start(NULL);
1667             return;
1668         case RAU_GET_ENC:
1669             // already busy?
1670             if (sm_aes128_state == SM_AES128_IDLE) {
1671                 sm_key_t r_prime;
1672                 sm_ah_r_prime(sm_random_address, r_prime);
1673                 rau_next_state();
1674                 sm_aes128_start(sm_persistent_irk, r_prime, NULL);
1675                 return;
1676             }
1677             break;
1678         case RAU_SET_ADDRESS:
1679             log_info("New random address: %s", bd_addr_to_str(sm_random_address));
1680             rau_state = RAU_IDLE;
1681             hci_send_cmd(&hci_le_set_random_address, sm_random_address);
1682             return;
1683         default:
1684             break;
1685     }
1686 
1687     // CMAC
1688     switch (sm_cmac_state){
1689         case CMAC_CALC_SUBKEYS:
1690         case CMAC_CALC_MI:
1691         case CMAC_CALC_MLAST:
1692             // already busy?
1693             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1694             sm_cmac_handle_aes_engine_ready();
1695             return;
1696         default:
1697             break;
1698     }
1699 
1700     // CSRK Lookup
1701     // -- if csrk lookup ready, find connection that require csrk lookup
1702     if (sm_address_resolution_idle()){
1703         hci_connections_get_iterator(&it);
1704         while(btstack_linked_list_iterator_has_next(&it)){
1705             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1706             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
1707             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
1708                 // and start lookup
1709                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
1710                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
1711                 break;
1712             }
1713         }
1714     }
1715 
1716     // -- if csrk lookup ready, resolved addresses for received addresses
1717     if (sm_address_resolution_idle()) {
1718         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
1719             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
1720             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
1721             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
1722             btstack_memory_sm_lookup_entry_free(entry);
1723         }
1724     }
1725 
1726     // -- Continue with CSRK device lookup by public or resolvable private address
1727     if (!sm_address_resolution_idle()){
1728         log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count());
1729         while (sm_address_resolution_test < le_device_db_count()){
1730             int addr_type;
1731             bd_addr_t addr;
1732             sm_key_t irk;
1733             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
1734             log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
1735 
1736             if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){
1737                 log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
1738                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
1739                 break;
1740             }
1741 
1742             if (sm_address_resolution_addr_type == 0){
1743                 sm_address_resolution_test++;
1744                 continue;
1745             }
1746 
1747             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1748 
1749             log_info("LE Device Lookup: calculate AH");
1750             log_info_key("IRK", irk);
1751 
1752             sm_key_t r_prime;
1753             sm_ah_r_prime(sm_address_resolution_address, r_prime);
1754             sm_address_resolution_ah_calculation_active = 1;
1755             sm_aes128_start(irk, r_prime, sm_address_resolution_context);   // keep context
1756             return;
1757         }
1758 
1759         if (sm_address_resolution_test >= le_device_db_count()){
1760             log_info("LE Device Lookup: not found");
1761             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
1762         }
1763     }
1764 
1765 
1766     //
1767     // active connection handling
1768     // -- use loop to handle next connection if lock on setup context is released
1769 
1770     while (1) {
1771 
1772         // Find connections that requires setup context and make active if no other is locked
1773         hci_connections_get_iterator(&it);
1774         while(!sm_active_connection && btstack_linked_list_iterator_has_next(&it)){
1775             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1776             sm_connection_t  * sm_connection = &hci_connection->sm_connection;
1777             // - if no connection locked and we're ready/waiting for setup context, fetch it and start
1778             int done = 1;
1779             int err;
1780             int encryption_key_size;
1781             int authenticated;
1782             int authorized;
1783             switch (sm_connection->sm_engine_state) {
1784                 case SM_RESPONDER_SEND_SECURITY_REQUEST:
1785                     // send packet if possible,
1786                     if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){
1787                         const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING};
1788                         sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
1789                         l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1790                     } else {
1791                         l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1792                     }
1793                     // don't lock setup context yet
1794                     done = 0;
1795                     break;
1796                 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
1797                     sm_init_setup(sm_connection);
1798                     // recover pairing request
1799                     memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t));
1800                     err = sm_stk_generation_init(sm_connection);
1801                     if (err){
1802                         setup->sm_pairing_failed_reason = err;
1803                         sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1804                         break;
1805                     }
1806                     sm_timeout_start(sm_connection);
1807                     // generate random number first, if we need to show passkey
1808                     if (setup->sm_stk_generation_method == PK_INIT_INPUT){
1809                         sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK;
1810                         break;
1811                     }
1812                     sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
1813                     break;
1814                 case SM_INITIATOR_PH0_HAS_LTK:
1815                     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
1816                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1817                                                 &encryption_key_size, &authenticated, &authorized);
1818                     log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized);
1819                     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
1820                     sm_connection->sm_connection_authenticated = authenticated;
1821                     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
1822                     sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION;
1823                     break;
1824                 case SM_RESPONDER_PH0_RECEIVED_LTK:
1825                     // re-establish previously used LTK using Rand and EDIV
1826                     memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
1827                     setup->sm_local_ediv = sm_connection->sm_local_ediv;
1828                     // re-establish used key encryption size
1829                     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
1830                     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1;
1831                     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
1832                     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4;
1833                     log_info("sm: received ltk request with key size %u, authenticated %u",
1834                             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
1835                     sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC;
1836                     break;
1837                 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
1838                     sm_init_setup(sm_connection);
1839                     sm_timeout_start(sm_connection);
1840                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST;
1841                     break;
1842                 default:
1843                     done = 0;
1844                     break;
1845             }
1846             if (done){
1847                 sm_active_connection = sm_connection->sm_handle;
1848                 log_info("sm: connection 0x%04x locked setup context as %s", sm_active_connection, sm_connection->sm_role ? "responder" : "initiator");
1849             }
1850         }
1851 
1852         //
1853         // active connection handling
1854         //
1855 
1856         if (sm_active_connection == 0) return;
1857 
1858         // assert that we could send a SM PDU - not needed for all of the following
1859         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
1860             l2cap_request_can_send_fix_channel_now_event(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1861             return;
1862         }
1863 
1864         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection);
1865         if (!connection) return;
1866 
1867         sm_key_t plaintext;
1868         int key_distribution_flags;
1869 
1870         log_info("sm_run: state %u", connection->sm_engine_state);
1871 
1872         // responding state
1873         switch (connection->sm_engine_state){
1874 
1875             // general
1876             case SM_GENERAL_SEND_PAIRING_FAILED: {
1877                 uint8_t buffer[2];
1878                 buffer[0] = SM_CODE_PAIRING_FAILED;
1879                 buffer[1] = setup->sm_pairing_failed_reason;
1880                 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
1881                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1882                 sm_done_for_handle(connection->sm_handle);
1883                 break;
1884             }
1885 
1886 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1887             case SM_SC_W2_CMAC_FOR_CONFIRMATION:
1888                 if (!sm_cmac_ready()) break;
1889                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
1890                 sm_sc_calculate_local_confirm(connection);
1891                 break;
1892 
1893             case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION:
1894                 if (!sm_cmac_ready()) break;
1895                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION;
1896                 sm_sc_calculate_remote_confirm(connection);
1897                 break;
1898 
1899             case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
1900                 if (!sm_cmac_ready()) break;
1901                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK;
1902                 sm_sc_calculate_f6_for_dhkey_check(connection);
1903                 break;
1904             case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
1905                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
1906                 sm_sc_calculate_f6_to_verify_dhkey_check(connection);
1907                 break;
1908             case SM_SC_W2_CALCULATE_F5_SALT:
1909                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT;
1910                 f5_calculate_salt(connection);
1911                 break;
1912             case SM_SC_W2_CALCULATE_F5_MACKEY:
1913                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY;
1914                 f5_calculate_mackey(connection);
1915                 break;
1916             case SM_SC_W2_CALCULATE_F5_LTK:
1917                 connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK;
1918                 f5_calculate_ltk(connection);
1919                 break;
1920 #endif
1921             // initiator side
1922             case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: {
1923                 sm_key_t peer_ltk_flipped;
1924                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
1925                 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED;
1926                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
1927                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
1928                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
1929                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
1930                 return;
1931             }
1932 
1933             case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST:
1934                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
1935                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
1936                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
1937                 sm_timeout_reset(connection);
1938                 break;
1939 
1940             // responder side
1941             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
1942                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1943                 hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
1944                 return;
1945 
1946 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1947             case SM_SC_SEND_PUBLIC_KEY_COMMAND: {
1948                 uint8_t buffer[65];
1949                 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
1950                 //
1951 #ifdef USE_MBEDTLS_FOR_ECDH
1952                 uint8_t value[32];
1953                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1954                 reverse_256(value, &buffer[1]);
1955                 mbedtls_mpi_write_binary(&le_keypair.Q.Y, value, sizeof(value));
1956                 reverse_256(value, &buffer[33]);
1957 #endif
1958                 // TODO: use random generator to generate nonce
1959 
1960                 // generate 128-bit nonce
1961                 int i;
1962                 for (i=0;i<16;i++){
1963                     setup->sm_local_nonce[i] = rand() & 0xff;
1964                 }
1965 
1966                 // stk generation method
1967                 // passkey entry: notify app to show passkey or to request passkey
1968                 switch (setup->sm_stk_generation_method){
1969                     case JUST_WORKS:
1970                     case NK_BOTH_INPUT:
1971                         if (connection->sm_role){
1972                             connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1973                         } else {
1974                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1975                         }
1976                         break;
1977                     case PK_INIT_INPUT:
1978                     case PK_RESP_INPUT:
1979                     case OK_BOTH_INPUT:
1980                         // hack for testing: assume user entered '000000'
1981                         // memset(setup->sm_tk, 0, 16);
1982                         memcpy(setup->sm_ra, setup->sm_tk, 16);
1983                         memcpy(setup->sm_rb, setup->sm_tk, 16);
1984                         setup->sm_passkey_bit = 0;
1985                         if (connection->sm_role){
1986                             // responder
1987                             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1988                         } else {
1989                             // initiator
1990                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1991                         }
1992                         sm_trigger_user_response(connection);
1993                         break;
1994                     case OOB:
1995                         // TODO: implement SC OOB
1996                         break;
1997                 }
1998 
1999                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2000                 sm_timeout_reset(connection);
2001                 break;
2002             }
2003             case SM_SC_SEND_CONFIRMATION: {
2004                 uint8_t buffer[17];
2005                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
2006                 reverse_128(setup->sm_local_confirm, &buffer[1]);
2007                 if (connection->sm_role){
2008                     connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2009                 } else {
2010                     connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2011                 }
2012                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2013                 sm_timeout_reset(connection);
2014                 break;
2015             }
2016             case SM_SC_SEND_PAIRING_RANDOM: {
2017                 uint8_t buffer[17];
2018                 buffer[0] = SM_CODE_PAIRING_RANDOM;
2019                 reverse_128(setup->sm_local_nonce, &buffer[1]);
2020                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){
2021                     if (connection->sm_role){
2022                         // responder
2023                         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
2024                     } else {
2025                         // initiator
2026                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2027                     }
2028                 } else {
2029                     if (connection->sm_role){
2030                         // responder
2031                         connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
2032                         if (setup->sm_stk_generation_method == NK_BOTH_INPUT){
2033                             // calc Vb if numeric comparison
2034                             // TODO: use AES Engine to calculate g2
2035                             uint8_t value[32];
2036                             mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
2037                             uint32_t vb = g2(setup->sm_peer_qx, value, setup->sm_peer_nonce, setup->sm_local_nonce) % 1000000;
2038                             big_endian_store_32(setup->sm_tk, 12, vb);
2039                             sm_trigger_user_response(connection);
2040                         }
2041                     } else {
2042                         // initiator
2043                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
2044                     }
2045                 }
2046                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2047                 sm_timeout_reset(connection);
2048                 break;
2049             }
2050             case SM_SC_SEND_DHKEY_CHECK_COMMAND: {
2051                 uint8_t buffer[17];
2052                 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
2053                 reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
2054 
2055                 if (connection->sm_role){
2056                     connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
2057                 } else {
2058                     connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
2059                 }
2060 
2061                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2062                 sm_timeout_reset(connection);
2063                 break;
2064             }
2065 
2066 #endif
2067             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
2068                 // echo initiator for now
2069                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
2070                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
2071 
2072                 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
2073 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2074                 if (setup->sm_use_secure_connections){
2075                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
2076                     // skip LTK/EDIV for SC
2077                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
2078                 }
2079 #endif
2080                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
2081                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
2082 
2083                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
2084                 sm_timeout_reset(connection);
2085                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
2086                 if (setup->sm_stk_generation_method == JUST_WORKS){
2087                     sm_trigger_user_response(connection);
2088                 }
2089                 return;
2090 
2091             case SM_PH2_SEND_PAIRING_RANDOM: {
2092                 uint8_t buffer[17];
2093                 buffer[0] = SM_CODE_PAIRING_RANDOM;
2094                 reverse_128(setup->sm_local_random, &buffer[1]);
2095                 if (connection->sm_role){
2096                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
2097                 } else {
2098                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
2099                 }
2100                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2101                 sm_timeout_reset(connection);
2102                 break;
2103             }
2104 
2105             case SM_PH2_GET_RANDOM_TK:
2106             case SM_PH2_C1_GET_RANDOM_A:
2107             case SM_PH2_C1_GET_RANDOM_B:
2108             case SM_PH3_GET_RANDOM:
2109             case SM_PH3_GET_DIV:
2110                 sm_next_responding_state(connection);
2111                 sm_random_start(connection);
2112                 return;
2113 
2114             case SM_PH2_C1_GET_ENC_B:
2115             case SM_PH2_C1_GET_ENC_D:
2116                 // already busy?
2117                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2118                 sm_next_responding_state(connection);
2119                 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection);
2120                 return;
2121 
2122             case SM_PH3_LTK_GET_ENC:
2123             case SM_RESPONDER_PH4_LTK_GET_ENC:
2124                 // already busy?
2125                 if (sm_aes128_state == SM_AES128_IDLE) {
2126                     sm_key_t d_prime;
2127                     sm_d1_d_prime(setup->sm_local_div, 0, d_prime);
2128                     sm_next_responding_state(connection);
2129                     sm_aes128_start(sm_persistent_er, d_prime, connection);
2130                     return;
2131                 }
2132                 break;
2133 
2134             case SM_PH3_CSRK_GET_ENC:
2135                 // already busy?
2136                 if (sm_aes128_state == SM_AES128_IDLE) {
2137                     sm_key_t d_prime;
2138                     sm_d1_d_prime(setup->sm_local_div, 1, d_prime);
2139                     sm_next_responding_state(connection);
2140                     sm_aes128_start(sm_persistent_er, d_prime, connection);
2141                     return;
2142                 }
2143                 break;
2144 
2145             case SM_PH2_C1_GET_ENC_C:
2146                 // already busy?
2147                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2148                 // calculate m_confirm using aes128 engine - step 1
2149                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
2150                 sm_next_responding_state(connection);
2151                 sm_aes128_start(setup->sm_tk, plaintext, connection);
2152                 break;
2153             case SM_PH2_C1_GET_ENC_A:
2154                 // already busy?
2155                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2156                 // calculate confirm using aes128 engine - step 1
2157                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
2158                 sm_next_responding_state(connection);
2159                 sm_aes128_start(setup->sm_tk, plaintext, connection);
2160                 break;
2161             case SM_PH2_CALC_STK:
2162                 // already busy?
2163                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2164                 // calculate STK
2165                 if (connection->sm_role){
2166                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext);
2167                 } else {
2168                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext);
2169                 }
2170                 sm_next_responding_state(connection);
2171                 sm_aes128_start(setup->sm_tk, plaintext, connection);
2172                 break;
2173             case SM_PH3_Y_GET_ENC:
2174                 // already busy?
2175                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2176                 // PH3B2 - calculate Y from      - enc
2177                 // Y = dm(DHK, Rand)
2178                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
2179                 sm_next_responding_state(connection);
2180                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
2181                 return;
2182             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
2183                 uint8_t buffer[17];
2184                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
2185                 reverse_128(setup->sm_local_confirm, &buffer[1]);
2186                 if (connection->sm_role){
2187                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
2188                 } else {
2189                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
2190                 }
2191                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2192                 sm_timeout_reset(connection);
2193                 return;
2194             }
2195             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
2196                 sm_key_t stk_flipped;
2197                 reverse_128(setup->sm_ltk, stk_flipped);
2198                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
2199                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
2200                 return;
2201             }
2202             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
2203                 sm_key_t stk_flipped;
2204                 reverse_128(setup->sm_ltk, stk_flipped);
2205                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
2206                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
2207                 return;
2208             }
2209             case SM_RESPONDER_PH4_SEND_LTK: {
2210                 sm_key_t ltk_flipped;
2211                 reverse_128(setup->sm_ltk, ltk_flipped);
2212                 connection->sm_engine_state = SM_RESPONDER_IDLE;
2213                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
2214                 return;
2215             }
2216             case SM_RESPONDER_PH4_Y_GET_ENC:
2217                 // already busy?
2218                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2219                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
2220                 // Y = dm(DHK, Rand)
2221                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
2222                 sm_next_responding_state(connection);
2223                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
2224                 return;
2225 
2226             case SM_PH3_DISTRIBUTE_KEYS:
2227                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
2228                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2229                     uint8_t buffer[17];
2230                     buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2231                     reverse_128(setup->sm_ltk, &buffer[1]);
2232                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2233                     sm_timeout_reset(connection);
2234                     return;
2235                 }
2236                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
2237                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2238                     uint8_t buffer[11];
2239                     buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2240                     little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2241                     reverse_64(setup->sm_local_rand, &buffer[3]);
2242                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2243                     sm_timeout_reset(connection);
2244                     return;
2245                 }
2246                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
2247                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2248                     uint8_t buffer[17];
2249                     buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2250                     reverse_128(sm_persistent_irk, &buffer[1]);
2251                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2252                     sm_timeout_reset(connection);
2253                     return;
2254                 }
2255                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
2256                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2257                     bd_addr_t local_address;
2258                     uint8_t buffer[8];
2259                     buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2260                     gap_advertisements_get_address(&buffer[1], local_address);
2261                     reverse_bd_addr(local_address, &buffer[2]);
2262                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2263                     sm_timeout_reset(connection);
2264                     return;
2265                 }
2266                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
2267                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2268 
2269                     // hack to reproduce test runs
2270                     if (test_use_fixed_local_csrk){
2271                         memset(setup->sm_local_csrk, 0xcc, 16);
2272                     }
2273 
2274                     uint8_t buffer[17];
2275                     buffer[0] = SM_CODE_SIGNING_INFORMATION;
2276                     reverse_128(setup->sm_local_csrk, &buffer[1]);
2277                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2278                     sm_timeout_reset(connection);
2279                     return;
2280                 }
2281 
2282                 // keys are sent
2283                 if (connection->sm_role){
2284                     // slave -> receive master keys if any
2285                     if (sm_key_distribution_all_received(connection)){
2286                         sm_key_distribution_handle_all_received(connection);
2287                         connection->sm_engine_state = SM_RESPONDER_IDLE;
2288                         sm_done_for_handle(connection->sm_handle);
2289                     } else {
2290                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2291                     }
2292                 } else {
2293                     // master -> all done
2294                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2295                     sm_done_for_handle(connection->sm_handle);
2296                 }
2297                 break;
2298 
2299             default:
2300                 break;
2301         }
2302 
2303         // check again if active connection was released
2304         if (sm_active_connection) break;
2305     }
2306 }
2307 
2308 // note: aes engine is ready as we just got the aes result
2309 static void sm_handle_encryption_result(uint8_t * data){
2310 
2311     sm_aes128_state = SM_AES128_IDLE;
2312 
2313     if (sm_address_resolution_ah_calculation_active){
2314         sm_address_resolution_ah_calculation_active = 0;
2315         // compare calulated address against connecting device
2316         uint8_t hash[3];
2317         reverse_24(data, hash);
2318         if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
2319             log_info("LE Device Lookup: matched resolvable private address");
2320             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
2321             return;
2322         }
2323         // no match, try next
2324         sm_address_resolution_test++;
2325         return;
2326     }
2327 
2328     switch (dkg_state){
2329         case DKG_W4_IRK:
2330             reverse_128(data, sm_persistent_irk);
2331             log_info_key("irk", sm_persistent_irk);
2332             dkg_next_state();
2333             return;
2334         case DKG_W4_DHK:
2335             reverse_128(data, sm_persistent_dhk);
2336             log_info_key("dhk", sm_persistent_dhk);
2337             dkg_next_state();
2338             // SM Init Finished
2339             return;
2340         default:
2341             break;
2342     }
2343 
2344     switch (rau_state){
2345         case RAU_W4_ENC:
2346             reverse_24(data, &sm_random_address[3]);
2347             rau_next_state();
2348             return;
2349         default:
2350             break;
2351     }
2352 
2353     switch (sm_cmac_state){
2354         case CMAC_W4_SUBKEYS:
2355         case CMAC_W4_MI:
2356         case CMAC_W4_MLAST:
2357             {
2358             sm_key_t t;
2359             reverse_128(data, t);
2360             sm_cmac_handle_encryption_result(t);
2361             }
2362             return;
2363         default:
2364             break;
2365     }
2366 
2367     // retrieve sm_connection provided to sm_aes128_start_encryption
2368     sm_connection_t * connection = (sm_connection_t*) sm_aes128_context;
2369     if (!connection) return;
2370     switch (connection->sm_engine_state){
2371         case SM_PH2_C1_W4_ENC_A:
2372         case SM_PH2_C1_W4_ENC_C:
2373             {
2374             sm_key_t t2;
2375             reverse_128(data, t2);
2376             sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
2377             }
2378             sm_next_responding_state(connection);
2379             return;
2380         case SM_PH2_C1_W4_ENC_B:
2381             reverse_128(data, setup->sm_local_confirm);
2382             log_info_key("c1!", setup->sm_local_confirm);
2383             connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
2384             return;
2385         case SM_PH2_C1_W4_ENC_D:
2386             {
2387             sm_key_t peer_confirm_test;
2388             reverse_128(data, peer_confirm_test);
2389             log_info_key("c1!", peer_confirm_test);
2390             if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){
2391                 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
2392                 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2393                 return;
2394             }
2395             if (connection->sm_role){
2396                 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2397             } else {
2398                 connection->sm_engine_state = SM_PH2_CALC_STK;
2399             }
2400             }
2401             return;
2402         case SM_PH2_W4_STK:
2403             reverse_128(data, setup->sm_ltk);
2404             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2405             log_info_key("stk", setup->sm_ltk);
2406             if (connection->sm_role){
2407                 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2408             } else {
2409                 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2410             }
2411             return;
2412         case SM_PH3_Y_W4_ENC:{
2413             sm_key_t y128;
2414             reverse_128(data, y128);
2415             setup->sm_local_y = big_endian_read_16(y128, 14);
2416             log_info_hex16("y", setup->sm_local_y);
2417             // PH3B3 - calculate EDIV
2418             setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
2419             log_info_hex16("ediv", setup->sm_local_ediv);
2420             // PH3B4 - calculate LTK         - enc
2421             // LTK = d1(ER, DIV, 0))
2422             connection->sm_engine_state = SM_PH3_LTK_GET_ENC;
2423             return;
2424         }
2425         case SM_RESPONDER_PH4_Y_W4_ENC:{
2426             sm_key_t y128;
2427             reverse_128(data, y128);
2428             setup->sm_local_y = big_endian_read_16(y128, 14);
2429             log_info_hex16("y", setup->sm_local_y);
2430 
2431             // PH3B3 - calculate DIV
2432             setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
2433             log_info_hex16("ediv", setup->sm_local_ediv);
2434             // PH3B4 - calculate LTK         - enc
2435             // LTK = d1(ER, DIV, 0))
2436             connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC;
2437             return;
2438         }
2439         case SM_PH3_LTK_W4_ENC:
2440             reverse_128(data, setup->sm_ltk);
2441             log_info_key("ltk", setup->sm_ltk);
2442             // calc CSRK next
2443             connection->sm_engine_state = SM_PH3_CSRK_GET_ENC;
2444             return;
2445         case SM_PH3_CSRK_W4_ENC:
2446             reverse_128(data, setup->sm_local_csrk);
2447             log_info_key("csrk", setup->sm_local_csrk);
2448             if (setup->sm_key_distribution_send_set){
2449                 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
2450             } else {
2451                 // no keys to send, just continue
2452                 if (connection->sm_role){
2453                     // slave -> receive master keys
2454                     connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2455                 } else {
2456                     // master -> all done
2457                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2458                     sm_done_for_handle(connection->sm_handle);
2459                 }
2460             }
2461             return;
2462         case SM_RESPONDER_PH4_LTK_W4_ENC:
2463             reverse_128(data, setup->sm_ltk);
2464             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2465             log_info_key("ltk", setup->sm_ltk);
2466             connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK;
2467             return;
2468         default:
2469             break;
2470     }
2471 }
2472 
2473 // note: random generator is ready. this doesn NOT imply that aes engine is unused!
2474 static void sm_handle_random_result(uint8_t * data){
2475 
2476     switch (rau_state){
2477         case RAU_W4_RANDOM:
2478             // non-resolvable vs. resolvable
2479             switch (gap_random_adress_type){
2480                 case GAP_RANDOM_ADDRESS_RESOLVABLE:
2481                     // resolvable: use random as prand and calc address hash
2482                     // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
2483                     memcpy(sm_random_address, data, 3);
2484                     sm_random_address[0] &= 0x3f;
2485                     sm_random_address[0] |= 0x40;
2486                     rau_state = RAU_GET_ENC;
2487                     break;
2488                 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2489                 default:
2490                     // "The two most significant bits of the address shall be equal to ‘0’""
2491                     memcpy(sm_random_address, data, 6);
2492                     sm_random_address[0] &= 0x3f;
2493                     rau_state = RAU_SET_ADDRESS;
2494                     break;
2495             }
2496             return;
2497         default:
2498             break;
2499     }
2500 
2501     // retrieve sm_connection provided to sm_random_start
2502     sm_connection_t * connection = (sm_connection_t *) sm_random_context;
2503     if (!connection) return;
2504     switch (connection->sm_engine_state){
2505         case SM_PH2_W4_RANDOM_TK:
2506         {
2507             // map random to 0-999999 without speding much cycles on a modulus operation
2508             uint32_t tk = little_endian_read_32(data,0);
2509             tk = tk & 0xfffff;  // 1048575
2510             if (tk >= 999999){
2511                 tk = tk - 999999;
2512             }
2513             sm_reset_tk();
2514             big_endian_store_32(setup->sm_tk, 12, tk);
2515             if (connection->sm_role){
2516                 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
2517             } else {
2518                 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2519                 sm_trigger_user_response(connection);
2520                 // response_idle == nothing <--> sm_trigger_user_response() did not require response
2521                 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2522                     connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2523                 }
2524             }
2525             return;
2526         }
2527         case SM_PH2_C1_W4_RANDOM_A:
2528             memcpy(&setup->sm_local_random[0], data, 8); // random endinaness
2529             connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B;
2530             return;
2531         case SM_PH2_C1_W4_RANDOM_B:
2532             memcpy(&setup->sm_local_random[8], data, 8); // random endinaness
2533             connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
2534             return;
2535         case SM_PH3_W4_RANDOM:
2536             reverse_64(data, setup->sm_local_rand);
2537             // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2538             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1);
2539             // no db for authenticated flag hack: store flag in bit 4 of LSB
2540             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4);
2541             connection->sm_engine_state = SM_PH3_GET_DIV;
2542             return;
2543         case SM_PH3_W4_DIV:
2544             // use 16 bit from random value as div
2545             setup->sm_local_div = big_endian_read_16(data, 0);
2546             log_info_hex16("div", setup->sm_local_div);
2547             connection->sm_engine_state = SM_PH3_Y_GET_ENC;
2548             return;
2549         default:
2550             break;
2551     }
2552 }
2553 
2554 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
2555 
2556     sm_connection_t  * sm_conn;
2557     hci_con_handle_t con_handle;
2558 
2559     switch (packet_type) {
2560 
2561 		case HCI_EVENT_PACKET:
2562 			switch (hci_event_packet_get_type(packet)) {
2563 
2564                 case BTSTACK_EVENT_STATE:
2565 					// bt stack activated, get started
2566 					if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){
2567                         log_info("HCI Working!");
2568                         dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
2569                         rau_state = RAU_IDLE;
2570                         sm_run();
2571 					}
2572 					break;
2573 
2574                 case HCI_EVENT_LE_META:
2575                     switch (packet[2]) {
2576                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
2577 
2578                             log_info("sm: connected");
2579 
2580                             if (packet[3]) return; // connection failed
2581 
2582                             con_handle = little_endian_read_16(packet, 4);
2583                             sm_conn = sm_get_connection_for_handle(con_handle);
2584                             if (!sm_conn) break;
2585 
2586                             sm_conn->sm_handle = con_handle;
2587                             sm_conn->sm_role = packet[6];
2588                             sm_conn->sm_peer_addr_type = packet[7];
2589                             reverse_bd_addr(&packet[8],
2590                                             sm_conn->sm_peer_address);
2591 
2592                             log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
2593 
2594                             // reset security properties
2595                             sm_conn->sm_connection_encrypted = 0;
2596                             sm_conn->sm_connection_authenticated = 0;
2597                             sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
2598                             sm_conn->sm_le_db_index = -1;
2599 
2600                             // prepare CSRK lookup (does not involve setup)
2601                             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
2602 
2603                             // just connected -> everything else happens in sm_run()
2604                             if (sm_conn->sm_role){
2605                                 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead
2606                                 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
2607                                     if (sm_slave_request_security) {
2608                                         // request security if requested by app
2609                                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
2610                                     } else {
2611                                         // otherwise, wait for pairing request
2612                                         sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2613                                     }
2614                                 }
2615                                 break;
2616                             } else {
2617                                 // master
2618                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2619                             }
2620                             break;
2621 
2622                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
2623                             con_handle = little_endian_read_16(packet, 3);
2624                             sm_conn = sm_get_connection_for_handle(con_handle);
2625                             if (!sm_conn) break;
2626 
2627                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
2628                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
2629                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
2630                                 break;
2631                             }
2632                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
2633                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2634                                 break;
2635                             }
2636 
2637                             // assume that we don't have a LTK for ediv == 0 and random == null
2638                             if (little_endian_read_16(packet, 13) == 0 && sm_is_null_random(&packet[5])){
2639                                 log_info("LTK Request: ediv & random are empty");
2640                                 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
2641                                 break;
2642                             }
2643 
2644                             // store rand and ediv
2645                             reverse_64(&packet[5], sm_conn->sm_local_rand);
2646                             sm_conn->sm_local_ediv   = little_endian_read_16(packet, 13);
2647                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK;
2648                             break;
2649 
2650                         default:
2651                             break;
2652                     }
2653                     break;
2654 
2655                 case HCI_EVENT_ENCRYPTION_CHANGE:
2656                     con_handle = little_endian_read_16(packet, 3);
2657                     sm_conn = sm_get_connection_for_handle(con_handle);
2658                     if (!sm_conn) break;
2659 
2660                     sm_conn->sm_connection_encrypted = packet[5];
2661                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
2662                         sm_conn->sm_actual_encryption_key_size);
2663                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2664                     if (!sm_conn->sm_connection_encrypted) break;
2665                     // continue if part of initial pairing
2666                     switch (sm_conn->sm_engine_state){
2667                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2668                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2669                             sm_done_for_handle(sm_conn->sm_handle);
2670                             break;
2671                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2672                             if (sm_conn->sm_role){
2673                                 // slave
2674                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2675                             } else {
2676                                 // master
2677                                 if (sm_key_distribution_all_received(sm_conn)){
2678                                     // skip receiving keys as there are none
2679                                     sm_key_distribution_handle_all_received(sm_conn);
2680                                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2681                                 } else {
2682                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2683                                 }
2684                             }
2685                             break;
2686                         default:
2687                             break;
2688                     }
2689                     break;
2690 
2691                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
2692                     con_handle = little_endian_read_16(packet, 3);
2693                     sm_conn = sm_get_connection_for_handle(con_handle);
2694                     if (!sm_conn) break;
2695 
2696                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
2697                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2698                     // continue if part of initial pairing
2699                     switch (sm_conn->sm_engine_state){
2700                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2701                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2702                             sm_done_for_handle(sm_conn->sm_handle);
2703                             break;
2704                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2705                             if (sm_conn->sm_role){
2706                                 // slave
2707                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2708                             } else {
2709                                 // master
2710                                 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2711                             }
2712                             break;
2713                         default:
2714                             break;
2715                     }
2716                     break;
2717 
2718 
2719                 case HCI_EVENT_DISCONNECTION_COMPLETE:
2720                     con_handle = little_endian_read_16(packet, 3);
2721                     sm_done_for_handle(con_handle);
2722                     sm_conn = sm_get_connection_for_handle(con_handle);
2723                     if (!sm_conn) break;
2724 
2725                     // delete stored bonding on disconnect with authentication failure in ph0
2726                     if (sm_conn->sm_role == 0
2727                         && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED
2728                         && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){
2729                         le_device_db_remove(sm_conn->sm_le_db_index);
2730                     }
2731 
2732                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
2733                     sm_conn->sm_handle = 0;
2734                     break;
2735 
2736 				case HCI_EVENT_COMMAND_COMPLETE:
2737                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
2738                         sm_handle_encryption_result(&packet[6]);
2739                         break;
2740                     }
2741                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
2742                         sm_handle_random_result(&packet[6]);
2743                         break;
2744                     }
2745                     break;
2746                 default:
2747                     break;
2748 			}
2749             break;
2750         default:
2751             break;
2752 	}
2753 
2754     sm_run();
2755 }
2756 
2757 static inline int sm_calc_actual_encryption_key_size(int other){
2758     if (other < sm_min_encryption_key_size) return 0;
2759     if (other < sm_max_encryption_key_size) return other;
2760     return sm_max_encryption_key_size;
2761 }
2762 
2763 static int sm_passkey_used(stk_generation_method_t method){
2764     switch (method){
2765         case PK_RESP_INPUT:
2766         case PK_INIT_INPUT:
2767         case OK_BOTH_INPUT:
2768             return 1;
2769         default:
2770             return 0;
2771     }
2772 }
2773 
2774 /**
2775  * @return ok
2776  */
2777 static int sm_validate_stk_generation_method(void){
2778     // check if STK generation method is acceptable by client
2779     switch (setup->sm_stk_generation_method){
2780         case JUST_WORKS:
2781             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
2782         case PK_RESP_INPUT:
2783         case PK_INIT_INPUT:
2784         case OK_BOTH_INPUT:
2785             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
2786         case OOB:
2787             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
2788         case NK_BOTH_INPUT:
2789             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0;
2790             return 1;
2791         default:
2792             return 0;
2793     }
2794 }
2795 
2796 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
2797 
2798     if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){
2799         sm_run();
2800     }
2801 
2802     if (packet_type != SM_DATA_PACKET) return;
2803 
2804     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
2805     if (!sm_conn) return;
2806 
2807     if (packet[0] == SM_CODE_PAIRING_FAILED){
2808         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2809         return;
2810     }
2811 
2812     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]);
2813 
2814     int err;
2815 
2816     switch (sm_conn->sm_engine_state){
2817 
2818         // a sm timeout requries a new physical connection
2819         case SM_GENERAL_TIMEOUT:
2820             return;
2821 
2822         // Initiator
2823         case SM_INITIATOR_CONNECTED:
2824             if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
2825                 sm_pdu_received_in_wrong_state(sm_conn);
2826                 break;
2827             }
2828             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){
2829                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2830                 break;
2831             }
2832             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){
2833                 uint16_t ediv;
2834                 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
2835                 if (ediv){
2836                     log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
2837                     sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
2838                 } else {
2839                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2840                 }
2841                 break;
2842             }
2843             // otherwise, store security request
2844             sm_conn->sm_security_request_received = 1;
2845             break;
2846 
2847         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
2848             if (packet[0] != SM_CODE_PAIRING_RESPONSE){
2849                 sm_pdu_received_in_wrong_state(sm_conn);
2850                 break;
2851             }
2852             // store pairing request
2853             memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
2854             err = sm_stk_generation_init(sm_conn);
2855             if (err){
2856                 setup->sm_pairing_failed_reason = err;
2857                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2858                 break;
2859             }
2860 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2861             if (setup->sm_use_secure_connections){
2862                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
2863                 if (setup->sm_stk_generation_method == JUST_WORKS){
2864                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2865                     sm_trigger_user_response(sm_conn);
2866                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2867                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2868                     }
2869                 } else {
2870                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2871                 }
2872                 break;
2873             }
2874 #endif
2875             // generate random number first, if we need to show passkey
2876             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
2877                 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK;
2878                 break;
2879             }
2880             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2881             sm_trigger_user_response(sm_conn);
2882             // response_idle == nothing <--> sm_trigger_user_response() did not require response
2883             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2884                 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2885             }
2886             break;
2887 
2888         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
2889             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2890                 sm_pdu_received_in_wrong_state(sm_conn);
2891                 break;
2892             }
2893 
2894             // store s_confirm
2895             reverse_128(&packet[1], setup->sm_peer_confirm);
2896             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2897             break;
2898 
2899         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
2900             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2901                 sm_pdu_received_in_wrong_state(sm_conn);
2902                 break;;
2903             }
2904 
2905             // received random value
2906             reverse_128(&packet[1], setup->sm_peer_random);
2907             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2908             break;
2909 
2910         // Responder
2911         case SM_RESPONDER_IDLE:
2912         case SM_RESPONDER_SEND_SECURITY_REQUEST:
2913         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
2914             if (packet[0] != SM_CODE_PAIRING_REQUEST){
2915                 sm_pdu_received_in_wrong_state(sm_conn);
2916                 break;;
2917             }
2918 
2919             // store pairing request
2920             memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
2921             sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
2922             break;
2923 
2924 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2925         case SM_SC_W4_PUBLIC_KEY_COMMAND:
2926             if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){
2927                 sm_pdu_received_in_wrong_state(sm_conn);
2928                 break;
2929             }
2930 
2931             // store public key for DH Key calculation
2932             reverse_256(&packet[01], setup->sm_peer_qx);
2933             reverse_256(&packet[33], setup->sm_peer_qy);
2934 
2935 #ifdef USE_MBEDTLS_FOR_ECDH
2936             // validate public key
2937             mbedtls_ecp_group grp;
2938             mbedtls_ecp_group_init( &grp );
2939             mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
2940 
2941             mbedtls_ecp_point Q;
2942             mbedtls_ecp_point_init( &Q );
2943             mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
2944             mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
2945             mbedtls_mpi_read_string(&Q.Z, 16, "1" );
2946             err = mbedtls_ecp_check_pubkey(&grp, &Q);
2947             if (err){
2948                 log_error("sm: peer public key invalid %x", err);
2949                 // uses "unspecified reason", there is no "public key invalid" error code
2950                 sm_pdu_received_in_wrong_state(sm_conn);
2951                 break;
2952             }
2953 #endif
2954             if (sm_conn->sm_role){
2955                 // responder
2956                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2957             } else {
2958                 // initiator
2959                 // stk generation method
2960                 // passkey entry: notify app to show passkey or to request passkey
2961                 switch (setup->sm_stk_generation_method){
2962                     case JUST_WORKS:
2963                     case NK_BOTH_INPUT:
2964                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
2965                         break;
2966                     case PK_INIT_INPUT:
2967                     case PK_RESP_INPUT:
2968                     case OK_BOTH_INPUT:
2969                         sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
2970                         break;
2971                     case OOB:
2972                         // TODO: implement SC OOB
2973                         break;
2974                 }
2975             }
2976             break;
2977 
2978         case SM_SC_W4_CONFIRMATION:
2979             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2980                 sm_pdu_received_in_wrong_state(sm_conn);
2981                 break;
2982             }
2983             // received confirm value
2984             reverse_128(&packet[1], setup->sm_peer_confirm);
2985 
2986             if (sm_conn->sm_role){
2987                 // responder
2988                 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
2989             } else {
2990                 // initiator
2991                 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
2992             }
2993             break;
2994 
2995         case SM_SC_W4_PAIRING_RANDOM:
2996             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2997                 sm_pdu_received_in_wrong_state(sm_conn);
2998                 break;
2999             }
3000 
3001             // received random value
3002             reverse_128(&packet[1], setup->sm_peer_nonce);
3003 
3004             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
3005             // only check for JUST WORK/NC in initiator role AND passkey entry
3006             int passkey_entry = sm_passkey_used(setup->sm_stk_generation_method);
3007             if (sm_conn->sm_role || passkey_entry) {
3008                  sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
3009             }
3010 
3011             sm_sc_state_after_receiving_random(sm_conn);
3012             break;
3013 
3014         case SM_SC_W4_DHKEY_CHECK_COMMAND:
3015             if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){
3016                 sm_pdu_received_in_wrong_state(sm_conn);
3017                 break;
3018             }
3019             // store DHKey Check
3020             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
3021 
3022             sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
3023             break;
3024 #endif
3025 
3026         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
3027             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
3028                 sm_pdu_received_in_wrong_state(sm_conn);
3029                 break;
3030             }
3031 
3032             // received confirm value
3033             reverse_128(&packet[1], setup->sm_peer_confirm);
3034 
3035             // notify client to hide shown passkey
3036             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
3037                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
3038             }
3039 
3040             // handle user cancel pairing?
3041             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
3042                 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
3043                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
3044                 break;
3045             }
3046 
3047             // wait for user action?
3048             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
3049                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
3050                 break;
3051             }
3052 
3053             // calculate and send local_confirm
3054             sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3055             break;
3056 
3057         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
3058             if (packet[0] != SM_CODE_PAIRING_RANDOM){
3059                 sm_pdu_received_in_wrong_state(sm_conn);
3060                 break;;
3061             }
3062 
3063             // received random value
3064             reverse_128(&packet[1], setup->sm_peer_random);
3065             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
3066             break;
3067 
3068         case SM_PH3_RECEIVE_KEYS:
3069             switch(packet[0]){
3070                 case SM_CODE_ENCRYPTION_INFORMATION:
3071                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
3072                     reverse_128(&packet[1], setup->sm_peer_ltk);
3073                     break;
3074 
3075                 case SM_CODE_MASTER_IDENTIFICATION:
3076                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
3077                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
3078                     reverse_64(&packet[3], setup->sm_peer_rand);
3079                     break;
3080 
3081                 case SM_CODE_IDENTITY_INFORMATION:
3082                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
3083                     reverse_128(&packet[1], setup->sm_peer_irk);
3084                     break;
3085 
3086                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
3087                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
3088                     setup->sm_peer_addr_type = packet[1];
3089                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
3090                     break;
3091 
3092                 case SM_CODE_SIGNING_INFORMATION:
3093                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
3094                     reverse_128(&packet[1], setup->sm_peer_csrk);
3095                     break;
3096                 default:
3097                     // Unexpected PDU
3098                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
3099                     break;
3100             }
3101             // done with key distribution?
3102             if (sm_key_distribution_all_received(sm_conn)){
3103 
3104                 sm_key_distribution_handle_all_received(sm_conn);
3105 
3106                 if (sm_conn->sm_role){
3107                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3108                     sm_done_for_handle(sm_conn->sm_handle);
3109                 } else {
3110                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
3111 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3112                     if (setup->sm_use_secure_connections){
3113                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3114                     }
3115 #endif
3116                 }
3117             }
3118             break;
3119         default:
3120             // Unexpected PDU
3121             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
3122             break;
3123     }
3124 
3125     // try to send preparared packet
3126     sm_run();
3127 }
3128 
3129 // Security Manager Client API
3130 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){
3131     sm_get_oob_data = get_oob_data_callback;
3132 }
3133 
3134 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
3135     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
3136 }
3137 
3138 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
3139     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
3140 }
3141 
3142 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
3143 	sm_min_encryption_key_size = min_size;
3144 	sm_max_encryption_key_size = max_size;
3145 }
3146 
3147 void sm_set_authentication_requirements(uint8_t auth_req){
3148     sm_auth_req = auth_req;
3149 }
3150 
3151 void sm_set_io_capabilities(io_capability_t io_capability){
3152     sm_io_capabilities = io_capability;
3153 }
3154 
3155 void sm_set_request_security(int enable){
3156     sm_slave_request_security = enable;
3157 }
3158 
3159 void sm_set_er(sm_key_t er){
3160     memcpy(sm_persistent_er, er, 16);
3161 }
3162 
3163 void sm_set_ir(sm_key_t ir){
3164     memcpy(sm_persistent_ir, ir, 16);
3165 }
3166 
3167 // Testing support only
3168 void sm_test_set_irk(sm_key_t irk){
3169     memcpy(sm_persistent_irk, irk, 16);
3170     sm_persistent_irk_ready = 1;
3171 }
3172 
3173 void sm_test_use_fixed_local_csrk(void){
3174     test_use_fixed_local_csrk = 1;
3175 }
3176 
3177 void sm_init(void){
3178     // set some (BTstack default) ER and IR
3179     int i;
3180     sm_key_t er;
3181     sm_key_t ir;
3182     for (i=0;i<16;i++){
3183         er[i] = 0x30 + i;
3184         ir[i] = 0x90 + i;
3185     }
3186     sm_set_er(er);
3187     sm_set_ir(ir);
3188     // defaults
3189     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
3190                                        | SM_STK_GENERATION_METHOD_OOB
3191                                        | SM_STK_GENERATION_METHOD_PASSKEY
3192                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
3193 
3194     sm_max_encryption_key_size = 16;
3195     sm_min_encryption_key_size = 7;
3196 
3197     sm_cmac_state  = CMAC_IDLE;
3198     dkg_state = DKG_W4_WORKING;
3199     rau_state = RAU_W4_WORKING;
3200     sm_aes128_state = SM_AES128_IDLE;
3201     sm_address_resolution_test = -1;    // no private address to resolve yet
3202     sm_address_resolution_ah_calculation_active = 0;
3203     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
3204     sm_address_resolution_general_queue = NULL;
3205 
3206     gap_random_adress_update_period = 15 * 60 * 1000L;
3207 
3208     sm_active_connection = 0;
3209 
3210     test_use_fixed_local_csrk = 0;
3211 
3212     // register for HCI Events from HCI
3213     hci_event_callback_registration.callback = &sm_event_packet_handler;
3214     hci_add_event_handler(&hci_event_callback_registration);
3215 
3216     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
3217     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
3218 
3219 #ifdef USE_MBEDTLS_FOR_ECDH
3220     // TODO: calculate keypair using LE Random Number Generator
3221     // use test keypair from spec initially
3222     mbedtls_ecp_keypair_init(&le_keypair);
3223     mbedtls_ecp_group_load(&le_keypair.grp, MBEDTLS_ECP_DP_SECP256R1);
3224     mbedtls_mpi_read_string( &le_keypair.d,   16, "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd");
3225     mbedtls_mpi_read_string( &le_keypair.Q.X, 16, "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6");
3226     mbedtls_mpi_read_string( &le_keypair.Q.Y, 16, "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b");
3227     mbedtls_mpi_read_string( &le_keypair.Q.Z, 16, "1");
3228     // print keypair
3229     char buffer[100];
3230     size_t len;
3231     mbedtls_mpi_write_string( &le_keypair.d, 16, buffer, sizeof(buffer), &len);
3232     log_info("d: %s", buffer);
3233     mbedtls_mpi_write_string( &le_keypair.Q.X, 16, buffer, sizeof(buffer), &len);
3234     log_info("X: %s", buffer);
3235     mbedtls_mpi_write_string( &le_keypair.Q.Y, 16, buffer, sizeof(buffer), &len);
3236     log_info("Y: %s", buffer);
3237 #endif
3238 }
3239 
3240 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
3241     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
3242     if (!hci_con) return NULL;
3243     return &hci_con->sm_connection;
3244 }
3245 
3246 // @returns 0 if not encrypted, 7-16 otherwise
3247 int sm_encryption_key_size(hci_con_handle_t con_handle){
3248     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3249     if (!sm_conn) return 0;     // wrong connection
3250     if (!sm_conn->sm_connection_encrypted) return 0;
3251     return sm_conn->sm_actual_encryption_key_size;
3252 }
3253 
3254 int sm_authenticated(hci_con_handle_t con_handle){
3255     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3256     if (!sm_conn) return 0;     // wrong connection
3257     if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
3258     return sm_conn->sm_connection_authenticated;
3259 }
3260 
3261 authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){
3262     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3263     if (!sm_conn) return AUTHORIZATION_UNKNOWN;     // wrong connection
3264     if (!sm_conn->sm_connection_encrypted)               return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
3265     if (!sm_conn->sm_connection_authenticated)           return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
3266     return sm_conn->sm_connection_authorization_state;
3267 }
3268 
3269 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){
3270     switch (sm_conn->sm_engine_state){
3271         case SM_GENERAL_IDLE:
3272         case SM_RESPONDER_IDLE:
3273             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
3274             sm_run();
3275             break;
3276         default:
3277             break;
3278     }
3279 }
3280 
3281 /**
3282  * @brief Trigger Security Request
3283  */
3284 void sm_send_security_request(hci_con_handle_t con_handle){
3285     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3286     if (!sm_conn) return;
3287     sm_send_security_request_for_connection(sm_conn);
3288 }
3289 
3290 // request pairing
3291 void sm_request_pairing(hci_con_handle_t con_handle){
3292     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3293     if (!sm_conn) return;     // wrong connection
3294 
3295     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
3296     if (sm_conn->sm_role){
3297         sm_send_security_request_for_connection(sm_conn);
3298     } else {
3299         // used as a trigger to start central/master/initiator security procedures
3300         uint16_t ediv;
3301         if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){
3302             switch (sm_conn->sm_irk_lookup_state){
3303                 case IRK_LOOKUP_FAILED:
3304                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3305                     break;
3306                 case IRK_LOOKUP_SUCCEEDED:
3307                         le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
3308                         if (ediv){
3309                             log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
3310                             sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
3311                         } else {
3312                             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3313                         }
3314                         break;
3315                 default:
3316                     sm_conn->sm_bonding_requested = 1;
3317                     break;
3318             }
3319         } else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
3320             sm_conn->sm_bonding_requested = 1;
3321         }
3322     }
3323     sm_run();
3324 }
3325 
3326 // called by client app on authorization request
3327 void sm_authorization_decline(hci_con_handle_t con_handle){
3328     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3329     if (!sm_conn) return;     // wrong connection
3330     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
3331     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
3332 }
3333 
3334 void sm_authorization_grant(hci_con_handle_t con_handle){
3335     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3336     if (!sm_conn) return;     // wrong connection
3337     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
3338     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
3339 }
3340 
3341 // GAP Bonding API
3342 
3343 void sm_bonding_decline(hci_con_handle_t con_handle){
3344     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3345     if (!sm_conn) return;     // wrong connection
3346     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
3347 
3348     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3349         switch (setup->sm_stk_generation_method){
3350             case PK_RESP_INPUT:
3351             case PK_INIT_INPUT:
3352             case OK_BOTH_INPUT:
3353                 sm_pairing_error(sm_conn, SM_GENERAL_SEND_PAIRING_FAILED);
3354                 break;
3355             case NK_BOTH_INPUT:
3356                 sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
3357                 break;
3358             case JUST_WORKS:
3359             case OOB:
3360                 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
3361                 break;
3362         }
3363     }
3364     sm_run();
3365 }
3366 
3367 void sm_just_works_confirm(hci_con_handle_t con_handle){
3368     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3369     if (!sm_conn) return;     // wrong connection
3370     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
3371     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3372         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3373 
3374 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3375         if (setup->sm_use_secure_connections){
3376             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3377         }
3378 #endif
3379     }
3380 
3381 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3382     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
3383         if (sm_conn->sm_role){
3384             // responder
3385             sm_sc_prepare_dhkey_check(sm_conn);
3386         } else {
3387             // initiator
3388             // TODO handle intiator role
3389         }
3390     }
3391 #endif
3392 
3393     sm_run();
3394 }
3395 
3396 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
3397     // for now, it's the same
3398     sm_just_works_confirm(con_handle);
3399 }
3400 
3401 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
3402     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3403     if (!sm_conn) return;     // wrong connection
3404     sm_reset_tk();
3405     big_endian_store_32(setup->sm_tk, 12, passkey);
3406     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
3407     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3408         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3409     }
3410     sm_run();
3411 }
3412 
3413 /**
3414  * @brief Identify device in LE Device DB
3415  * @param handle
3416  * @returns index from le_device_db or -1 if not found/identified
3417  */
3418 int sm_le_device_index(hci_con_handle_t con_handle ){
3419     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3420     if (!sm_conn) return -1;
3421     return sm_conn->sm_le_db_index;
3422 }
3423 
3424 // GAP LE API
3425 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
3426     gap_random_address_update_stop();
3427     gap_random_adress_type = random_address_type;
3428     if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3429     gap_random_address_update_start();
3430     gap_random_address_trigger();
3431 }
3432 
3433 gap_random_address_type_t gap_random_address_get_mode(void){
3434     return gap_random_adress_type;
3435 }
3436 
3437 void gap_random_address_set_update_period(int period_ms){
3438     gap_random_adress_update_period = period_ms;
3439     if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3440     gap_random_address_update_stop();
3441     gap_random_address_update_start();
3442 }
3443 
3444 void gap_random_address_set(bd_addr_t addr){
3445     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_OFF);
3446     memcpy(sm_random_address, addr, 6);
3447     rau_state = RAU_SET_ADDRESS;
3448     sm_run();
3449 }
3450 
3451 /*
3452  * @brief Set Advertisement Paramters
3453  * @param adv_int_min
3454  * @param adv_int_max
3455  * @param adv_type
3456  * @param direct_address_type
3457  * @param direct_address
3458  * @param channel_map
3459  * @param filter_policy
3460  *
3461  * @note own_address_type is used from gap_random_address_set_mode
3462  */
3463 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
3464     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
3465     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, gap_random_adress_type,
3466         direct_address_typ, direct_address, channel_map, filter_policy);
3467 }
3468 
3469