xref: /btstack/src/ble/sm.c (revision 514d35fc5d51fd57dc6ef3b82bf13bba7342e0e9)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #include <stdio.h>
39 #include <string.h>
40 #include <inttypes.h>
41 
42 #include "ble/le_device_db.h"
43 #include "ble/core.h"
44 #include "ble/sm.h"
45 #include "btstack_debug.h"
46 #include "btstack_event.h"
47 #include "btstack_linked_list.h"
48 #include "btstack_memory.h"
49 #include "gap.h"
50 #include "hci.h"
51 #include "l2cap.h"
52 
53 #ifdef ENABLE_LE_SECURE_CONNECTIONS
54 // TODO: remove software AES
55 #include "rijndael.h"
56 #endif
57 
58 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(HAVE_HCI_CONTROLLER_DHKEY_SUPPORT)
59 #define USE_MBEDTLS_FOR_ECDH
60 #endif
61 
62 // Software ECDH implementation provided by mbedtls
63 #ifdef USE_MBEDTLS_FOR_ECDH
64 #if !defined(MBEDTLS_CONFIG_FILE)
65 #include "mbedtls/config.h"
66 #else
67 #include MBEDTLS_CONFIG_FILE
68 #endif
69 #if defined(MBEDTLS_PLATFORM_C)
70 #include "mbedtls/platform.h"
71 #else
72 #include <stdio.h>
73 #define mbedtls_printf     printf
74 #endif
75 #include "mbedtls/ecp.h"
76 #endif
77 
78 //
79 // SM internal types and globals
80 //
81 
82 typedef enum {
83     DKG_W4_WORKING,
84     DKG_CALC_IRK,
85     DKG_W4_IRK,
86     DKG_CALC_DHK,
87     DKG_W4_DHK,
88     DKG_READY
89 } derived_key_generation_t;
90 
91 typedef enum {
92     RAU_W4_WORKING,
93     RAU_IDLE,
94     RAU_GET_RANDOM,
95     RAU_W4_RANDOM,
96     RAU_GET_ENC,
97     RAU_W4_ENC,
98     RAU_SET_ADDRESS,
99 } random_address_update_t;
100 
101 typedef enum {
102     CMAC_IDLE,
103     CMAC_CALC_SUBKEYS,
104     CMAC_W4_SUBKEYS,
105     CMAC_CALC_MI,
106     CMAC_W4_MI,
107     CMAC_CALC_MLAST,
108     CMAC_W4_MLAST
109 } cmac_state_t;
110 
111 typedef enum {
112     JUST_WORKS,
113     PK_RESP_INPUT,  // Initiator displays PK, responder inputs PK
114     PK_INIT_INPUT,  // Responder displays PK, initiator inputs PK
115     OK_BOTH_INPUT,  // Only input on both, both input PK
116     NK_BOTH_INPUT,  // Only numerical compparison (yes/no) on on both sides
117     OOB             // OOB available on both sides
118 } stk_generation_method_t;
119 
120 typedef enum {
121     SM_USER_RESPONSE_IDLE,
122     SM_USER_RESPONSE_PENDING,
123     SM_USER_RESPONSE_CONFIRM,
124     SM_USER_RESPONSE_PASSKEY,
125     SM_USER_RESPONSE_DECLINE
126 } sm_user_response_t;
127 
128 typedef enum {
129     SM_AES128_IDLE,
130     SM_AES128_ACTIVE
131 } sm_aes128_state_t;
132 
133 typedef enum {
134     ADDRESS_RESOLUTION_IDLE,
135     ADDRESS_RESOLUTION_GENERAL,
136     ADDRESS_RESOLUTION_FOR_CONNECTION,
137 } address_resolution_mode_t;
138 
139 typedef enum {
140     ADDRESS_RESOLUTION_SUCEEDED,
141     ADDRESS_RESOLUTION_FAILED,
142 } address_resolution_event_t;
143 //
144 // GLOBAL DATA
145 //
146 
147 static uint8_t test_use_fixed_local_csrk;
148 
149 // configuration
150 static uint8_t sm_accepted_stk_generation_methods;
151 static uint8_t sm_max_encryption_key_size;
152 static uint8_t sm_min_encryption_key_size;
153 static uint8_t sm_auth_req = 0;
154 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
155 static uint8_t sm_slave_request_security;
156 
157 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
158 static sm_key_t sm_persistent_er;
159 static sm_key_t sm_persistent_ir;
160 
161 // derived from sm_persistent_ir
162 static sm_key_t sm_persistent_dhk;
163 static sm_key_t sm_persistent_irk;
164 static uint8_t  sm_persistent_irk_ready = 0;    // used for testing
165 static derived_key_generation_t dkg_state;
166 
167 // derived from sm_persistent_er
168 // ..
169 
170 // random address update
171 static random_address_update_t rau_state;
172 static bd_addr_t sm_random_address;
173 
174 // CMAC Calculation: General
175 static cmac_state_t sm_cmac_state;
176 static uint16_t     sm_cmac_message_len;
177 static sm_key_t     sm_cmac_k;
178 static sm_key_t     sm_cmac_x;
179 static sm_key_t     sm_cmac_m_last;
180 static uint8_t      sm_cmac_block_current;
181 static uint8_t      sm_cmac_block_count;
182 static uint8_t      (*sm_cmac_get_byte)(uint16_t offset);
183 static void         (*sm_cmac_done_handler)(uint8_t * hash);
184 
185 // CMAC for ATT Signed Writes
186 static uint8_t      sm_cmac_header[3];
187 static uint8_t *    sm_cmac_message;
188 static uint8_t      sm_cmac_sign_counter[4];
189 
190 // CMAC for Secure Connection functions
191 #ifdef ENABLE_LE_SECURE_CONNECTIONS
192 static uint8_t      sm_cmac_sc_buffer[80];
193 #endif
194 
195 // resolvable private address lookup / CSRK calculation
196 static int       sm_address_resolution_test;
197 static int       sm_address_resolution_ah_calculation_active;
198 static uint8_t   sm_address_resolution_addr_type;
199 static bd_addr_t sm_address_resolution_address;
200 static void *    sm_address_resolution_context;
201 static address_resolution_mode_t sm_address_resolution_mode;
202 static btstack_linked_list_t sm_address_resolution_general_queue;
203 
204 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context
205 static sm_aes128_state_t  sm_aes128_state;
206 static void *             sm_aes128_context;
207 
208 // random engine. store context (ususally sm_connection_t)
209 static void * sm_random_context;
210 
211 // to receive hci events
212 static btstack_packet_callback_registration_t hci_event_callback_registration;
213 
214 /* to dispatch sm event */
215 static btstack_linked_list_t sm_event_handlers;
216 
217 // Software ECDH implementation provided by mbedtls
218 #ifdef USE_MBEDTLS_FOR_ECDH
219 mbedtls_ecp_keypair le_keypair;
220 #endif
221 
222 //
223 // Volume 3, Part H, Chapter 24
224 // "Security shall be initiated by the Security Manager in the device in the master role.
225 // The device in the slave role shall be the responding device."
226 // -> master := initiator, slave := responder
227 //
228 
229 // data needed for security setup
230 typedef struct sm_setup_context {
231 
232     btstack_timer_source_t sm_timeout;
233 
234     // used in all phases
235     uint8_t   sm_pairing_failed_reason;
236 
237     // user response, (Phase 1 and/or 2)
238     uint8_t   sm_user_response;
239 
240     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
241     int       sm_key_distribution_send_set;
242     int       sm_key_distribution_received_set;
243 
244     // Phase 2 (Pairing over SMP)
245     stk_generation_method_t sm_stk_generation_method;
246     sm_key_t  sm_tk;
247     uint8_t   sm_use_secure_connections;
248 
249     sm_key_t  sm_c1_t3_value;   // c1 calculation
250     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
251     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
252     sm_key_t  sm_local_random;
253     sm_key_t  sm_local_confirm;
254     sm_key_t  sm_peer_random;
255     sm_key_t  sm_peer_confirm;
256     uint8_t   sm_m_addr_type;   // address and type can be removed
257     uint8_t   sm_s_addr_type;   //  ''
258     bd_addr_t sm_m_address;     //  ''
259     bd_addr_t sm_s_address;     //  ''
260     sm_key_t  sm_ltk;
261 
262 #ifdef ENABLE_LE_SECURE_CONNECTIONS
263     uint8_t   sm_peer_qx[32];
264     uint8_t   sm_peer_qy[32];
265     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
266     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
267     sm_key_t  sm_peer_dhkey_check;
268     sm_key_t  sm_local_dhkey_check;
269     sm_key_t  sm_ra;
270     sm_key_t  sm_rb;
271     sm_key_t  sm_mackey;
272     uint8_t   sm_passkey_bit;
273 #endif
274 
275     // Phase 3
276 
277     // key distribution, we generate
278     uint16_t  sm_local_y;
279     uint16_t  sm_local_div;
280     uint16_t  sm_local_ediv;
281     uint8_t   sm_local_rand[8];
282     sm_key_t  sm_local_ltk;
283     sm_key_t  sm_local_csrk;
284     sm_key_t  sm_local_irk;
285     // sm_local_address/addr_type not needed
286 
287     // key distribution, received from peer
288     uint16_t  sm_peer_y;
289     uint16_t  sm_peer_div;
290     uint16_t  sm_peer_ediv;
291     uint8_t   sm_peer_rand[8];
292     sm_key_t  sm_peer_ltk;
293     sm_key_t  sm_peer_irk;
294     sm_key_t  sm_peer_csrk;
295     uint8_t   sm_peer_addr_type;
296     bd_addr_t sm_peer_address;
297 
298 } sm_setup_context_t;
299 
300 //
301 static sm_setup_context_t the_setup;
302 static sm_setup_context_t * setup = &the_setup;
303 
304 // active connection - the one for which the_setup is used for
305 static uint16_t sm_active_connection = 0;
306 
307 // @returns 1 if oob data is available
308 // stores oob data in provided 16 byte buffer if not null
309 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
310 
311 // used to notify applicationss that user interaction is neccessary, see sm_notify_t below
312 static btstack_packet_handler_t sm_client_packet_handler = NULL;
313 
314 // horizontal: initiator capabilities
315 // vertial:    responder capabilities
316 static const stk_generation_method_t stk_generation_method [5] [5] = {
317     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
318     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
319     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
320     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
321     { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
322 };
323 
324 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
325 #ifdef ENABLE_LE_SECURE_CONNECTIONS
326 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
327     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
328     { JUST_WORKS,      NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
329     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
330     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
331     { PK_RESP_INPUT,   NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
332 };
333 #endif
334 
335 static void sm_run(void);
336 static void sm_done_for_handle(hci_con_handle_t con_handle);
337 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
338 static inline int sm_calc_actual_encryption_key_size(int other);
339 static int sm_validate_stk_generation_method(void);
340 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data);
341 
342 static void log_info_hex16(const char * name, uint16_t value){
343     log_info("%-6s 0x%04x", name, value);
344 }
345 
346 // @returns 1 if all bytes are 0
347 static int sm_is_null_random(uint8_t random[8]){
348     int i;
349     for (i=0; i < 8 ; i++){
350         if (random[i]) return 0;
351     }
352     return 1;
353 }
354 
355 // Key utils
356 static void sm_reset_tk(void){
357     int i;
358     for (i=0;i<16;i++){
359         setup->sm_tk[i] = 0;
360     }
361 }
362 
363 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
364 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
365 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
366     int i;
367     for (i = max_encryption_size ; i < 16 ; i++){
368         key[15-i] = 0;
369     }
370 }
371 
372 // SMP Timeout implementation
373 
374 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
375 // the Security Manager Timer shall be reset and started.
376 //
377 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
378 //
379 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
380 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
381 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
382 // established.
383 
384 static void sm_timeout_handler(btstack_timer_source_t * timer){
385     log_info("SM timeout");
386     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
387     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
388     sm_done_for_handle(sm_conn->sm_handle);
389 
390     // trigger handling of next ready connection
391     sm_run();
392 }
393 static void sm_timeout_start(sm_connection_t * sm_conn){
394     btstack_run_loop_remove_timer(&setup->sm_timeout);
395     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
396     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
397     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
398     btstack_run_loop_add_timer(&setup->sm_timeout);
399 }
400 static void sm_timeout_stop(void){
401     btstack_run_loop_remove_timer(&setup->sm_timeout);
402 }
403 static void sm_timeout_reset(sm_connection_t * sm_conn){
404     sm_timeout_stop();
405     sm_timeout_start(sm_conn);
406 }
407 
408 // end of sm timeout
409 
410 // GAP Random Address updates
411 static gap_random_address_type_t gap_random_adress_type;
412 static btstack_timer_source_t gap_random_address_update_timer;
413 static uint32_t gap_random_adress_update_period;
414 
415 static void gap_random_address_trigger(void){
416     if (rau_state != RAU_IDLE) return;
417     log_info("gap_random_address_trigger");
418     rau_state = RAU_GET_RANDOM;
419     sm_run();
420 }
421 
422 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
423     log_info("GAP Random Address Update due");
424     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
425     btstack_run_loop_add_timer(&gap_random_address_update_timer);
426     gap_random_address_trigger();
427 }
428 
429 static void gap_random_address_update_start(void){
430     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
431     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
432     btstack_run_loop_add_timer(&gap_random_address_update_timer);
433 }
434 
435 static void gap_random_address_update_stop(void){
436     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
437 }
438 
439 
440 static void sm_random_start(void * context){
441     sm_random_context = context;
442     hci_send_cmd(&hci_le_rand);
443 }
444 
445 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1
446 // context is made availabe to aes128 result handler by this
447 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){
448     sm_aes128_state = SM_AES128_ACTIVE;
449     sm_key_t key_flipped, plaintext_flipped;
450     reverse_128(key, key_flipped);
451     reverse_128(plaintext, plaintext_flipped);
452     sm_aes128_context = context;
453     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
454 }
455 
456 // ah(k,r) helper
457 // r = padding || r
458 // r - 24 bit value
459 static void sm_ah_r_prime(uint8_t r[3], sm_key_t r_prime){
460     // r'= padding || r
461     memset(r_prime, 0, 16);
462     memcpy(&r_prime[13], r, 3);
463 }
464 
465 // d1 helper
466 // d' = padding || r || d
467 // d,r - 16 bit values
468 static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){
469     // d'= padding || r || d
470     memset(d1_prime, 0, 16);
471     big_endian_store_16(d1_prime, 12, r);
472     big_endian_store_16(d1_prime, 14, d);
473 }
474 
475 // dm helper
476 // r’ = padding || r
477 // r - 64 bit value
478 static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){
479     memset(r_prime, 0, 16);
480     memcpy(&r_prime[8], r, 8);
481 }
482 
483 // calculate arguments for first AES128 operation in C1 function
484 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){
485 
486     // p1 = pres || preq || rat’ || iat’
487     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
488     // cant octet of pres becomes the most significant octet of p1.
489     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
490     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
491     // p1 is 0x05000800000302070710000001010001."
492 
493     sm_key_t p1;
494     reverse_56(pres, &p1[0]);
495     reverse_56(preq, &p1[7]);
496     p1[14] = rat;
497     p1[15] = iat;
498     log_info_key("p1", p1);
499     log_info_key("r", r);
500 
501     // t1 = r xor p1
502     int i;
503     for (i=0;i<16;i++){
504         t1[i] = r[i] ^ p1[i];
505     }
506     log_info_key("t1", t1);
507 }
508 
509 // calculate arguments for second AES128 operation in C1 function
510 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){
511      // p2 = padding || ia || ra
512     // "The least significant octet of ra becomes the least significant octet of p2 and
513     // the most significant octet of padding becomes the most significant octet of p2.
514     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
515     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
516 
517     sm_key_t p2;
518     memset(p2, 0, 16);
519     memcpy(&p2[4],  ia, 6);
520     memcpy(&p2[10], ra, 6);
521     log_info_key("p2", p2);
522 
523     // c1 = e(k, t2_xor_p2)
524     int i;
525     for (i=0;i<16;i++){
526         t3[i] = t2[i] ^ p2[i];
527     }
528     log_info_key("t3", t3);
529 }
530 
531 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){
532     log_info_key("r1", r1);
533     log_info_key("r2", r2);
534     memcpy(&r_prime[8], &r2[8], 8);
535     memcpy(&r_prime[0], &r1[8], 8);
536 }
537 
538 #ifdef ENABLE_LE_SECURE_CONNECTIONS
539 // Software implementations of crypto toolbox for LE Secure Connection
540 // TODO: replace with code to use AES Engine of HCI Controller
541 typedef uint8_t sm_key24_t[3];
542 typedef uint8_t sm_key56_t[7];
543 typedef uint8_t sm_key256_t[32];
544 
545 static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){
546     uint32_t rk[RKLENGTH(KEYBITS)];
547     int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
548     rijndaelEncrypt(rk, nrounds, plaintext, cyphertext);
549 }
550 
551 static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
552     memcpy(k1, k0, 16);
553     sm_shift_left_by_one_bit_inplace(16, k1);
554     if (k0[0] & 0x80){
555         k1[15] ^= 0x87;
556     }
557     memcpy(k2, k1, 16);
558     sm_shift_left_by_one_bit_inplace(16, k2);
559     if (k1[0] & 0x80){
560         k2[15] ^= 0x87;
561     }
562 }
563 
564 static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){
565     sm_key_t k0, k1, k2, zero;
566     memset(zero, 0, 16);
567 
568     aes128_calc_cyphertext(key, zero, k0);
569     calc_subkeys(k0, k1, k2);
570 
571     int cmac_block_count = (cmac_message_len + 15) / 16;
572 
573     // step 3: ..
574     if (cmac_block_count==0){
575         cmac_block_count = 1;
576     }
577 
578     // step 4: set m_last
579     sm_key_t cmac_m_last;
580     int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0;
581     int i;
582     if (sm_cmac_last_block_complete){
583         for (i=0;i<16;i++){
584             cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i];
585         }
586     } else {
587         int valid_octets_in_last_block = cmac_message_len & 0x0f;
588         for (i=0;i<16;i++){
589             if (i < valid_octets_in_last_block){
590                 cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i];
591                 continue;
592             }
593             if (i == valid_octets_in_last_block){
594                 cmac_m_last[i] = 0x80 ^ k2[i];
595                 continue;
596             }
597             cmac_m_last[i] = k2[i];
598         }
599     }
600 
601     // printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count);
602     // LOG_KEY(cmac_m_last);
603 
604     // Step 5
605     sm_key_t cmac_x;
606     memset(cmac_x, 0, 16);
607 
608     // Step 6
609     sm_key_t sm_cmac_y;
610     for (int block = 0 ; block < cmac_block_count-1 ; block++){
611         for (i=0;i<16;i++){
612             sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i];
613         }
614         aes128_calc_cyphertext(key, sm_cmac_y, cmac_x);
615     }
616     for (i=0;i<16;i++){
617         sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
618     }
619 
620     // Step 7
621     aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac);
622 }
623 
624 static void f4(sm_key_t res, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
625     uint8_t buffer[65];
626     memcpy(buffer, u, 32);
627     memcpy(buffer+32, v, 32);
628     buffer[64] = z;
629     log_info("f4 key");
630     log_info_hexdump(x, 16);
631     log_info("f4 message");
632     log_info_hexdump(buffer, sizeof(buffer));
633     aes_cmac(res, x, buffer, sizeof(buffer));
634     log_info("f4 result");
635     log_info_hexdump(res, sizeof(sm_key_t));
636 }
637 
638 const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
639 const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
640 const uint8_t f5_length[] = { 0x01, 0x00};
641 static void f5(sm_key256_t res, const sm_key256_t w, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
642     // T = AES-CMACSAL_T(W)
643     sm_key_t t;
644     aes_cmac(t, f5_salt, w, 32);
645     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
646     uint8_t buffer[53];
647     buffer[0] = 0;
648     memcpy(buffer+01, f5_key_id, 4);
649     memcpy(buffer+05, n1, 16);
650     memcpy(buffer+21, n2, 16);
651     memcpy(buffer+37, a1, 7);
652     memcpy(buffer+44, a2, 7);
653     memcpy(buffer+51, f5_length, 2);
654     log_info("f5 DHKEY");
655     log_info_hexdump(w, 32);
656     log_info("f5 key");
657     log_info_hexdump(t, 16);
658     log_info("f5 message for MacKey");
659     log_info_hexdump(buffer, sizeof(buffer));
660     aes_cmac(res, t, buffer, sizeof(buffer));
661     // hexdump2(res, 16);
662     //                      || AES-CMACT (Counter = 1 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the LTK
663     buffer[0] = 1;
664     // hexdump2(buffer, sizeof(buffer));
665     log_info("f5 message for LTK");
666     log_info_hexdump(buffer, sizeof(buffer));
667     aes_cmac(res+16, t, buffer, sizeof(buffer));
668     // hexdump2(res+16, 16);
669 }
670 
671 // f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMACW (N1 || N2 || R || IOcap || A1 || A2
672 // - W is 128 bits
673 // - N1 is 128 bits
674 // - N2 is 128 bits
675 // - R is 128 bits
676 // - IOcap is 24 bits
677 // - A1 is 56 bits
678 // - A2 is 56 bits
679 static void f6(sm_key_t res, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
680     uint8_t buffer[65];
681     memcpy(buffer, n1, 16);
682     memcpy(buffer+16, n2, 16);
683     memcpy(buffer+32, r, 16);
684     memcpy(buffer+48, io_cap, 3);
685     memcpy(buffer+51, a1, 7);
686     memcpy(buffer+58, a2, 7);
687     log_info("f6 key");
688     log_info_hexdump(w, 16);
689     log_info("f6 message");
690     log_info_hexdump(buffer, sizeof(buffer));
691     aes_cmac(res, w, buffer,sizeof(buffer));
692     log_info("f6 result");
693     log_info_hexdump(res, 16);
694 }
695 
696 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
697 // - U is 256 bits
698 // - V is 256 bits
699 // - X is 128 bits
700 // - Y is 128 bits
701 static uint32_t g2(const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
702     uint8_t buffer[80];
703     memcpy(buffer, u, 32);
704     memcpy(buffer+32, v, 32);
705     memcpy(buffer+64, y, 16);
706     sm_key_t cmac;
707     log_info("g2 key");
708     log_info_hexdump(x, 16);
709     log_info("g2 message");
710     log_info_hexdump(buffer, sizeof(buffer));
711     aes_cmac(cmac, x, buffer, sizeof(buffer));
712     log_info("g2 result");
713     log_info_hexdump(x, 16);
714     return big_endian_read_32(cmac, 12);
715 }
716 
717 #if 0
718 // h6(W, keyID) = AES-CMACW(keyID)
719 // - W is 128 bits
720 // - keyID is 32 bits
721 static void h6(sm_key_t res, const sm_key_t w, const uint32_t key_id){
722     uint8_t key_id_buffer[4];
723     big_endian_store_32(key_id_buffer, 0, key_id);
724     aes_cmac(res, w, key_id_buffer, 4);
725 }
726 #endif
727 #endif
728 
729 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
730     event[0] = type;
731     event[1] = event_size - 2;
732     little_endian_store_16(event, 2, con_handle);
733     event[4] = addr_type;
734     reverse_bd_addr(address, &event[5]);
735 }
736 
737 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
738     if (sm_client_packet_handler) {
739         sm_client_packet_handler(HCI_EVENT_PACKET, 0, packet, size);
740     }
741     // dispatch to all event handlers
742     btstack_linked_list_iterator_t it;
743     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
744     while (btstack_linked_list_iterator_has_next(&it)){
745         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
746         entry->callback(packet_type, 0, packet, size);
747     }
748 }
749 
750 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
751     uint8_t event[11];
752     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
753     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
754 }
755 
756 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
757     uint8_t event[15];
758     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
759     little_endian_store_32(event, 11, passkey);
760     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
761 }
762 
763 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
764     uint8_t event[13];
765     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
766     little_endian_store_16(event, 11, index);
767     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
768 }
769 
770 static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){
771 
772     uint8_t event[18];
773     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
774     event[11] = result;
775     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
776 }
777 
778 // decide on stk generation based on
779 // - pairing request
780 // - io capabilities
781 // - OOB data availability
782 static void sm_setup_tk(void){
783 
784     // default: just works
785     setup->sm_stk_generation_method = JUST_WORKS;
786 
787 #ifdef ENABLE_LE_SECURE_CONNECTIONS
788     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
789                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
790                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0;
791     memset(setup->sm_ra, 0, 16);
792     memset(setup->sm_rb, 0, 16);
793 #else
794     setup->sm_use_secure_connections = 0;
795 #endif
796 
797     // If both devices have not set the MITM option in the Authentication Requirements
798     // Flags, then the IO capabilities shall be ignored and the Just Works association
799     // model shall be used.
800     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0)
801     &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){
802         log_info("SM: MITM not required by both -> JUST WORKS");
803         return;
804     }
805 
806     // TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient
807 
808     // If both devices have out of band authentication data, then the Authentication
809     // Requirements Flags shall be ignored when selecting the pairing method and the
810     // Out of Band pairing method shall be used.
811     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq)
812     &&  sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){
813         log_info("SM: have OOB data");
814         log_info_key("OOB", setup->sm_tk);
815         setup->sm_stk_generation_method = OOB;
816         return;
817     }
818 
819     // Reset TK as it has been setup in sm_init_setup
820     sm_reset_tk();
821 
822     // Also use just works if unknown io capabilites
823     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
824         return;
825     }
826 
827     // Otherwise the IO capabilities of the devices shall be used to determine the
828     // pairing method as defined in Table 2.4.
829     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
830     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
831 
832 #ifdef ENABLE_LE_SECURE_CONNECTIONS
833     // table not define by default
834     if (setup->sm_use_secure_connections){
835         generation_method = stk_generation_method_with_secure_connection;
836     }
837 #endif
838     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
839 
840     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
841         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
842 }
843 
844 static int sm_key_distribution_flags_for_set(uint8_t key_set){
845     int flags = 0;
846     if (key_set & SM_KEYDIST_ENC_KEY){
847         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
848         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
849     }
850     if (key_set & SM_KEYDIST_ID_KEY){
851         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
852         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
853     }
854     if (key_set & SM_KEYDIST_SIGN){
855         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
856     }
857     return flags;
858 }
859 
860 static void sm_setup_key_distribution(uint8_t key_set){
861     setup->sm_key_distribution_received_set = 0;
862     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
863 }
864 
865 // CSRK Key Lookup
866 
867 
868 static int sm_address_resolution_idle(void){
869     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
870 }
871 
872 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
873     memcpy(sm_address_resolution_address, addr, 6);
874     sm_address_resolution_addr_type = addr_type;
875     sm_address_resolution_test = 0;
876     sm_address_resolution_mode = mode;
877     sm_address_resolution_context = context;
878     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
879 }
880 
881 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
882     // check if already in list
883     btstack_linked_list_iterator_t it;
884     sm_lookup_entry_t * entry;
885     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
886     while(btstack_linked_list_iterator_has_next(&it)){
887         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
888         if (entry->address_type != address_type) continue;
889         if (memcmp(entry->address, address, 6))  continue;
890         // already in list
891         return BTSTACK_BUSY;
892     }
893     entry = btstack_memory_sm_lookup_entry_get();
894     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
895     entry->address_type = (bd_addr_type_t) address_type;
896     memcpy(entry->address, address, 6);
897     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
898     sm_run();
899     return 0;
900 }
901 
902 // CMAC Implementation using AES128 engine
903 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
904     int i;
905     int carry = 0;
906     for (i=len-1; i >= 0 ; i--){
907         int new_carry = data[i] >> 7;
908         data[i] = data[i] << 1 | carry;
909         carry = new_carry;
910     }
911 }
912 
913 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now
914 static inline void sm_next_responding_state(sm_connection_t * sm_conn){
915     sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1);
916 }
917 static inline void dkg_next_state(void){
918     dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1);
919 }
920 static inline void rau_next_state(void){
921     rau_state = (random_address_update_t) (((int)rau_state) + 1);
922 }
923 
924 // CMAC calculation using AES Engine
925 
926 static inline void sm_cmac_next_state(void){
927     sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1);
928 }
929 
930 static int sm_cmac_last_block_complete(void){
931     if (sm_cmac_message_len == 0) return 0;
932     return (sm_cmac_message_len & 0x0f) == 0;
933 }
934 
935 static inline uint8_t sm_cmac_message_get_byte(uint16_t offset){
936     if (offset >= sm_cmac_message_len) {
937         log_error("sm_cmac_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len);
938         return 0;
939     }
940 
941     offset = sm_cmac_message_len - 1 - offset;
942 
943     // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4]
944     if (offset < 3){
945         return sm_cmac_header[offset];
946     }
947     int actual_message_len_incl_header = sm_cmac_message_len - 4;
948     if (offset <  actual_message_len_incl_header){
949         return sm_cmac_message[offset - 3];
950     }
951     return sm_cmac_sign_counter[offset - actual_message_len_incl_header];
952 }
953 
954 // generic cmac calculation
955 void sm_cmac_general_start(sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t hash[8])){
956     // Generalized CMAC
957     memcpy(sm_cmac_k, key, 16);
958     memset(sm_cmac_x, 0, 16);
959     sm_cmac_block_current = 0;
960     sm_cmac_message_len  = message_len;
961     sm_cmac_done_handler = done_callback;
962     sm_cmac_get_byte     = get_byte_callback;
963 
964     // step 2: n := ceil(len/const_Bsize);
965     sm_cmac_block_count = (sm_cmac_message_len + 15) / 16;
966 
967     // step 3: ..
968     if (sm_cmac_block_count==0){
969         sm_cmac_block_count = 1;
970     }
971 
972     log_info("sm_cmac_general_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count);
973 
974     // first, we need to compute l for k1, k2, and m_last
975     sm_cmac_state = CMAC_CALC_SUBKEYS;
976 
977     // let's go
978     sm_run();
979 }
980 
981 // cmac for ATT Message signing
982 void sm_cmac_start(sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
983     // ATT Message Signing
984     sm_cmac_header[0] = opcode;
985     little_endian_store_16(sm_cmac_header, 1, con_handle);
986     little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter);
987     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
988     sm_cmac_message = message;
989     sm_cmac_general_start(k, total_message_len, &sm_cmac_message_get_byte, done_handler);
990 }
991 
992 int sm_cmac_ready(void){
993     return sm_cmac_state == CMAC_IDLE;
994 }
995 
996 static void sm_cmac_handle_aes_engine_ready(void){
997     switch (sm_cmac_state){
998         case CMAC_CALC_SUBKEYS: {
999             sm_key_t const_zero;
1000             memset(const_zero, 0, 16);
1001             sm_cmac_next_state();
1002             sm_aes128_start(sm_cmac_k, const_zero, NULL);
1003             break;
1004         }
1005         case CMAC_CALC_MI: {
1006             int j;
1007             sm_key_t y;
1008             for (j=0;j<16;j++){
1009                 y[j] = sm_cmac_x[j] ^ sm_cmac_get_byte(sm_cmac_block_current*16 + j);
1010             }
1011             sm_cmac_block_current++;
1012             sm_cmac_next_state();
1013             sm_aes128_start(sm_cmac_k, y, NULL);
1014             break;
1015         }
1016         case CMAC_CALC_MLAST: {
1017             int i;
1018             sm_key_t y;
1019             for (i=0;i<16;i++){
1020                 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
1021             }
1022             log_info_key("Y", y);
1023             sm_cmac_block_current++;
1024             sm_cmac_next_state();
1025             sm_aes128_start(sm_cmac_k, y, NULL);
1026             break;
1027         }
1028         default:
1029             log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state);
1030             break;
1031     }
1032 }
1033 
1034 static void sm_cmac_handle_encryption_result(sm_key_t data){
1035     switch (sm_cmac_state){
1036         case CMAC_W4_SUBKEYS: {
1037             sm_key_t k1;
1038             memcpy(k1, data, 16);
1039             sm_shift_left_by_one_bit_inplace(16, k1);
1040             if (data[0] & 0x80){
1041                 k1[15] ^= 0x87;
1042             }
1043             sm_key_t k2;
1044             memcpy(k2, k1, 16);
1045             sm_shift_left_by_one_bit_inplace(16, k2);
1046             if (k1[0] & 0x80){
1047                 k2[15] ^= 0x87;
1048             }
1049 
1050             log_info_key("k", sm_cmac_k);
1051             log_info_key("k1", k1);
1052             log_info_key("k2", k2);
1053 
1054             // step 4: set m_last
1055             int i;
1056             if (sm_cmac_last_block_complete()){
1057                 for (i=0;i<16;i++){
1058                     sm_cmac_m_last[i] = sm_cmac_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i];
1059                 }
1060             } else {
1061                 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
1062                 for (i=0;i<16;i++){
1063                     if (i < valid_octets_in_last_block){
1064                         sm_cmac_m_last[i] = sm_cmac_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i];
1065                         continue;
1066                     }
1067                     if (i == valid_octets_in_last_block){
1068                         sm_cmac_m_last[i] = 0x80 ^ k2[i];
1069                         continue;
1070                     }
1071                     sm_cmac_m_last[i] = k2[i];
1072                 }
1073             }
1074 
1075             // next
1076             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1077             break;
1078         }
1079         case CMAC_W4_MI:
1080             memcpy(sm_cmac_x, data, 16);
1081             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1082             break;
1083         case CMAC_W4_MLAST:
1084             // done
1085             log_info_key("CMAC", data);
1086             sm_cmac_done_handler(data);
1087             sm_cmac_state = CMAC_IDLE;
1088             break;
1089         default:
1090             log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state);
1091             break;
1092     }
1093 }
1094 
1095 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1096     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1097     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1098     switch (setup->sm_stk_generation_method){
1099         case PK_RESP_INPUT:
1100             if (sm_conn->sm_role){
1101                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1102                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1103             } else {
1104                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1105             }
1106             break;
1107         case PK_INIT_INPUT:
1108             if (sm_conn->sm_role){
1109                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1110             } else {
1111                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1112                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1113             }
1114             break;
1115         case OK_BOTH_INPUT:
1116             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1117             sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1118             break;
1119         case NK_BOTH_INPUT:
1120             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1121             sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1122             break;
1123         case JUST_WORKS:
1124             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1125             sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1126             break;
1127         case OOB:
1128             // client already provided OOB data, let's skip notification.
1129             break;
1130     }
1131 }
1132 
1133 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
1134     int recv_flags;
1135     if (sm_conn->sm_role){
1136         // slave / responder
1137         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
1138     } else {
1139         // master / initiator
1140         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
1141     }
1142     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
1143     return recv_flags == setup->sm_key_distribution_received_set;
1144 }
1145 
1146 static void sm_done_for_handle(hci_con_handle_t con_handle){
1147     if (sm_active_connection == con_handle){
1148         sm_timeout_stop();
1149         sm_active_connection = 0;
1150         log_info("sm: connection 0x%x released setup context", con_handle);
1151     }
1152 }
1153 
1154 static int sm_key_distribution_flags_for_auth_req(void){
1155     int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN;
1156     if (sm_auth_req & SM_AUTHREQ_BONDING){
1157         // encryption information only if bonding requested
1158         flags |= SM_KEYDIST_ENC_KEY;
1159     }
1160     return flags;
1161 }
1162 
1163 static void sm_init_setup(sm_connection_t * sm_conn){
1164 
1165     // fill in sm setup
1166     sm_reset_tk();
1167     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1168     memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1169 
1170     // query client for OOB data
1171     int have_oob_data = 0;
1172     if (sm_get_oob_data) {
1173         have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1174     }
1175 
1176     sm_pairing_packet_t * local_packet;
1177     if (sm_conn->sm_role){
1178         // slave
1179         local_packet = &setup->sm_s_pres;
1180         gap_advertisements_get_address(&setup->sm_s_addr_type, setup->sm_s_address);
1181         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1182         memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1183     } else {
1184         // master
1185         local_packet = &setup->sm_m_preq;
1186         gap_advertisements_get_address(&setup->sm_m_addr_type, setup->sm_m_address);
1187         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1188         memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1189 
1190         int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1191         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1192         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1193     }
1194 
1195     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1196     sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data);
1197     sm_pairing_packet_set_auth_req(*local_packet, sm_auth_req);
1198     sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size);
1199 }
1200 
1201 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1202 
1203     sm_pairing_packet_t * remote_packet;
1204     int                   remote_key_request;
1205     if (sm_conn->sm_role){
1206         // slave / responder
1207         remote_packet      = &setup->sm_m_preq;
1208         remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1209     } else {
1210         // master / initiator
1211         remote_packet      = &setup->sm_s_pres;
1212         remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1213     }
1214 
1215     // check key size
1216     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1217     if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE;
1218 
1219     // decide on STK generation method
1220     sm_setup_tk();
1221     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1222 
1223     // check if STK generation method is acceptable by client
1224     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1225 
1226     // identical to responder
1227     sm_setup_key_distribution(remote_key_request);
1228 
1229     // JUST WORKS doens't provide authentication
1230     sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1;
1231 
1232     return 0;
1233 }
1234 
1235 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1236 
1237     // cache and reset context
1238     int matched_device_id = sm_address_resolution_test;
1239     address_resolution_mode_t mode = sm_address_resolution_mode;
1240     void * context = sm_address_resolution_context;
1241 
1242     // reset context
1243     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1244     sm_address_resolution_context = NULL;
1245     sm_address_resolution_test = -1;
1246     hci_con_handle_t con_handle = 0;
1247 
1248     sm_connection_t * sm_connection;
1249     uint16_t ediv;
1250     switch (mode){
1251         case ADDRESS_RESOLUTION_GENERAL:
1252             break;
1253         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1254             sm_connection = (sm_connection_t *) context;
1255             con_handle = sm_connection->sm_handle;
1256             switch (event){
1257                 case ADDRESS_RESOLUTION_SUCEEDED:
1258                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1259                     sm_connection->sm_le_db_index = matched_device_id;
1260                     log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index);
1261                     if (sm_connection->sm_role) break;
1262                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1263                     sm_connection->sm_security_request_received = 0;
1264                     sm_connection->sm_bonding_requested = 0;
1265                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
1266                     if (ediv){
1267                         sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
1268                     } else {
1269                         sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1270                     }
1271                     break;
1272                 case ADDRESS_RESOLUTION_FAILED:
1273                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1274                     if (sm_connection->sm_role) break;
1275                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1276                     sm_connection->sm_security_request_received = 0;
1277                     sm_connection->sm_bonding_requested = 0;
1278                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1279                     break;
1280             }
1281             break;
1282         default:
1283             break;
1284     }
1285 
1286     switch (event){
1287         case ADDRESS_RESOLUTION_SUCEEDED:
1288             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1289             break;
1290         case ADDRESS_RESOLUTION_FAILED:
1291             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1292             break;
1293     }
1294 }
1295 
1296 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1297 
1298     int le_db_index = -1;
1299 
1300     // lookup device based on IRK
1301     if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
1302         int i;
1303         for (i=0; i < le_device_db_count(); i++){
1304             sm_key_t irk;
1305             bd_addr_t address;
1306             int address_type;
1307             le_device_db_info(i, &address_type, address, irk);
1308             if (memcmp(irk, setup->sm_peer_irk, 16) == 0){
1309                 log_info("sm: device found for IRK, updating");
1310                 le_db_index = i;
1311                 break;
1312             }
1313         }
1314     }
1315 
1316     // if not found, lookup via public address if possible
1317     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1318     if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
1319         int i;
1320         for (i=0; i < le_device_db_count(); i++){
1321             bd_addr_t address;
1322             int address_type;
1323             le_device_db_info(i, &address_type, address, NULL);
1324             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1325             if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){
1326                 log_info("sm: device found for public address, updating");
1327                 le_db_index = i;
1328                 break;
1329             }
1330         }
1331     }
1332 
1333     // if not found, add to db
1334     if (le_db_index < 0) {
1335         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1336     }
1337 
1338     if (le_db_index >= 0){
1339         le_device_db_local_counter_set(le_db_index, 0);
1340 
1341         // store local CSRK
1342         if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1343             log_info("sm: store local CSRK");
1344             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1345             le_device_db_local_counter_set(le_db_index, 0);
1346         }
1347 
1348         // store remote CSRK
1349         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1350             log_info("sm: store remote CSRK");
1351             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1352             le_device_db_remote_counter_set(le_db_index, 0);
1353         }
1354 
1355         // store encryption information
1356         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION
1357             && setup->sm_key_distribution_received_set &  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1358             log_info("sm: set encryption information (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1359             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1360                 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
1361         }
1362     }
1363 
1364     // keep le_db_index
1365     sm_conn->sm_le_db_index = le_db_index;
1366 }
1367 
1368 static void sm_run(void){
1369 
1370     btstack_linked_list_iterator_t it;
1371 
1372     // assert that we can send at least commands
1373     if (!hci_can_send_command_packet_now()) return;
1374 
1375     //
1376     // non-connection related behaviour
1377     //
1378 
1379     // distributed key generation
1380     switch (dkg_state){
1381         case DKG_CALC_IRK:
1382             // already busy?
1383             if (sm_aes128_state == SM_AES128_IDLE) {
1384                 // IRK = d1(IR, 1, 0)
1385                 sm_key_t d1_prime;
1386                 sm_d1_d_prime(1, 0, d1_prime);  // plaintext
1387                 dkg_next_state();
1388                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1389                 return;
1390             }
1391             break;
1392         case DKG_CALC_DHK:
1393             // already busy?
1394             if (sm_aes128_state == SM_AES128_IDLE) {
1395                 // DHK = d1(IR, 3, 0)
1396                 sm_key_t d1_prime;
1397                 sm_d1_d_prime(3, 0, d1_prime);  // plaintext
1398                 dkg_next_state();
1399                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1400                 return;
1401             }
1402             break;
1403         default:
1404             break;
1405     }
1406 
1407     // random address updates
1408     switch (rau_state){
1409         case RAU_GET_RANDOM:
1410             rau_next_state();
1411             sm_random_start(NULL);
1412             return;
1413         case RAU_GET_ENC:
1414             // already busy?
1415             if (sm_aes128_state == SM_AES128_IDLE) {
1416                 sm_key_t r_prime;
1417                 sm_ah_r_prime(sm_random_address, r_prime);
1418                 rau_next_state();
1419                 sm_aes128_start(sm_persistent_irk, r_prime, NULL);
1420                 return;
1421             }
1422             break;
1423         case RAU_SET_ADDRESS:
1424             log_info("New random address: %s", bd_addr_to_str(sm_random_address));
1425             rau_state = RAU_IDLE;
1426             hci_send_cmd(&hci_le_set_random_address, sm_random_address);
1427             return;
1428         default:
1429             break;
1430     }
1431 
1432     // CMAC
1433     switch (sm_cmac_state){
1434         case CMAC_CALC_SUBKEYS:
1435         case CMAC_CALC_MI:
1436         case CMAC_CALC_MLAST:
1437             // already busy?
1438             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1439             sm_cmac_handle_aes_engine_ready();
1440             return;
1441         default:
1442             break;
1443     }
1444 
1445     // CSRK Lookup
1446     // -- if csrk lookup ready, find connection that require csrk lookup
1447     if (sm_address_resolution_idle()){
1448         hci_connections_get_iterator(&it);
1449         while(btstack_linked_list_iterator_has_next(&it)){
1450             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1451             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
1452             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
1453                 // and start lookup
1454                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
1455                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
1456                 break;
1457             }
1458         }
1459     }
1460 
1461     // -- if csrk lookup ready, resolved addresses for received addresses
1462     if (sm_address_resolution_idle()) {
1463         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
1464             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
1465             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
1466             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
1467             btstack_memory_sm_lookup_entry_free(entry);
1468         }
1469     }
1470 
1471     // -- Continue with CSRK device lookup by public or resolvable private address
1472     if (!sm_address_resolution_idle()){
1473         log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count());
1474         while (sm_address_resolution_test < le_device_db_count()){
1475             int addr_type;
1476             bd_addr_t addr;
1477             sm_key_t irk;
1478             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
1479             log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
1480 
1481             if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){
1482                 log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
1483                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
1484                 break;
1485             }
1486 
1487             if (sm_address_resolution_addr_type == 0){
1488                 sm_address_resolution_test++;
1489                 continue;
1490             }
1491 
1492             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1493 
1494             log_info("LE Device Lookup: calculate AH");
1495             log_info_key("IRK", irk);
1496 
1497             sm_key_t r_prime;
1498             sm_ah_r_prime(sm_address_resolution_address, r_prime);
1499             sm_address_resolution_ah_calculation_active = 1;
1500             sm_aes128_start(irk, r_prime, sm_address_resolution_context);   // keep context
1501             return;
1502         }
1503 
1504         if (sm_address_resolution_test >= le_device_db_count()){
1505             log_info("LE Device Lookup: not found");
1506             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
1507         }
1508     }
1509 
1510 
1511     //
1512     // active connection handling
1513     // -- use loop to handle next connection if lock on setup context is released
1514 
1515     while (1) {
1516 
1517         // Find connections that requires setup context and make active if no other is locked
1518         hci_connections_get_iterator(&it);
1519         while(!sm_active_connection && btstack_linked_list_iterator_has_next(&it)){
1520             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1521             sm_connection_t  * sm_connection = &hci_connection->sm_connection;
1522             // - if no connection locked and we're ready/waiting for setup context, fetch it and start
1523             int done = 1;
1524             int err;
1525             int encryption_key_size;
1526             int authenticated;
1527             int authorized;
1528             switch (sm_connection->sm_engine_state) {
1529                 case SM_RESPONDER_SEND_SECURITY_REQUEST:
1530                     // send packet if possible,
1531                     if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){
1532                         const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING};
1533                         sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
1534                         l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1535                     } else {
1536                         l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1537                     }
1538                     // don't lock setup context yet
1539                     done = 0;
1540                     break;
1541                 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
1542                     sm_init_setup(sm_connection);
1543                     // recover pairing request
1544                     memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t));
1545                     err = sm_stk_generation_init(sm_connection);
1546                     if (err){
1547                         setup->sm_pairing_failed_reason = err;
1548                         sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1549                         break;
1550                     }
1551                     sm_timeout_start(sm_connection);
1552                     // generate random number first, if we need to show passkey
1553                     if (setup->sm_stk_generation_method == PK_INIT_INPUT){
1554                         sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK;
1555                         break;
1556                     }
1557                     sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
1558                     break;
1559                 case SM_INITIATOR_PH0_HAS_LTK:
1560                     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
1561                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1562                                                 &encryption_key_size, &authenticated, &authorized);
1563                     log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized);
1564                     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
1565                     sm_connection->sm_connection_authenticated = authenticated;
1566                     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
1567                     sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION;
1568                     break;
1569                 case SM_RESPONDER_PH0_RECEIVED_LTK:
1570                     // re-establish previously used LTK using Rand and EDIV
1571                     memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
1572                     setup->sm_local_ediv = sm_connection->sm_local_ediv;
1573                     // re-establish used key encryption size
1574                     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
1575                     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1;
1576                     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
1577                     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4;
1578                     log_info("sm: received ltk request with key size %u, authenticated %u",
1579                             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
1580                     sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC;
1581                     break;
1582                 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
1583                     sm_init_setup(sm_connection);
1584                     sm_timeout_start(sm_connection);
1585                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST;
1586                     break;
1587                 default:
1588                     done = 0;
1589                     break;
1590             }
1591             if (done){
1592                 sm_active_connection = sm_connection->sm_handle;
1593                 log_info("sm: connection 0x%04x locked setup context as %s", sm_active_connection, sm_connection->sm_role ? "responder" : "initiator");
1594             }
1595         }
1596 
1597         //
1598         // active connection handling
1599         //
1600 
1601         if (sm_active_connection == 0) return;
1602 
1603         // assert that we could send a SM PDU - not needed for all of the following
1604         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
1605             l2cap_request_can_send_fix_channel_now_event(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1606             return;
1607         }
1608 
1609         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection);
1610         if (!connection) return;
1611 
1612         sm_key_t plaintext;
1613         int key_distribution_flags;
1614 
1615         log_info("sm_run: state %u", connection->sm_engine_state);
1616 
1617         // responding state
1618         switch (connection->sm_engine_state){
1619 
1620             // general
1621             case SM_GENERAL_SEND_PAIRING_FAILED: {
1622                 uint8_t buffer[2];
1623                 buffer[0] = SM_CODE_PAIRING_FAILED;
1624                 buffer[1] = setup->sm_pairing_failed_reason;
1625                 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
1626                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1627                 sm_done_for_handle(connection->sm_handle);
1628                 break;
1629             }
1630 
1631             // initiator side
1632             case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: {
1633                 sm_key_t peer_ltk_flipped;
1634                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
1635                 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED;
1636                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
1637                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
1638                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
1639                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
1640                 return;
1641             }
1642 
1643             case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST:
1644                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
1645                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
1646                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
1647                 sm_timeout_reset(connection);
1648                 break;
1649 
1650             // responder side
1651             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
1652                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1653                 hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
1654                 return;
1655 
1656 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1657             case SM_SC_SEND_PUBLIC_KEY_COMMAND: {
1658                 uint8_t buffer[65];
1659                 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
1660                 //
1661 #ifdef USE_MBEDTLS_FOR_ECDH
1662                 uint8_t value[32];
1663                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1664                 reverse_256(value, &buffer[1]);
1665                 mbedtls_mpi_write_binary(&le_keypair.Q.Y, value, sizeof(value));
1666                 reverse_256(value, &buffer[33]);
1667 #endif
1668                 // TODO: use random generator to generate nonce
1669 
1670                 // generate 128-bit nonce
1671                 int i;
1672                 for (i=0;i<16;i++){
1673                     setup->sm_local_nonce[i] = rand() & 0xff;
1674                 }
1675 
1676                 // stk generation method
1677                 // passkey entry: notify app to show passkey or to request passkey
1678                 switch (setup->sm_stk_generation_method){
1679                     case JUST_WORKS:
1680                     case NK_BOTH_INPUT:
1681                         if (connection->sm_role){
1682                             connection->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1683                         } else {
1684                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1685                         }
1686                         break;
1687                     case PK_INIT_INPUT:
1688                     case PK_RESP_INPUT:
1689                     case OK_BOTH_INPUT:
1690                         // hack for testing: assume user entered '000000'
1691                         // memset(setup->sm_tk, 0, 16);
1692                         memcpy(setup->sm_ra, setup->sm_tk, 16);
1693                         memcpy(setup->sm_rb, setup->sm_tk, 16);
1694                         setup->sm_passkey_bit = 0;
1695                         if (connection->sm_role){
1696                             // responder
1697                             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1698                         } else {
1699                             // initiator
1700                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1701                         }
1702                         sm_trigger_user_response(connection);
1703                         break;
1704                     case OOB:
1705                         // TODO: implement SC OOB
1706                         break;
1707                 }
1708 
1709                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1710                 sm_timeout_reset(connection);
1711                 break;
1712             }
1713             case SM_SC_SEND_CONFIRMATION: {
1714                 uint8_t buffer[17];
1715                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
1716 #ifdef USE_MBEDTLS_FOR_ECDH
1717                 uint8_t z = 0;
1718                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1719                     // some form of passkey
1720                     uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1721                     z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1);
1722                     setup->sm_passkey_bit++;
1723                 }
1724 
1725                 // TODO: use AES Engine to calculate commitment value using f4
1726                 uint8_t value[32];
1727                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1728                 sm_key_t confirm_value;
1729                 f4(confirm_value, value, setup->sm_peer_qx, setup->sm_local_nonce, z);
1730                 reverse_128(confirm_value, &buffer[1]);
1731 #endif
1732                 if (connection->sm_role){
1733                     connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
1734                 } else {
1735                     connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1736                 }
1737                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1738                 sm_timeout_reset(connection);
1739                 break;
1740             }
1741             case SM_SC_SEND_PAIRING_RANDOM: {
1742                 uint8_t buffer[17];
1743                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1744                 reverse_128(setup->sm_local_nonce, &buffer[1]);
1745 
1746                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){
1747                     if (connection->sm_role){
1748                         // responder
1749                         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1750                     } else {
1751                         // initiator
1752                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
1753                     }
1754                 } else {
1755                     if (connection->sm_role){
1756                         // responder
1757                         connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1758                         if (setup->sm_stk_generation_method == NK_BOTH_INPUT){
1759                             // calc Vb if numeric comparison
1760                             // TODO: use AES Engine to calculate g2
1761                             uint8_t value[32];
1762                             mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1763                             uint32_t vb = g2(setup->sm_peer_qx, value, setup->sm_peer_nonce, setup->sm_local_nonce) % 1000000;
1764                             big_endian_store_32(setup->sm_tk, 12, vb);
1765                             sm_trigger_user_response(connection);
1766                         }
1767                     } else {
1768                         // initiator
1769                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
1770                     }
1771                 }
1772                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1773                 sm_timeout_reset(connection);
1774                 break;
1775             }
1776             case SM_SC_SEND_DHKEY_CHECK_COMMAND: {
1777 
1778                 uint8_t buffer[17];
1779                 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
1780 #ifdef USE_MBEDTLS_FOR_ECDH
1781                 // calculate DHKEY
1782                 mbedtls_ecp_group grp;
1783                 mbedtls_ecp_group_init( &grp );
1784                 mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
1785                 mbedtls_ecp_point Q;
1786                 mbedtls_ecp_point_init( &Q );
1787                 mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
1788                 mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
1789                 mbedtls_mpi_read_string(&Q.Z, 16, "1" );
1790 
1791                 // da * Pb
1792                 mbedtls_ecp_point DH;
1793                 mbedtls_ecp_point_init( &DH );
1794                 mbedtls_ecp_mul(&grp, &DH, &le_keypair.d, &Q, NULL, NULL);
1795                 sm_key256_t dhkey;
1796                 mbedtls_mpi_write_binary(&DH.X, dhkey, 32);
1797                 log_info("dhkey");
1798                 log_info_hexdump(dhkey, 32);
1799 
1800                 // calculate LTK + MacKey
1801                 sm_key256_t ltk_mackey;
1802                 sm_key56_t bd_addr_master, bd_addr_slave;
1803                 bd_addr_master[0] =  setup->sm_m_addr_type;
1804                 bd_addr_slave[0]  =  setup->sm_s_addr_type;
1805                 memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1806                 memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1807                 if (connection->sm_role){
1808                     // responder
1809                     f5(ltk_mackey, dhkey, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1810                 } else {
1811                     // initiator
1812                     f5(ltk_mackey, dhkey, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1813                 }
1814                 // store LTK
1815                 memcpy(setup->sm_ltk, &ltk_mackey[16], 16);
1816 
1817                 // calc DHKCheck
1818                 memcpy(setup->sm_mackey, &ltk_mackey[0], 16);
1819 
1820                 // TODO: checks
1821 
1822                 uint8_t iocap_a[3];
1823                 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1824                 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1825                 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1826                 uint8_t iocap_b[3];
1827                 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1828                 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1829                 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1830                 if (connection->sm_role){
1831                     // responder
1832                     f6(setup->sm_local_dhkey_check, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1833                 } else {
1834                     // initiator
1835                     f6(setup->sm_local_dhkey_check, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1836                 }
1837 #endif
1838                 reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
1839                 if (connection->sm_role){
1840                     connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
1841                 } else {
1842                     connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1843                 }
1844                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1845                 sm_timeout_reset(connection);
1846                 break;
1847             }
1848 
1849 #endif
1850             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
1851                 // echo initiator for now
1852                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
1853                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1854 
1855                 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
1856 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1857                 if (setup->sm_use_secure_connections){
1858                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1859                     // skip LTK/EDIV for SC
1860                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
1861                 }
1862 #endif
1863                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1864                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1865 
1866                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
1867                 sm_timeout_reset(connection);
1868                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
1869                 if (setup->sm_stk_generation_method == JUST_WORKS){
1870                     sm_trigger_user_response(connection);
1871                 }
1872                 return;
1873 
1874             case SM_PH2_SEND_PAIRING_RANDOM: {
1875                 uint8_t buffer[17];
1876                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1877                 reverse_128(setup->sm_local_random, &buffer[1]);
1878                 if (connection->sm_role){
1879                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
1880                 } else {
1881                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
1882                 }
1883                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1884                 sm_timeout_reset(connection);
1885                 break;
1886             }
1887 
1888             case SM_PH2_GET_RANDOM_TK:
1889             case SM_PH2_C1_GET_RANDOM_A:
1890             case SM_PH2_C1_GET_RANDOM_B:
1891             case SM_PH3_GET_RANDOM:
1892             case SM_PH3_GET_DIV:
1893                 sm_next_responding_state(connection);
1894                 sm_random_start(connection);
1895                 return;
1896 
1897             case SM_PH2_C1_GET_ENC_B:
1898             case SM_PH2_C1_GET_ENC_D:
1899                 // already busy?
1900                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1901                 sm_next_responding_state(connection);
1902                 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection);
1903                 return;
1904 
1905             case SM_PH3_LTK_GET_ENC:
1906             case SM_RESPONDER_PH4_LTK_GET_ENC:
1907                 // already busy?
1908                 if (sm_aes128_state == SM_AES128_IDLE) {
1909                     sm_key_t d_prime;
1910                     sm_d1_d_prime(setup->sm_local_div, 0, d_prime);
1911                     sm_next_responding_state(connection);
1912                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1913                     return;
1914                 }
1915                 break;
1916 
1917             case SM_PH3_CSRK_GET_ENC:
1918                 // already busy?
1919                 if (sm_aes128_state == SM_AES128_IDLE) {
1920                     sm_key_t d_prime;
1921                     sm_d1_d_prime(setup->sm_local_div, 1, d_prime);
1922                     sm_next_responding_state(connection);
1923                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1924                     return;
1925                 }
1926                 break;
1927 
1928             case SM_PH2_C1_GET_ENC_C:
1929                 // already busy?
1930                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1931                 // calculate m_confirm using aes128 engine - step 1
1932                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1933                 sm_next_responding_state(connection);
1934                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1935                 break;
1936             case SM_PH2_C1_GET_ENC_A:
1937                 // already busy?
1938                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1939                 // calculate confirm using aes128 engine - step 1
1940                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1941                 sm_next_responding_state(connection);
1942                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1943                 break;
1944             case SM_PH2_CALC_STK:
1945                 // already busy?
1946                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1947                 // calculate STK
1948                 if (connection->sm_role){
1949                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext);
1950                 } else {
1951                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext);
1952                 }
1953                 sm_next_responding_state(connection);
1954                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1955                 break;
1956             case SM_PH3_Y_GET_ENC:
1957                 // already busy?
1958                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1959                 // PH3B2 - calculate Y from      - enc
1960                 // Y = dm(DHK, Rand)
1961                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
1962                 sm_next_responding_state(connection);
1963                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
1964                 return;
1965             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
1966                 uint8_t buffer[17];
1967                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
1968                 reverse_128(setup->sm_local_confirm, &buffer[1]);
1969                 if (connection->sm_role){
1970                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
1971                 } else {
1972                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
1973                 }
1974                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1975                 sm_timeout_reset(connection);
1976                 return;
1977             }
1978             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
1979                 sm_key_t stk_flipped;
1980                 reverse_128(setup->sm_ltk, stk_flipped);
1981                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
1982                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
1983                 return;
1984             }
1985             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
1986                 sm_key_t stk_flipped;
1987                 reverse_128(setup->sm_ltk, stk_flipped);
1988                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
1989                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
1990                 return;
1991             }
1992             case SM_RESPONDER_PH4_SEND_LTK: {
1993                 sm_key_t ltk_flipped;
1994                 reverse_128(setup->sm_ltk, ltk_flipped);
1995                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1996                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
1997                 return;
1998             }
1999             case SM_RESPONDER_PH4_Y_GET_ENC:
2000                 // already busy?
2001                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2002                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
2003                 // Y = dm(DHK, Rand)
2004                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
2005                 sm_next_responding_state(connection);
2006                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
2007                 return;
2008 
2009             case SM_PH3_DISTRIBUTE_KEYS:
2010                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
2011                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2012                     uint8_t buffer[17];
2013                     buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2014                     reverse_128(setup->sm_ltk, &buffer[1]);
2015                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2016                     sm_timeout_reset(connection);
2017                     return;
2018                 }
2019                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
2020                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2021                     uint8_t buffer[11];
2022                     buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2023                     little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2024                     reverse_64(setup->sm_local_rand, &buffer[3]);
2025                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2026                     sm_timeout_reset(connection);
2027                     return;
2028                 }
2029                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
2030                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2031                     uint8_t buffer[17];
2032                     buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2033                     reverse_128(sm_persistent_irk, &buffer[1]);
2034                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2035                     sm_timeout_reset(connection);
2036                     return;
2037                 }
2038                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
2039                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2040                     bd_addr_t local_address;
2041                     uint8_t buffer[8];
2042                     buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2043                     gap_advertisements_get_address(&buffer[1], local_address);
2044                     reverse_bd_addr(local_address, &buffer[2]);
2045                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2046                     sm_timeout_reset(connection);
2047                     return;
2048                 }
2049                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
2050                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2051 
2052                     // hack to reproduce test runs
2053                     if (test_use_fixed_local_csrk){
2054                         memset(setup->sm_local_csrk, 0xcc, 16);
2055                     }
2056 
2057                     uint8_t buffer[17];
2058                     buffer[0] = SM_CODE_SIGNING_INFORMATION;
2059                     reverse_128(setup->sm_local_csrk, &buffer[1]);
2060                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2061                     sm_timeout_reset(connection);
2062                     return;
2063                 }
2064 
2065                 // keys are sent
2066                 if (connection->sm_role){
2067                     // slave -> receive master keys if any
2068                     if (sm_key_distribution_all_received(connection)){
2069                         sm_key_distribution_handle_all_received(connection);
2070                         connection->sm_engine_state = SM_RESPONDER_IDLE;
2071                         sm_done_for_handle(connection->sm_handle);
2072                     } else {
2073                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2074                     }
2075                 } else {
2076                     // master -> all done
2077                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2078                     sm_done_for_handle(connection->sm_handle);
2079                 }
2080                 break;
2081 
2082             default:
2083                 break;
2084         }
2085 
2086         // check again if active connection was released
2087         if (sm_active_connection) break;
2088     }
2089 }
2090 
2091 // note: aes engine is ready as we just got the aes result
2092 static void sm_handle_encryption_result(uint8_t * data){
2093 
2094     sm_aes128_state = SM_AES128_IDLE;
2095 
2096     if (sm_address_resolution_ah_calculation_active){
2097         sm_address_resolution_ah_calculation_active = 0;
2098         // compare calulated address against connecting device
2099         uint8_t hash[3];
2100         reverse_24(data, hash);
2101         if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
2102             log_info("LE Device Lookup: matched resolvable private address");
2103             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
2104             return;
2105         }
2106         // no match, try next
2107         sm_address_resolution_test++;
2108         return;
2109     }
2110 
2111     switch (dkg_state){
2112         case DKG_W4_IRK:
2113             reverse_128(data, sm_persistent_irk);
2114             log_info_key("irk", sm_persistent_irk);
2115             dkg_next_state();
2116             return;
2117         case DKG_W4_DHK:
2118             reverse_128(data, sm_persistent_dhk);
2119             log_info_key("dhk", sm_persistent_dhk);
2120             dkg_next_state();
2121             // SM Init Finished
2122             return;
2123         default:
2124             break;
2125     }
2126 
2127     switch (rau_state){
2128         case RAU_W4_ENC:
2129             reverse_24(data, &sm_random_address[3]);
2130             rau_next_state();
2131             return;
2132         default:
2133             break;
2134     }
2135 
2136     switch (sm_cmac_state){
2137         case CMAC_W4_SUBKEYS:
2138         case CMAC_W4_MI:
2139         case CMAC_W4_MLAST:
2140             {
2141             sm_key_t t;
2142             reverse_128(data, t);
2143             sm_cmac_handle_encryption_result(t);
2144             }
2145             return;
2146         default:
2147             break;
2148     }
2149 
2150     // retrieve sm_connection provided to sm_aes128_start_encryption
2151     sm_connection_t * connection = (sm_connection_t*) sm_aes128_context;
2152     if (!connection) return;
2153     switch (connection->sm_engine_state){
2154         case SM_PH2_C1_W4_ENC_A:
2155         case SM_PH2_C1_W4_ENC_C:
2156             {
2157             sm_key_t t2;
2158             reverse_128(data, t2);
2159             sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
2160             }
2161             sm_next_responding_state(connection);
2162             return;
2163         case SM_PH2_C1_W4_ENC_B:
2164             reverse_128(data, setup->sm_local_confirm);
2165             log_info_key("c1!", setup->sm_local_confirm);
2166             connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
2167             return;
2168         case SM_PH2_C1_W4_ENC_D:
2169             {
2170             sm_key_t peer_confirm_test;
2171             reverse_128(data, peer_confirm_test);
2172             log_info_key("c1!", peer_confirm_test);
2173             if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){
2174                 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
2175                 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2176                 return;
2177             }
2178             if (connection->sm_role){
2179                 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2180             } else {
2181                 connection->sm_engine_state = SM_PH2_CALC_STK;
2182             }
2183             }
2184             return;
2185         case SM_PH2_W4_STK:
2186             reverse_128(data, setup->sm_ltk);
2187             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2188             log_info_key("stk", setup->sm_ltk);
2189             if (connection->sm_role){
2190                 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2191             } else {
2192                 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2193             }
2194             return;
2195         case SM_PH3_Y_W4_ENC:{
2196             sm_key_t y128;
2197             reverse_128(data, y128);
2198             setup->sm_local_y = big_endian_read_16(y128, 14);
2199             log_info_hex16("y", setup->sm_local_y);
2200             // PH3B3 - calculate EDIV
2201             setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
2202             log_info_hex16("ediv", setup->sm_local_ediv);
2203             // PH3B4 - calculate LTK         - enc
2204             // LTK = d1(ER, DIV, 0))
2205             connection->sm_engine_state = SM_PH3_LTK_GET_ENC;
2206             return;
2207         }
2208         case SM_RESPONDER_PH4_Y_W4_ENC:{
2209             sm_key_t y128;
2210             reverse_128(data, y128);
2211             setup->sm_local_y = big_endian_read_16(y128, 14);
2212             log_info_hex16("y", setup->sm_local_y);
2213 
2214             // PH3B3 - calculate DIV
2215             setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
2216             log_info_hex16("ediv", setup->sm_local_ediv);
2217             // PH3B4 - calculate LTK         - enc
2218             // LTK = d1(ER, DIV, 0))
2219             connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC;
2220             return;
2221         }
2222         case SM_PH3_LTK_W4_ENC:
2223             reverse_128(data, setup->sm_ltk);
2224             log_info_key("ltk", setup->sm_ltk);
2225             // calc CSRK next
2226             connection->sm_engine_state = SM_PH3_CSRK_GET_ENC;
2227             return;
2228         case SM_PH3_CSRK_W4_ENC:
2229             reverse_128(data, setup->sm_local_csrk);
2230             log_info_key("csrk", setup->sm_local_csrk);
2231             if (setup->sm_key_distribution_send_set){
2232                 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
2233             } else {
2234                 // no keys to send, just continue
2235                 if (connection->sm_role){
2236                     // slave -> receive master keys
2237                     connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2238                 } else {
2239                     // master -> all done
2240                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2241                     sm_done_for_handle(connection->sm_handle);
2242                 }
2243             }
2244             return;
2245         case SM_RESPONDER_PH4_LTK_W4_ENC:
2246             reverse_128(data, setup->sm_ltk);
2247             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2248             log_info_key("ltk", setup->sm_ltk);
2249             connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK;
2250             return;
2251         default:
2252             break;
2253     }
2254 }
2255 
2256 // note: random generator is ready. this doesn NOT imply that aes engine is unused!
2257 static void sm_handle_random_result(uint8_t * data){
2258 
2259     switch (rau_state){
2260         case RAU_W4_RANDOM:
2261             // non-resolvable vs. resolvable
2262             switch (gap_random_adress_type){
2263                 case GAP_RANDOM_ADDRESS_RESOLVABLE:
2264                     // resolvable: use random as prand and calc address hash
2265                     // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
2266                     memcpy(sm_random_address, data, 3);
2267                     sm_random_address[0] &= 0x3f;
2268                     sm_random_address[0] |= 0x40;
2269                     rau_state = RAU_GET_ENC;
2270                     break;
2271                 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2272                 default:
2273                     // "The two most significant bits of the address shall be equal to ‘0’""
2274                     memcpy(sm_random_address, data, 6);
2275                     sm_random_address[0] &= 0x3f;
2276                     rau_state = RAU_SET_ADDRESS;
2277                     break;
2278             }
2279             return;
2280         default:
2281             break;
2282     }
2283 
2284     // retrieve sm_connection provided to sm_random_start
2285     sm_connection_t * connection = (sm_connection_t *) sm_random_context;
2286     if (!connection) return;
2287     switch (connection->sm_engine_state){
2288         case SM_PH2_W4_RANDOM_TK:
2289         {
2290             // map random to 0-999999 without speding much cycles on a modulus operation
2291             uint32_t tk = little_endian_read_32(data,0);
2292             tk = tk & 0xfffff;  // 1048575
2293             if (tk >= 999999){
2294                 tk = tk - 999999;
2295             }
2296             sm_reset_tk();
2297             big_endian_store_32(setup->sm_tk, 12, tk);
2298             if (connection->sm_role){
2299                 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
2300             } else {
2301                 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2302                 sm_trigger_user_response(connection);
2303                 // response_idle == nothing <--> sm_trigger_user_response() did not require response
2304                 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2305                     connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2306                 }
2307             }
2308             return;
2309         }
2310         case SM_PH2_C1_W4_RANDOM_A:
2311             memcpy(&setup->sm_local_random[0], data, 8); // random endinaness
2312             connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B;
2313             return;
2314         case SM_PH2_C1_W4_RANDOM_B:
2315             memcpy(&setup->sm_local_random[8], data, 8); // random endinaness
2316             connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
2317             return;
2318         case SM_PH3_W4_RANDOM:
2319             reverse_64(data, setup->sm_local_rand);
2320             // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2321             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1);
2322             // no db for authenticated flag hack: store flag in bit 4 of LSB
2323             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4);
2324             connection->sm_engine_state = SM_PH3_GET_DIV;
2325             return;
2326         case SM_PH3_W4_DIV:
2327             // use 16 bit from random value as div
2328             setup->sm_local_div = big_endian_read_16(data, 0);
2329             log_info_hex16("div", setup->sm_local_div);
2330             connection->sm_engine_state = SM_PH3_Y_GET_ENC;
2331             return;
2332         default:
2333             break;
2334     }
2335 }
2336 
2337 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
2338 
2339     sm_connection_t  * sm_conn;
2340     hci_con_handle_t con_handle;
2341 
2342     switch (packet_type) {
2343 
2344 		case HCI_EVENT_PACKET:
2345 			switch (hci_event_packet_get_type(packet)) {
2346 
2347                 case BTSTACK_EVENT_STATE:
2348 					// bt stack activated, get started
2349 					if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){
2350                         log_info("HCI Working!");
2351                         dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
2352                         rau_state = RAU_IDLE;
2353                         sm_run();
2354 					}
2355 					break;
2356 
2357                 case HCI_EVENT_LE_META:
2358                     switch (packet[2]) {
2359                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
2360 
2361                             log_info("sm: connected");
2362 
2363                             if (packet[3]) return; // connection failed
2364 
2365                             con_handle = little_endian_read_16(packet, 4);
2366                             sm_conn = sm_get_connection_for_handle(con_handle);
2367                             if (!sm_conn) break;
2368 
2369                             sm_conn->sm_handle = con_handle;
2370                             sm_conn->sm_role = packet[6];
2371                             sm_conn->sm_peer_addr_type = packet[7];
2372                             reverse_bd_addr(&packet[8],
2373                                             sm_conn->sm_peer_address);
2374 
2375                             log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
2376 
2377                             // reset security properties
2378                             sm_conn->sm_connection_encrypted = 0;
2379                             sm_conn->sm_connection_authenticated = 0;
2380                             sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
2381                             sm_conn->sm_le_db_index = -1;
2382 
2383                             // prepare CSRK lookup (does not involve setup)
2384                             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
2385 
2386                             // just connected -> everything else happens in sm_run()
2387                             if (sm_conn->sm_role){
2388                                 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead
2389                                 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
2390                                     if (sm_slave_request_security) {
2391                                         // request security if requested by app
2392                                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
2393                                     } else {
2394                                         // otherwise, wait for pairing request
2395                                         sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2396                                     }
2397                                 }
2398                                 break;
2399                             } else {
2400                                 // master
2401                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2402                             }
2403                             break;
2404 
2405                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
2406                             con_handle = little_endian_read_16(packet, 3);
2407                             sm_conn = sm_get_connection_for_handle(con_handle);
2408                             if (!sm_conn) break;
2409 
2410                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
2411                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
2412                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
2413                                 break;
2414                             }
2415                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
2416                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2417                                 break;
2418                             }
2419 
2420                             // assume that we don't have a LTK for ediv == 0 and random == null
2421                             if (little_endian_read_16(packet, 13) == 0 && sm_is_null_random(&packet[5])){
2422                                 log_info("LTK Request: ediv & random are empty");
2423                                 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
2424                                 break;
2425                             }
2426 
2427                             // store rand and ediv
2428                             reverse_64(&packet[5], sm_conn->sm_local_rand);
2429                             sm_conn->sm_local_ediv   = little_endian_read_16(packet, 13);
2430                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK;
2431                             break;
2432 
2433                         default:
2434                             break;
2435                     }
2436                     break;
2437 
2438                 case HCI_EVENT_ENCRYPTION_CHANGE:
2439                     con_handle = little_endian_read_16(packet, 3);
2440                     sm_conn = sm_get_connection_for_handle(con_handle);
2441                     if (!sm_conn) break;
2442 
2443                     sm_conn->sm_connection_encrypted = packet[5];
2444                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
2445                         sm_conn->sm_actual_encryption_key_size);
2446                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2447                     if (!sm_conn->sm_connection_encrypted) break;
2448                     // continue if part of initial pairing
2449                     switch (sm_conn->sm_engine_state){
2450                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2451                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2452                             sm_done_for_handle(sm_conn->sm_handle);
2453                             break;
2454                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2455                             if (sm_conn->sm_role){
2456                                 // slave
2457                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2458                             } else {
2459                                 // master
2460                                 if (sm_key_distribution_all_received(sm_conn)){
2461                                     // skip receiving keys as there are none
2462                                     sm_key_distribution_handle_all_received(sm_conn);
2463                                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2464                                 } else {
2465                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2466                                 }
2467                             }
2468                             break;
2469                         default:
2470                             break;
2471                     }
2472                     break;
2473 
2474                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
2475                     con_handle = little_endian_read_16(packet, 3);
2476                     sm_conn = sm_get_connection_for_handle(con_handle);
2477                     if (!sm_conn) break;
2478 
2479                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
2480                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2481                     // continue if part of initial pairing
2482                     switch (sm_conn->sm_engine_state){
2483                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2484                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2485                             sm_done_for_handle(sm_conn->sm_handle);
2486                             break;
2487                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2488                             if (sm_conn->sm_role){
2489                                 // slave
2490                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2491                             } else {
2492                                 // master
2493                                 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2494                             }
2495                             break;
2496                         default:
2497                             break;
2498                     }
2499                     break;
2500 
2501 
2502                 case HCI_EVENT_DISCONNECTION_COMPLETE:
2503                     con_handle = little_endian_read_16(packet, 3);
2504                     sm_done_for_handle(con_handle);
2505                     sm_conn = sm_get_connection_for_handle(con_handle);
2506                     if (!sm_conn) break;
2507 
2508                     // delete stored bonding on disconnect with authentication failure in ph0
2509                     if (sm_conn->sm_role == 0
2510                         && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED
2511                         && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){
2512                         le_device_db_remove(sm_conn->sm_le_db_index);
2513                     }
2514 
2515                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
2516                     sm_conn->sm_handle = 0;
2517                     break;
2518 
2519 				case HCI_EVENT_COMMAND_COMPLETE:
2520                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
2521                         sm_handle_encryption_result(&packet[6]);
2522                         break;
2523                     }
2524                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
2525                         sm_handle_random_result(&packet[6]);
2526                         break;
2527                     }
2528                     break;
2529                 default:
2530                     break;
2531 			}
2532             break;
2533         default:
2534             break;
2535 	}
2536 
2537     sm_run();
2538 }
2539 
2540 static inline int sm_calc_actual_encryption_key_size(int other){
2541     if (other < sm_min_encryption_key_size) return 0;
2542     if (other < sm_max_encryption_key_size) return other;
2543     return sm_max_encryption_key_size;
2544 }
2545 
2546 /**
2547  * @return ok
2548  */
2549 static int sm_validate_stk_generation_method(void){
2550     // check if STK generation method is acceptable by client
2551     switch (setup->sm_stk_generation_method){
2552         case JUST_WORKS:
2553             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
2554         case PK_RESP_INPUT:
2555         case PK_INIT_INPUT:
2556         case OK_BOTH_INPUT:
2557             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
2558         case OOB:
2559             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
2560         case NK_BOTH_INPUT:
2561             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0;
2562             return 1;
2563         default:
2564             return 0;
2565     }
2566 }
2567 
2568 // helper for sm_pdu_handler, calls sm_run on exit
2569 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
2570     setup->sm_pairing_failed_reason = reason;
2571     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2572 }
2573 
2574 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
2575     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
2576 }
2577 
2578 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
2579 
2580     if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){
2581         sm_run();
2582     }
2583 
2584     if (packet_type != SM_DATA_PACKET) return;
2585 
2586     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
2587     if (!sm_conn) return;
2588 
2589     if (packet[0] == SM_CODE_PAIRING_FAILED){
2590         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2591         return;
2592     }
2593 
2594     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]);
2595 
2596     int err;
2597 
2598     switch (sm_conn->sm_engine_state){
2599 
2600         // a sm timeout requries a new physical connection
2601         case SM_GENERAL_TIMEOUT:
2602             return;
2603 
2604         // Initiator
2605         case SM_INITIATOR_CONNECTED:
2606             if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
2607                 sm_pdu_received_in_wrong_state(sm_conn);
2608                 break;
2609             }
2610             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){
2611                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2612                 break;
2613             }
2614             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){
2615                 uint16_t ediv;
2616                 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
2617                 if (ediv){
2618                     log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
2619                     sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
2620                 } else {
2621                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2622                 }
2623                 break;
2624             }
2625             // otherwise, store security request
2626             sm_conn->sm_security_request_received = 1;
2627             break;
2628 
2629         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
2630             if (packet[0] != SM_CODE_PAIRING_RESPONSE){
2631                 sm_pdu_received_in_wrong_state(sm_conn);
2632                 break;
2633             }
2634             // store pairing request
2635             memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
2636             err = sm_stk_generation_init(sm_conn);
2637             if (err){
2638                 setup->sm_pairing_failed_reason = err;
2639                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2640                 break;
2641             }
2642 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2643             if (setup->sm_use_secure_connections){
2644                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
2645                 if (setup->sm_stk_generation_method == JUST_WORKS){
2646                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2647                     sm_trigger_user_response(sm_conn);
2648                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2649                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2650                     }
2651                 } else {
2652                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2653                 }
2654                 break;
2655             }
2656 #endif
2657             // generate random number first, if we need to show passkey
2658             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
2659                 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK;
2660                 break;
2661             }
2662             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2663             sm_trigger_user_response(sm_conn);
2664             // response_idle == nothing <--> sm_trigger_user_response() did not require response
2665             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2666                 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2667             }
2668             break;
2669 
2670         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
2671             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2672                 sm_pdu_received_in_wrong_state(sm_conn);
2673                 break;
2674             }
2675 
2676             // store s_confirm
2677             reverse_128(&packet[1], setup->sm_peer_confirm);
2678             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2679             break;
2680 
2681         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
2682             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2683                 sm_pdu_received_in_wrong_state(sm_conn);
2684                 break;;
2685             }
2686 
2687             // received random value
2688             reverse_128(&packet[1], setup->sm_peer_random);
2689             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2690             break;
2691 
2692         // Responder
2693         case SM_RESPONDER_IDLE:
2694         case SM_RESPONDER_SEND_SECURITY_REQUEST:
2695         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
2696             if (packet[0] != SM_CODE_PAIRING_REQUEST){
2697                 sm_pdu_received_in_wrong_state(sm_conn);
2698                 break;;
2699             }
2700 
2701             // store pairing request
2702             memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
2703             sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
2704             break;
2705 
2706 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2707         case SM_SC_W4_PUBLIC_KEY_COMMAND:
2708             if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){
2709                 sm_pdu_received_in_wrong_state(sm_conn);
2710                 break;
2711             }
2712 
2713             // store public key for DH Key calculation
2714             reverse_256(&packet[01], setup->sm_peer_qx);
2715             reverse_256(&packet[33], setup->sm_peer_qy);
2716 
2717 #ifdef USE_MBEDTLS_FOR_ECDH
2718             // validate public key
2719             mbedtls_ecp_group grp;
2720             mbedtls_ecp_group_init( &grp );
2721             mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
2722 
2723             mbedtls_ecp_point Q;
2724             mbedtls_ecp_point_init( &Q );
2725             mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
2726             mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
2727             mbedtls_mpi_read_string(&Q.Z, 16, "1" );
2728             err = mbedtls_ecp_check_pubkey(&grp, &Q);
2729             if (err){
2730                 log_error("sm: peer public key invalid %x", err);
2731                 // uses "unspecified reason", there is no "public key invalid" error code
2732                 sm_pdu_received_in_wrong_state(sm_conn);
2733                 break;
2734             }
2735 #endif
2736             if (sm_conn->sm_role){
2737                 // responder
2738                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2739             } else {
2740                 // initiator
2741                 // stk generation method
2742                 // passkey entry: notify app to show passkey or to request passkey
2743                 switch (setup->sm_stk_generation_method){
2744                     case JUST_WORKS:
2745                     case NK_BOTH_INPUT:
2746                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
2747                         break;
2748                     case PK_INIT_INPUT:
2749                     case PK_RESP_INPUT:
2750                     case OK_BOTH_INPUT:
2751                         sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
2752                         break;
2753                     case OOB:
2754                         // TODO: implement SC OOB
2755                         break;
2756                 }
2757             }
2758             break;
2759 
2760         case SM_SC_W4_CONFIRMATION:
2761             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2762                 sm_pdu_received_in_wrong_state(sm_conn);
2763                 break;
2764             }
2765             // received confirm value
2766             reverse_128(&packet[1], setup->sm_peer_confirm);
2767 
2768             if (sm_conn->sm_role){
2769                 // responder
2770                 sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
2771             } else {
2772                 // initiator
2773                 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
2774             }
2775             break;
2776 
2777         case SM_SC_W4_PAIRING_RANDOM:
2778             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2779                 sm_pdu_received_in_wrong_state(sm_conn);
2780                 break;
2781             }
2782 
2783             // received random value
2784             reverse_128(&packet[1], setup->sm_peer_nonce);
2785 
2786             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
2787             uint8_t z = 0;
2788             int passkey_entry = 0;
2789             if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
2790                 // some form of passkey
2791                 passkey_entry = 1;
2792                 uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
2793                 // sm_passkey_bit was increased before sending confirm value
2794                 z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1);
2795             }
2796             // only check for JUST WORK/NC in initiator role AND passkey entry
2797             if (sm_conn->sm_role || passkey_entry) {
2798                 sm_key_t confirm_value;
2799 #ifdef USE_MBEDTLS_FOR_ECDH
2800                 uint8_t local_qx[32];
2801                 mbedtls_mpi_write_binary(&le_keypair.Q.X, local_qx, sizeof(local_qx));
2802                 f4(confirm_value, setup->sm_peer_qx, local_qx, setup->sm_peer_nonce, z);
2803 #endif
2804                 if (0 != memcmp(confirm_value, setup->sm_peer_confirm, 16)){
2805                     sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
2806                     break;
2807                 }
2808             }
2809 
2810             if (sm_conn->sm_role){
2811                 // Responder
2812                 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
2813             } else {
2814                 // Initiator role
2815                 switch (setup->sm_stk_generation_method){
2816                     case JUST_WORKS:
2817                         sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
2818                         break;
2819 
2820                     case NK_BOTH_INPUT: {
2821                         // calc Va if numeric comparison
2822                         // TODO: use AES Engine to calculate g2
2823                         uint8_t value[32];
2824                         mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
2825                         uint32_t va = g2(value, setup->sm_peer_qx, setup->sm_local_nonce, setup->sm_peer_nonce) % 1000000;
2826                         big_endian_store_32(setup->sm_tk, 12, va);
2827                         sm_trigger_user_response(sm_conn);
2828                         break;
2829                     }
2830                     case PK_INIT_INPUT:
2831                     case PK_RESP_INPUT:
2832                     case OK_BOTH_INPUT:
2833                         if (setup->sm_passkey_bit < 20) {
2834                             sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
2835                         } else {
2836                             sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
2837                         }
2838                         break;
2839                     case OOB:
2840                         // TODO: implement SC OOB
2841                         break;
2842                 }
2843             }
2844             break;
2845 
2846         case SM_SC_W4_DHKEY_CHECK_COMMAND:
2847             if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){
2848                 sm_pdu_received_in_wrong_state(sm_conn);
2849                 break;
2850             }
2851             // store DHKey Check
2852             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
2853 
2854             // validate E = f6()
2855             sm_key56_t bd_addr_master, bd_addr_slave;
2856             bd_addr_master[0] =  setup->sm_m_addr_type;
2857             bd_addr_slave[0]  =  setup->sm_s_addr_type;
2858             memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
2859             memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
2860 
2861             uint8_t iocap_a[3];
2862             iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2863             iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2864             iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2865             uint8_t iocap_b[3];
2866             iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2867             iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2868             iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2869             sm_key_t peer_dhkey_check;
2870             if (sm_conn->sm_role){
2871                 // responder
2872                 f6(peer_dhkey_check, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2873             } else {
2874                 // initiator
2875                 f6(peer_dhkey_check, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2876             }
2877 
2878             if (0 != memcmp(setup->sm_peer_dhkey_check, peer_dhkey_check, 16) ){
2879                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
2880                 break;
2881             }
2882 
2883             if (sm_conn->sm_role){
2884                 // responder
2885                 // for numeric comparison, we need to wait for user confirm
2886                 if (setup->sm_stk_generation_method == NK_BOTH_INPUT && setup->sm_user_response != SM_USER_RESPONSE_CONFIRM){
2887                     sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
2888                 } else {
2889                     sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
2890                 }
2891             } else {
2892                 // initiator
2893                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2894             }
2895             break;
2896 #endif
2897 
2898         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
2899             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2900                 sm_pdu_received_in_wrong_state(sm_conn);
2901                 break;
2902             }
2903 
2904             // received confirm value
2905             reverse_128(&packet[1], setup->sm_peer_confirm);
2906 
2907             // notify client to hide shown passkey
2908             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
2909                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
2910             }
2911 
2912             // handle user cancel pairing?
2913             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
2914                 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
2915                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2916                 break;
2917             }
2918 
2919             // wait for user action?
2920             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
2921                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2922                 break;
2923             }
2924 
2925             // calculate and send local_confirm
2926             sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2927             break;
2928 
2929         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
2930             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2931                 sm_pdu_received_in_wrong_state(sm_conn);
2932                 break;;
2933             }
2934 
2935             // received random value
2936             reverse_128(&packet[1], setup->sm_peer_random);
2937             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2938             break;
2939 
2940         case SM_PH3_RECEIVE_KEYS:
2941             switch(packet[0]){
2942                 case SM_CODE_ENCRYPTION_INFORMATION:
2943                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2944                     reverse_128(&packet[1], setup->sm_peer_ltk);
2945                     break;
2946 
2947                 case SM_CODE_MASTER_IDENTIFICATION:
2948                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2949                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
2950                     reverse_64(&packet[3], setup->sm_peer_rand);
2951                     break;
2952 
2953                 case SM_CODE_IDENTITY_INFORMATION:
2954                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2955                     reverse_128(&packet[1], setup->sm_peer_irk);
2956                     break;
2957 
2958                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
2959                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2960                     setup->sm_peer_addr_type = packet[1];
2961                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
2962                     break;
2963 
2964                 case SM_CODE_SIGNING_INFORMATION:
2965                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2966                     reverse_128(&packet[1], setup->sm_peer_csrk);
2967                     break;
2968                 default:
2969                     // Unexpected PDU
2970                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
2971                     break;
2972             }
2973             // done with key distribution?
2974             if (sm_key_distribution_all_received(sm_conn)){
2975 
2976                 sm_key_distribution_handle_all_received(sm_conn);
2977 
2978                 if (sm_conn->sm_role){
2979                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2980                     sm_done_for_handle(sm_conn->sm_handle);
2981                 } else {
2982                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2983 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2984                     if (setup->sm_use_secure_connections){
2985                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
2986                     }
2987 #endif
2988                 }
2989             }
2990             break;
2991         default:
2992             // Unexpected PDU
2993             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
2994             break;
2995     }
2996 
2997     // try to send preparared packet
2998     sm_run();
2999 }
3000 
3001 // Security Manager Client API
3002 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){
3003     sm_get_oob_data = get_oob_data_callback;
3004 }
3005 
3006 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
3007     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
3008 }
3009 
3010 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
3011     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
3012 }
3013 
3014 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
3015 	sm_min_encryption_key_size = min_size;
3016 	sm_max_encryption_key_size = max_size;
3017 }
3018 
3019 void sm_set_authentication_requirements(uint8_t auth_req){
3020     sm_auth_req = auth_req;
3021 }
3022 
3023 void sm_set_io_capabilities(io_capability_t io_capability){
3024     sm_io_capabilities = io_capability;
3025 }
3026 
3027 void sm_set_request_security(int enable){
3028     sm_slave_request_security = enable;
3029 }
3030 
3031 void sm_set_er(sm_key_t er){
3032     memcpy(sm_persistent_er, er, 16);
3033 }
3034 
3035 void sm_set_ir(sm_key_t ir){
3036     memcpy(sm_persistent_ir, ir, 16);
3037 }
3038 
3039 // Testing support only
3040 void sm_test_set_irk(sm_key_t irk){
3041     memcpy(sm_persistent_irk, irk, 16);
3042     sm_persistent_irk_ready = 1;
3043 }
3044 
3045 void sm_test_use_fixed_local_csrk(void){
3046     test_use_fixed_local_csrk = 1;
3047 }
3048 
3049 void sm_init(void){
3050     // set some (BTstack default) ER and IR
3051     int i;
3052     sm_key_t er;
3053     sm_key_t ir;
3054     for (i=0;i<16;i++){
3055         er[i] = 0x30 + i;
3056         ir[i] = 0x90 + i;
3057     }
3058     sm_set_er(er);
3059     sm_set_ir(ir);
3060     // defaults
3061     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
3062                                        | SM_STK_GENERATION_METHOD_OOB
3063                                        | SM_STK_GENERATION_METHOD_PASSKEY
3064                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
3065 
3066     sm_max_encryption_key_size = 16;
3067     sm_min_encryption_key_size = 7;
3068 
3069     sm_cmac_state  = CMAC_IDLE;
3070     dkg_state = DKG_W4_WORKING;
3071     rau_state = RAU_W4_WORKING;
3072     sm_aes128_state = SM_AES128_IDLE;
3073     sm_address_resolution_test = -1;    // no private address to resolve yet
3074     sm_address_resolution_ah_calculation_active = 0;
3075     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
3076     sm_address_resolution_general_queue = NULL;
3077 
3078     gap_random_adress_update_period = 15 * 60 * 1000L;
3079 
3080     sm_active_connection = 0;
3081 
3082     test_use_fixed_local_csrk = 0;
3083 
3084     // register for HCI Events from HCI
3085     hci_event_callback_registration.callback = &sm_event_packet_handler;
3086     hci_add_event_handler(&hci_event_callback_registration);
3087 
3088     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
3089     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
3090 
3091 #ifdef USE_MBEDTLS_FOR_ECDH
3092     // TODO: calculate keypair using LE Random Number Generator
3093     // use test keypair from spec initially
3094     mbedtls_ecp_keypair_init(&le_keypair);
3095     mbedtls_ecp_group_load(&le_keypair.grp, MBEDTLS_ECP_DP_SECP256R1);
3096     mbedtls_mpi_read_string( &le_keypair.d,   16, "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd");
3097     mbedtls_mpi_read_string( &le_keypair.Q.X, 16, "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6");
3098     mbedtls_mpi_read_string( &le_keypair.Q.Y, 16, "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b");
3099     mbedtls_mpi_read_string( &le_keypair.Q.Z, 16, "1");
3100     // print keypair
3101     char buffer[100];
3102     size_t len;
3103     mbedtls_mpi_write_string( &le_keypair.d, 16, buffer, sizeof(buffer), &len);
3104     log_info("d: %s", buffer);
3105     mbedtls_mpi_write_string( &le_keypair.Q.X, 16, buffer, sizeof(buffer), &len);
3106     log_info("X: %s", buffer);
3107     mbedtls_mpi_write_string( &le_keypair.Q.Y, 16, buffer, sizeof(buffer), &len);
3108     log_info("Y: %s", buffer);
3109 #endif
3110 }
3111 
3112 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
3113     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
3114     if (!hci_con) return NULL;
3115     return &hci_con->sm_connection;
3116 }
3117 
3118 // @returns 0 if not encrypted, 7-16 otherwise
3119 int sm_encryption_key_size(hci_con_handle_t con_handle){
3120     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3121     if (!sm_conn) return 0;     // wrong connection
3122     if (!sm_conn->sm_connection_encrypted) return 0;
3123     return sm_conn->sm_actual_encryption_key_size;
3124 }
3125 
3126 int sm_authenticated(hci_con_handle_t con_handle){
3127     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3128     if (!sm_conn) return 0;     // wrong connection
3129     if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
3130     return sm_conn->sm_connection_authenticated;
3131 }
3132 
3133 authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){
3134     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3135     if (!sm_conn) return AUTHORIZATION_UNKNOWN;     // wrong connection
3136     if (!sm_conn->sm_connection_encrypted)               return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
3137     if (!sm_conn->sm_connection_authenticated)           return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
3138     return sm_conn->sm_connection_authorization_state;
3139 }
3140 
3141 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){
3142     switch (sm_conn->sm_engine_state){
3143         case SM_GENERAL_IDLE:
3144         case SM_RESPONDER_IDLE:
3145             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
3146             sm_run();
3147             break;
3148         default:
3149             break;
3150     }
3151 }
3152 
3153 /**
3154  * @brief Trigger Security Request
3155  */
3156 void sm_send_security_request(hci_con_handle_t con_handle){
3157     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3158     if (!sm_conn) return;
3159     sm_send_security_request_for_connection(sm_conn);
3160 }
3161 
3162 // request pairing
3163 void sm_request_pairing(hci_con_handle_t con_handle){
3164     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3165     if (!sm_conn) return;     // wrong connection
3166 
3167     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
3168     if (sm_conn->sm_role){
3169         sm_send_security_request_for_connection(sm_conn);
3170     } else {
3171         // used as a trigger to start central/master/initiator security procedures
3172         uint16_t ediv;
3173         if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){
3174             switch (sm_conn->sm_irk_lookup_state){
3175                 case IRK_LOOKUP_FAILED:
3176                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3177                     break;
3178                 case IRK_LOOKUP_SUCCEEDED:
3179                         le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
3180                         if (ediv){
3181                             log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
3182                             sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
3183                         } else {
3184                             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3185                         }
3186                         break;
3187                 default:
3188                     sm_conn->sm_bonding_requested = 1;
3189                     break;
3190             }
3191         } else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
3192             sm_conn->sm_bonding_requested = 1;
3193         }
3194     }
3195     sm_run();
3196 }
3197 
3198 // called by client app on authorization request
3199 void sm_authorization_decline(hci_con_handle_t con_handle){
3200     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3201     if (!sm_conn) return;     // wrong connection
3202     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
3203     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
3204 }
3205 
3206 void sm_authorization_grant(hci_con_handle_t con_handle){
3207     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3208     if (!sm_conn) return;     // wrong connection
3209     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
3210     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
3211 }
3212 
3213 // GAP Bonding API
3214 
3215 void sm_bonding_decline(hci_con_handle_t con_handle){
3216     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3217     if (!sm_conn) return;     // wrong connection
3218     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
3219 
3220     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3221         switch (setup->sm_stk_generation_method){
3222             case PK_RESP_INPUT:
3223             case PK_INIT_INPUT:
3224             case OK_BOTH_INPUT:
3225                 sm_pairing_error(sm_conn, SM_GENERAL_SEND_PAIRING_FAILED);
3226                 break;
3227             case NK_BOTH_INPUT:
3228                 sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
3229                 break;
3230             case JUST_WORKS:
3231             case OOB:
3232                 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
3233                 break;
3234         }
3235     }
3236     sm_run();
3237 }
3238 
3239 void sm_just_works_confirm(hci_con_handle_t con_handle){
3240     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3241     if (!sm_conn) return;     // wrong connection
3242     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
3243     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3244         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3245 
3246 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3247         if (setup->sm_use_secure_connections){
3248             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3249         }
3250 #endif
3251     }
3252     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
3253         if (sm_conn->sm_role){
3254             // responder
3255             sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
3256         } else {
3257             // initiator
3258             // TODO handle intiator role
3259         }
3260     }
3261     sm_run();
3262 }
3263 
3264 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
3265     // for now, it's the same
3266     sm_just_works_confirm(con_handle);
3267 }
3268 
3269 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
3270     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3271     if (!sm_conn) return;     // wrong connection
3272     sm_reset_tk();
3273     big_endian_store_32(setup->sm_tk, 12, passkey);
3274     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
3275     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3276         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3277     }
3278     sm_run();
3279 }
3280 
3281 /**
3282  * @brief Identify device in LE Device DB
3283  * @param handle
3284  * @returns index from le_device_db or -1 if not found/identified
3285  */
3286 int sm_le_device_index(hci_con_handle_t con_handle ){
3287     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3288     if (!sm_conn) return -1;
3289     return sm_conn->sm_le_db_index;
3290 }
3291 
3292 // GAP LE API
3293 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
3294     gap_random_address_update_stop();
3295     gap_random_adress_type = random_address_type;
3296     if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3297     gap_random_address_update_start();
3298     gap_random_address_trigger();
3299 }
3300 
3301 gap_random_address_type_t gap_random_address_get_mode(void){
3302     return gap_random_adress_type;
3303 }
3304 
3305 void gap_random_address_set_update_period(int period_ms){
3306     gap_random_adress_update_period = period_ms;
3307     if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3308     gap_random_address_update_stop();
3309     gap_random_address_update_start();
3310 }
3311 
3312 void gap_random_address_set(bd_addr_t addr){
3313     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_OFF);
3314     memcpy(sm_random_address, addr, 6);
3315     rau_state = RAU_SET_ADDRESS;
3316     sm_run();
3317 }
3318 
3319 /*
3320  * @brief Set Advertisement Paramters
3321  * @param adv_int_min
3322  * @param adv_int_max
3323  * @param adv_type
3324  * @param direct_address_type
3325  * @param direct_address
3326  * @param channel_map
3327  * @param filter_policy
3328  *
3329  * @note own_address_type is used from gap_random_address_set_mode
3330  */
3331 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
3332     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
3333     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, gap_random_adress_type,
3334         direct_address_typ, direct_address, channel_map, filter_policy);
3335 }
3336 
3337