xref: /btstack/src/ble/sm.c (revision 5a293e6e96d0ea88e40e5672b81c67cf48e473d9)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #include <stdio.h>
39 #include <string.h>
40 #include <inttypes.h>
41 
42 #include "ble/le_device_db.h"
43 #include "ble/core.h"
44 #include "ble/sm.h"
45 #include "btstack_debug.h"
46 #include "btstack_event.h"
47 #include "btstack_linked_list.h"
48 #include "btstack_memory.h"
49 #include "gap.h"
50 #include "hci.h"
51 #include "l2cap.h"
52 
53 #ifdef ENABLE_LE_SECURE_CONNECTIONS
54 // TODO: remove software AES
55 #include "rijndael.h"
56 #endif
57 
58 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(HAVE_HCI_CONTROLLER_DHKEY_SUPPORT)
59 #define USE_MBEDTLS_FOR_ECDH
60 #endif
61 
62 // Software ECDH implementation provided by mbedtls
63 #ifdef USE_MBEDTLS_FOR_ECDH
64 #if !defined(MBEDTLS_CONFIG_FILE)
65 #include "mbedtls/config.h"
66 #else
67 #include MBEDTLS_CONFIG_FILE
68 #endif
69 #if defined(MBEDTLS_PLATFORM_C)
70 #include "mbedtls/platform.h"
71 #else
72 #include <stdio.h>
73 #define mbedtls_printf     printf
74 #endif
75 #include "mbedtls/ecp.h"
76 #endif
77 
78 //
79 // SM internal types and globals
80 //
81 
82 typedef enum {
83     DKG_W4_WORKING,
84     DKG_CALC_IRK,
85     DKG_W4_IRK,
86     DKG_CALC_DHK,
87     DKG_W4_DHK,
88     DKG_READY
89 } derived_key_generation_t;
90 
91 typedef enum {
92     RAU_W4_WORKING,
93     RAU_IDLE,
94     RAU_GET_RANDOM,
95     RAU_W4_RANDOM,
96     RAU_GET_ENC,
97     RAU_W4_ENC,
98     RAU_SET_ADDRESS,
99 } random_address_update_t;
100 
101 typedef enum {
102     CMAC_IDLE,
103     CMAC_CALC_SUBKEYS,
104     CMAC_W4_SUBKEYS,
105     CMAC_CALC_MI,
106     CMAC_W4_MI,
107     CMAC_CALC_MLAST,
108     CMAC_W4_MLAST
109 } cmac_state_t;
110 
111 typedef enum {
112     JUST_WORKS,
113     PK_RESP_INPUT,  // Initiator displays PK, responder inputs PK
114     PK_INIT_INPUT,  // Responder displays PK, initiator inputs PK
115     OK_BOTH_INPUT,  // Only input on both, both input PK
116     NK_BOTH_INPUT,  // Only numerical compparison (yes/no) on on both sides
117     OOB             // OOB available on both sides
118 } stk_generation_method_t;
119 
120 typedef enum {
121     SM_USER_RESPONSE_IDLE,
122     SM_USER_RESPONSE_PENDING,
123     SM_USER_RESPONSE_CONFIRM,
124     SM_USER_RESPONSE_PASSKEY,
125     SM_USER_RESPONSE_DECLINE
126 } sm_user_response_t;
127 
128 typedef enum {
129     SM_AES128_IDLE,
130     SM_AES128_ACTIVE
131 } sm_aes128_state_t;
132 
133 typedef enum {
134     ADDRESS_RESOLUTION_IDLE,
135     ADDRESS_RESOLUTION_GENERAL,
136     ADDRESS_RESOLUTION_FOR_CONNECTION,
137 } address_resolution_mode_t;
138 
139 typedef enum {
140     ADDRESS_RESOLUTION_SUCEEDED,
141     ADDRESS_RESOLUTION_FAILED,
142 } address_resolution_event_t;
143 //
144 // GLOBAL DATA
145 //
146 
147 static uint8_t test_use_fixed_local_csrk;
148 
149 // configuration
150 static uint8_t sm_accepted_stk_generation_methods;
151 static uint8_t sm_max_encryption_key_size;
152 static uint8_t sm_min_encryption_key_size;
153 static uint8_t sm_auth_req = 0;
154 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
155 static uint8_t sm_slave_request_security;
156 
157 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
158 static sm_key_t sm_persistent_er;
159 static sm_key_t sm_persistent_ir;
160 
161 // derived from sm_persistent_ir
162 static sm_key_t sm_persistent_dhk;
163 static sm_key_t sm_persistent_irk;
164 static uint8_t  sm_persistent_irk_ready = 0;    // used for testing
165 static derived_key_generation_t dkg_state;
166 
167 // derived from sm_persistent_er
168 // ..
169 
170 // random address update
171 static random_address_update_t rau_state;
172 static bd_addr_t sm_random_address;
173 
174 // CMAC calculation
175 static cmac_state_t sm_cmac_state;
176 static sm_key_t     sm_cmac_k;
177 static uint8_t      sm_cmac_header[3];
178 static uint16_t     sm_cmac_message_len;
179 static uint8_t *    sm_cmac_message;
180 static uint8_t      sm_cmac_sign_counter[4];
181 static sm_key_t     sm_cmac_m_last;
182 static sm_key_t     sm_cmac_x;
183 static uint8_t      sm_cmac_block_current;
184 static uint8_t      sm_cmac_block_count;
185 static void (*sm_cmac_done_handler)(uint8_t hash[8]);
186 
187 // resolvable private address lookup / CSRK calculation
188 static int       sm_address_resolution_test;
189 static int       sm_address_resolution_ah_calculation_active;
190 static uint8_t   sm_address_resolution_addr_type;
191 static bd_addr_t sm_address_resolution_address;
192 static void *    sm_address_resolution_context;
193 static address_resolution_mode_t sm_address_resolution_mode;
194 static btstack_linked_list_t sm_address_resolution_general_queue;
195 
196 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context
197 static sm_aes128_state_t  sm_aes128_state;
198 static void *             sm_aes128_context;
199 
200 // random engine. store context (ususally sm_connection_t)
201 static void * sm_random_context;
202 
203 // to receive hci events
204 static btstack_packet_callback_registration_t hci_event_callback_registration;
205 
206 /* to dispatch sm event */
207 static btstack_linked_list_t sm_event_handlers;
208 
209 // Software ECDH implementation provided by mbedtls
210 #ifdef USE_MBEDTLS_FOR_ECDH
211 mbedtls_ecp_keypair le_keypair;
212 #endif
213 
214 //
215 // Volume 3, Part H, Chapter 24
216 // "Security shall be initiated by the Security Manager in the device in the master role.
217 // The device in the slave role shall be the responding device."
218 // -> master := initiator, slave := responder
219 //
220 
221 // data needed for security setup
222 typedef struct sm_setup_context {
223 
224     btstack_timer_source_t sm_timeout;
225 
226     // used in all phases
227     uint8_t   sm_pairing_failed_reason;
228 
229     // user response, (Phase 1 and/or 2)
230     uint8_t   sm_user_response;
231 
232     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
233     int       sm_key_distribution_send_set;
234     int       sm_key_distribution_received_set;
235 
236     // Phase 2 (Pairing over SMP)
237     stk_generation_method_t sm_stk_generation_method;
238     sm_key_t  sm_tk;
239     uint8_t   sm_use_secure_connections;
240 
241     sm_key_t  sm_c1_t3_value;   // c1 calculation
242     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
243     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
244     sm_key_t  sm_local_random;
245     sm_key_t  sm_local_confirm;
246     sm_key_t  sm_peer_random;
247     sm_key_t  sm_peer_confirm;
248     uint8_t   sm_m_addr_type;   // address and type can be removed
249     uint8_t   sm_s_addr_type;   //  ''
250     bd_addr_t sm_m_address;     //  ''
251     bd_addr_t sm_s_address;     //  ''
252     sm_key_t  sm_ltk;
253 
254 #ifdef ENABLE_LE_SECURE_CONNECTIONS
255     uint8_t   sm_peer_qx[32];
256     uint8_t   sm_peer_qy[32];
257     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
258     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
259     sm_key_t  sm_peer_dhkey_check;
260     sm_key_t  sm_local_dhkey_check;
261     sm_key_t  sm_ra;
262     sm_key_t  sm_rb;
263     sm_key_t  sm_mackey;
264     uint8_t   sm_passkey_bit;
265 #endif
266 
267     // Phase 3
268 
269     // key distribution, we generate
270     uint16_t  sm_local_y;
271     uint16_t  sm_local_div;
272     uint16_t  sm_local_ediv;
273     uint8_t   sm_local_rand[8];
274     sm_key_t  sm_local_ltk;
275     sm_key_t  sm_local_csrk;
276     sm_key_t  sm_local_irk;
277     // sm_local_address/addr_type not needed
278 
279     // key distribution, received from peer
280     uint16_t  sm_peer_y;
281     uint16_t  sm_peer_div;
282     uint16_t  sm_peer_ediv;
283     uint8_t   sm_peer_rand[8];
284     sm_key_t  sm_peer_ltk;
285     sm_key_t  sm_peer_irk;
286     sm_key_t  sm_peer_csrk;
287     uint8_t   sm_peer_addr_type;
288     bd_addr_t sm_peer_address;
289 
290 } sm_setup_context_t;
291 
292 //
293 static sm_setup_context_t the_setup;
294 static sm_setup_context_t * setup = &the_setup;
295 
296 // active connection - the one for which the_setup is used for
297 static uint16_t sm_active_connection = 0;
298 
299 // @returns 1 if oob data is available
300 // stores oob data in provided 16 byte buffer if not null
301 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
302 
303 // used to notify applicationss that user interaction is neccessary, see sm_notify_t below
304 static btstack_packet_handler_t sm_client_packet_handler = NULL;
305 
306 // horizontal: initiator capabilities
307 // vertial:    responder capabilities
308 static const stk_generation_method_t stk_generation_method [5] [5] = {
309     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
310     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
311     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
312     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
313     { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
314 };
315 
316 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
317 #ifdef ENABLE_LE_SECURE_CONNECTIONS
318 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
319     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
320     { JUST_WORKS,      NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
321     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
322     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
323     { PK_RESP_INPUT,   NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
324 };
325 #endif
326 
327 static void sm_run(void);
328 static void sm_done_for_handle(hci_con_handle_t con_handle);
329 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
330 static inline int sm_calc_actual_encryption_key_size(int other);
331 static int sm_validate_stk_generation_method(void);
332 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data);
333 
334 static void log_info_hex16(const char * name, uint16_t value){
335     log_info("%-6s 0x%04x", name, value);
336 }
337 
338 // @returns 1 if all bytes are 0
339 static int sm_is_null_random(uint8_t random[8]){
340     int i;
341     for (i=0; i < 8 ; i++){
342         if (random[i]) return 0;
343     }
344     return 1;
345 }
346 
347 // Key utils
348 static void sm_reset_tk(void){
349     int i;
350     for (i=0;i<16;i++){
351         setup->sm_tk[i] = 0;
352     }
353 }
354 
355 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
356 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
357 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
358     int i;
359     for (i = max_encryption_size ; i < 16 ; i++){
360         key[15-i] = 0;
361     }
362 }
363 
364 // SMP Timeout implementation
365 
366 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
367 // the Security Manager Timer shall be reset and started.
368 //
369 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
370 //
371 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
372 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
373 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
374 // established.
375 
376 static void sm_timeout_handler(btstack_timer_source_t * timer){
377     log_info("SM timeout");
378     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
379     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
380     sm_done_for_handle(sm_conn->sm_handle);
381 
382     // trigger handling of next ready connection
383     sm_run();
384 }
385 static void sm_timeout_start(sm_connection_t * sm_conn){
386     btstack_run_loop_remove_timer(&setup->sm_timeout);
387     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
388     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
389     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
390     btstack_run_loop_add_timer(&setup->sm_timeout);
391 }
392 static void sm_timeout_stop(void){
393     btstack_run_loop_remove_timer(&setup->sm_timeout);
394 }
395 static void sm_timeout_reset(sm_connection_t * sm_conn){
396     sm_timeout_stop();
397     sm_timeout_start(sm_conn);
398 }
399 
400 // end of sm timeout
401 
402 // GAP Random Address updates
403 static gap_random_address_type_t gap_random_adress_type;
404 static btstack_timer_source_t gap_random_address_update_timer;
405 static uint32_t gap_random_adress_update_period;
406 
407 static void gap_random_address_trigger(void){
408     if (rau_state != RAU_IDLE) return;
409     log_info("gap_random_address_trigger");
410     rau_state = RAU_GET_RANDOM;
411     sm_run();
412 }
413 
414 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
415     log_info("GAP Random Address Update due");
416     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
417     btstack_run_loop_add_timer(&gap_random_address_update_timer);
418     gap_random_address_trigger();
419 }
420 
421 static void gap_random_address_update_start(void){
422     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
423     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
424     btstack_run_loop_add_timer(&gap_random_address_update_timer);
425 }
426 
427 static void gap_random_address_update_stop(void){
428     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
429 }
430 
431 
432 static void sm_random_start(void * context){
433     sm_random_context = context;
434     hci_send_cmd(&hci_le_rand);
435 }
436 
437 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1
438 // context is made availabe to aes128 result handler by this
439 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){
440     sm_aes128_state = SM_AES128_ACTIVE;
441     sm_key_t key_flipped, plaintext_flipped;
442     reverse_128(key, key_flipped);
443     reverse_128(plaintext, plaintext_flipped);
444     sm_aes128_context = context;
445     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
446 }
447 
448 // ah(k,r) helper
449 // r = padding || r
450 // r - 24 bit value
451 static void sm_ah_r_prime(uint8_t r[3], sm_key_t r_prime){
452     // r'= padding || r
453     memset(r_prime, 0, 16);
454     memcpy(&r_prime[13], r, 3);
455 }
456 
457 // d1 helper
458 // d' = padding || r || d
459 // d,r - 16 bit values
460 static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){
461     // d'= padding || r || d
462     memset(d1_prime, 0, 16);
463     big_endian_store_16(d1_prime, 12, r);
464     big_endian_store_16(d1_prime, 14, d);
465 }
466 
467 // dm helper
468 // r’ = padding || r
469 // r - 64 bit value
470 static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){
471     memset(r_prime, 0, 16);
472     memcpy(&r_prime[8], r, 8);
473 }
474 
475 // calculate arguments for first AES128 operation in C1 function
476 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){
477 
478     // p1 = pres || preq || rat’ || iat’
479     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
480     // cant octet of pres becomes the most significant octet of p1.
481     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
482     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
483     // p1 is 0x05000800000302070710000001010001."
484 
485     sm_key_t p1;
486     reverse_56(pres, &p1[0]);
487     reverse_56(preq, &p1[7]);
488     p1[14] = rat;
489     p1[15] = iat;
490     log_info_key("p1", p1);
491     log_info_key("r", r);
492 
493     // t1 = r xor p1
494     int i;
495     for (i=0;i<16;i++){
496         t1[i] = r[i] ^ p1[i];
497     }
498     log_info_key("t1", t1);
499 }
500 
501 // calculate arguments for second AES128 operation in C1 function
502 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){
503      // p2 = padding || ia || ra
504     // "The least significant octet of ra becomes the least significant octet of p2 and
505     // the most significant octet of padding becomes the most significant octet of p2.
506     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
507     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
508 
509     sm_key_t p2;
510     memset(p2, 0, 16);
511     memcpy(&p2[4],  ia, 6);
512     memcpy(&p2[10], ra, 6);
513     log_info_key("p2", p2);
514 
515     // c1 = e(k, t2_xor_p2)
516     int i;
517     for (i=0;i<16;i++){
518         t3[i] = t2[i] ^ p2[i];
519     }
520     log_info_key("t3", t3);
521 }
522 
523 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){
524     log_info_key("r1", r1);
525     log_info_key("r2", r2);
526     memcpy(&r_prime[8], &r2[8], 8);
527     memcpy(&r_prime[0], &r1[8], 8);
528 }
529 
530 #ifdef ENABLE_LE_SECURE_CONNECTIONS
531 // Software implementations of crypto toolbox for LE Secure Connection
532 // TODO: replace with code to use AES Engine of HCI Controller
533 typedef uint8_t sm_key24_t[3];
534 typedef uint8_t sm_key56_t[7];
535 typedef uint8_t sm_key256_t[32];
536 
537 static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){
538     uint32_t rk[RKLENGTH(KEYBITS)];
539     int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
540     rijndaelEncrypt(rk, nrounds, plaintext, cyphertext);
541 }
542 
543 static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
544     memcpy(k1, k0, 16);
545     sm_shift_left_by_one_bit_inplace(16, k1);
546     if (k0[0] & 0x80){
547         k1[15] ^= 0x87;
548     }
549     memcpy(k2, k1, 16);
550     sm_shift_left_by_one_bit_inplace(16, k2);
551     if (k1[0] & 0x80){
552         k2[15] ^= 0x87;
553     }
554 }
555 
556 static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){
557     sm_key_t k0, k1, k2, zero;
558     memset(zero, 0, 16);
559 
560     aes128_calc_cyphertext(key, zero, k0);
561     calc_subkeys(k0, k1, k2);
562 
563     int cmac_block_count = (cmac_message_len + 15) / 16;
564 
565     // step 3: ..
566     if (cmac_block_count==0){
567         cmac_block_count = 1;
568     }
569 
570     // step 4: set m_last
571     sm_key_t cmac_m_last;
572     int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0;
573     int i;
574     if (sm_cmac_last_block_complete){
575         for (i=0;i<16;i++){
576             cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i];
577         }
578     } else {
579         int valid_octets_in_last_block = cmac_message_len & 0x0f;
580         for (i=0;i<16;i++){
581             if (i < valid_octets_in_last_block){
582                 cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i];
583                 continue;
584             }
585             if (i == valid_octets_in_last_block){
586                 cmac_m_last[i] = 0x80 ^ k2[i];
587                 continue;
588             }
589             cmac_m_last[i] = k2[i];
590         }
591     }
592 
593     // printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count);
594     // LOG_KEY(cmac_m_last);
595 
596     // Step 5
597     sm_key_t cmac_x;
598     memset(cmac_x, 0, 16);
599 
600     // Step 6
601     sm_key_t sm_cmac_y;
602     for (int block = 0 ; block < cmac_block_count-1 ; block++){
603         for (i=0;i<16;i++){
604             sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i];
605         }
606         aes128_calc_cyphertext(key, sm_cmac_y, cmac_x);
607     }
608     for (i=0;i<16;i++){
609         sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
610     }
611 
612     // Step 7
613     aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac);
614 }
615 
616 static void f4(sm_key_t res, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
617     uint8_t buffer[65];
618     memcpy(buffer, u, 32);
619     memcpy(buffer+32, v, 32);
620     buffer[64] = z;
621     log_info("f4 key");
622     log_info_hexdump(x, 16);
623     log_info("f4 message");
624     log_info_hexdump(buffer, sizeof(buffer));
625     aes_cmac(res, x, buffer, sizeof(buffer));
626     log_info("f4 result");
627     log_info_hexdump(res, sizeof(sm_key_t));
628 }
629 
630 const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
631 const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
632 const uint8_t f5_length[] = { 0x01, 0x00};
633 static void f5(sm_key256_t res, const sm_key256_t w, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
634     // T = AES-CMACSAL_T(W)
635     sm_key_t t;
636     aes_cmac(t, f5_salt, w, 32);
637     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
638     uint8_t buffer[53];
639     buffer[0] = 0;
640     memcpy(buffer+01, f5_key_id, 4);
641     memcpy(buffer+05, n1, 16);
642     memcpy(buffer+21, n2, 16);
643     memcpy(buffer+37, a1, 7);
644     memcpy(buffer+44, a2, 7);
645     memcpy(buffer+51, f5_length, 2);
646     log_info("f5 DHKEY");
647     log_info_hexdump(w, 32);
648     log_info("f5 key");
649     log_info_hexdump(t, 16);
650     log_info("f5 message for MacKey");
651     log_info_hexdump(buffer, sizeof(buffer));
652     aes_cmac(res, t, buffer, sizeof(buffer));
653     // hexdump2(res, 16);
654     //                      || AES-CMACT (Counter = 1 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the LTK
655     buffer[0] = 1;
656     // hexdump2(buffer, sizeof(buffer));
657     log_info("f5 message for LTK");
658     log_info_hexdump(buffer, sizeof(buffer));
659     aes_cmac(res+16, t, buffer, sizeof(buffer));
660     // hexdump2(res+16, 16);
661 }
662 
663 // f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMACW (N1 || N2 || R || IOcap || A1 || A2
664 // - W is 128 bits
665 // - N1 is 128 bits
666 // - N2 is 128 bits
667 // - R is 128 bits
668 // - IOcap is 24 bits
669 // - A1 is 56 bits
670 // - A2 is 56 bits
671 static void f6(sm_key_t res, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
672     uint8_t buffer[65];
673     memcpy(buffer, n1, 16);
674     memcpy(buffer+16, n2, 16);
675     memcpy(buffer+32, r, 16);
676     memcpy(buffer+48, io_cap, 3);
677     memcpy(buffer+51, a1, 7);
678     memcpy(buffer+58, a2, 7);
679     log_info("f6 key");
680     log_info_hexdump(w, 16);
681     log_info("f6 message");
682     log_info_hexdump(buffer, sizeof(buffer));
683     aes_cmac(res, w, buffer,sizeof(buffer));
684     log_info("f6 result");
685     log_info_hexdump(res, 16);
686 }
687 
688 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
689 // - U is 256 bits
690 // - V is 256 bits
691 // - X is 128 bits
692 // - Y is 128 bits
693 static uint32_t g2(const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
694     uint8_t buffer[80];
695     memcpy(buffer, u, 32);
696     memcpy(buffer+32, v, 32);
697     memcpy(buffer+64, y, 16);
698     sm_key_t cmac;
699     log_info("g2 key");
700     log_info_hexdump(x, 16);
701     log_info("g2 message");
702     log_info_hexdump(buffer, sizeof(buffer));
703     aes_cmac(cmac, x, buffer, sizeof(buffer));
704     log_info("g2 result");
705     log_info_hexdump(x, 16);
706     return big_endian_read_32(cmac, 12);
707 }
708 
709 #if 0
710 // h6(W, keyID) = AES-CMACW(keyID)
711 // - W is 128 bits
712 // - keyID is 32 bits
713 static void h6(sm_key_t res, const sm_key_t w, const uint32_t key_id){
714     uint8_t key_id_buffer[4];
715     big_endian_store_32(key_id_buffer, 0, key_id);
716     aes_cmac(res, w, key_id_buffer, 4);
717 }
718 #endif
719 #endif
720 
721 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
722     event[0] = type;
723     event[1] = event_size - 2;
724     little_endian_store_16(event, 2, con_handle);
725     event[4] = addr_type;
726     reverse_bd_addr(address, &event[5]);
727 }
728 
729 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
730     if (sm_client_packet_handler) {
731         sm_client_packet_handler(HCI_EVENT_PACKET, 0, packet, size);
732     }
733     // dispatch to all event handlers
734     btstack_linked_list_iterator_t it;
735     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
736     while (btstack_linked_list_iterator_has_next(&it)){
737         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
738         entry->callback(packet_type, 0, packet, size);
739     }
740 }
741 
742 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
743     uint8_t event[11];
744     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
745     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
746 }
747 
748 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
749     uint8_t event[15];
750     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
751     little_endian_store_32(event, 11, passkey);
752     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
753 }
754 
755 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
756     uint8_t event[13];
757     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
758     little_endian_store_16(event, 11, index);
759     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
760 }
761 
762 static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){
763 
764     uint8_t event[18];
765     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
766     event[11] = result;
767     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
768 }
769 
770 // decide on stk generation based on
771 // - pairing request
772 // - io capabilities
773 // - OOB data availability
774 static void sm_setup_tk(void){
775 
776     // default: just works
777     setup->sm_stk_generation_method = JUST_WORKS;
778 
779 #ifdef ENABLE_LE_SECURE_CONNECTIONS
780     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
781                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
782                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0;
783     memset(setup->sm_ra, 0, 16);
784     memset(setup->sm_rb, 0, 16);
785 #else
786     setup->sm_use_secure_connections = 0;
787 #endif
788 
789     // If both devices have not set the MITM option in the Authentication Requirements
790     // Flags, then the IO capabilities shall be ignored and the Just Works association
791     // model shall be used.
792     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0)
793     &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){
794         log_info("SM: MITM not required by both -> JUST WORKS");
795         return;
796     }
797 
798     // TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient
799 
800     // If both devices have out of band authentication data, then the Authentication
801     // Requirements Flags shall be ignored when selecting the pairing method and the
802     // Out of Band pairing method shall be used.
803     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq)
804     &&  sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){
805         log_info("SM: have OOB data");
806         log_info_key("OOB", setup->sm_tk);
807         setup->sm_stk_generation_method = OOB;
808         return;
809     }
810 
811     // Reset TK as it has been setup in sm_init_setup
812     sm_reset_tk();
813 
814     // Also use just works if unknown io capabilites
815     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
816         return;
817     }
818 
819     // Otherwise the IO capabilities of the devices shall be used to determine the
820     // pairing method as defined in Table 2.4.
821     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
822     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
823 
824 #ifdef ENABLE_LE_SECURE_CONNECTIONS
825     if (setup->sm_use_secure_connections){
826         generation_method = stk_generation_method_with_secure_connection;
827     }
828 #endif
829     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
830 
831     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
832         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
833 }
834 
835 static int sm_key_distribution_flags_for_set(uint8_t key_set){
836     int flags = 0;
837     if (key_set & SM_KEYDIST_ENC_KEY){
838         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
839         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
840     }
841     if (key_set & SM_KEYDIST_ID_KEY){
842         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
843         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
844     }
845     if (key_set & SM_KEYDIST_SIGN){
846         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
847     }
848     return flags;
849 }
850 
851 static void sm_setup_key_distribution(uint8_t key_set){
852     setup->sm_key_distribution_received_set = 0;
853     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
854 }
855 
856 // CSRK Key Lookup
857 
858 
859 static int sm_address_resolution_idle(void){
860     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
861 }
862 
863 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
864     memcpy(sm_address_resolution_address, addr, 6);
865     sm_address_resolution_addr_type = addr_type;
866     sm_address_resolution_test = 0;
867     sm_address_resolution_mode = mode;
868     sm_address_resolution_context = context;
869     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
870 }
871 
872 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
873     // check if already in list
874     btstack_linked_list_iterator_t it;
875     sm_lookup_entry_t * entry;
876     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
877     while(btstack_linked_list_iterator_has_next(&it)){
878         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
879         if (entry->address_type != address_type) continue;
880         if (memcmp(entry->address, address, 6))  continue;
881         // already in list
882         return BTSTACK_BUSY;
883     }
884     entry = btstack_memory_sm_lookup_entry_get();
885     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
886     entry->address_type = (bd_addr_type_t) address_type;
887     memcpy(entry->address, address, 6);
888     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
889     sm_run();
890     return 0;
891 }
892 
893 // CMAC Implementation using AES128 engine
894 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
895     int i;
896     int carry = 0;
897     for (i=len-1; i >= 0 ; i--){
898         int new_carry = data[i] >> 7;
899         data[i] = data[i] << 1 | carry;
900         carry = new_carry;
901     }
902 }
903 
904 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now
905 static inline void sm_next_responding_state(sm_connection_t * sm_conn){
906     sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1);
907 }
908 static inline void dkg_next_state(void){
909     dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1);
910 }
911 static inline void rau_next_state(void){
912     rau_state = (random_address_update_t) (((int)rau_state) + 1);
913 }
914 static inline void sm_cmac_next_state(void){
915     sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1);
916 }
917 static int sm_cmac_last_block_complete(void){
918     if (sm_cmac_message_len == 0) return 0;
919     return (sm_cmac_message_len & 0x0f) == 0;
920 }
921 static inline uint8_t sm_cmac_message_get_byte(int offset){
922     if (offset >= sm_cmac_message_len) {
923         log_error("sm_cmac_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len);
924         return 0;
925     }
926 
927     offset = sm_cmac_message_len - 1 - offset;
928 
929     // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4]
930     if (offset < 3){
931         return sm_cmac_header[offset];
932     }
933     int actual_message_len_incl_header = sm_cmac_message_len - 4;
934     if (offset <  actual_message_len_incl_header){
935         return sm_cmac_message[offset - 3];
936     }
937     return sm_cmac_sign_counter[offset - actual_message_len_incl_header];
938 }
939 
940 void sm_cmac_start(sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t hash[8])){
941     memcpy(sm_cmac_k, k, 16);
942     sm_cmac_header[0] = opcode;
943     little_endian_store_16(sm_cmac_header, 1, con_handle);
944     little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter);
945     sm_cmac_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
946     sm_cmac_message = message;
947     sm_cmac_done_handler = done_handler;
948     sm_cmac_block_current = 0;
949     memset(sm_cmac_x, 0, 16);
950 
951     // step 2: n := ceil(len/const_Bsize);
952     sm_cmac_block_count = (sm_cmac_message_len + 15) / 16;
953 
954     // step 3: ..
955     if (sm_cmac_block_count==0){
956         sm_cmac_block_count = 1;
957     }
958 
959     log_info("sm_cmac_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count);
960 
961     // first, we need to compute l for k1, k2, and m_last
962     sm_cmac_state = CMAC_CALC_SUBKEYS;
963 
964     // let's go
965     sm_run();
966 }
967 
968 int sm_cmac_ready(void){
969     return sm_cmac_state == CMAC_IDLE;
970 }
971 
972 static void sm_cmac_handle_aes_engine_ready(void){
973     switch (sm_cmac_state){
974         case CMAC_CALC_SUBKEYS: {
975             sm_key_t const_zero;
976             memset(const_zero, 0, 16);
977             sm_cmac_next_state();
978             sm_aes128_start(sm_cmac_k, const_zero, NULL);
979             break;
980         }
981         case CMAC_CALC_MI: {
982             int j;
983             sm_key_t y;
984             for (j=0;j<16;j++){
985                 y[j] = sm_cmac_x[j] ^ sm_cmac_message_get_byte(sm_cmac_block_current*16 + j);
986             }
987             sm_cmac_block_current++;
988             sm_cmac_next_state();
989             sm_aes128_start(sm_cmac_k, y, NULL);
990             break;
991         }
992         case CMAC_CALC_MLAST: {
993             int i;
994             sm_key_t y;
995             for (i=0;i<16;i++){
996                 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
997             }
998             log_info_key("Y", y);
999             sm_cmac_block_current++;
1000             sm_cmac_next_state();
1001             sm_aes128_start(sm_cmac_k, y, NULL);
1002             break;
1003         }
1004         default:
1005             log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state);
1006             break;
1007     }
1008 }
1009 
1010 static void sm_cmac_handle_encryption_result(sm_key_t data){
1011     switch (sm_cmac_state){
1012         case CMAC_W4_SUBKEYS: {
1013             sm_key_t k1;
1014             memcpy(k1, data, 16);
1015             sm_shift_left_by_one_bit_inplace(16, k1);
1016             if (data[0] & 0x80){
1017                 k1[15] ^= 0x87;
1018             }
1019             sm_key_t k2;
1020             memcpy(k2, k1, 16);
1021             sm_shift_left_by_one_bit_inplace(16, k2);
1022             if (k1[0] & 0x80){
1023                 k2[15] ^= 0x87;
1024             }
1025 
1026             log_info_key("k", sm_cmac_k);
1027             log_info_key("k1", k1);
1028             log_info_key("k2", k2);
1029 
1030             // step 4: set m_last
1031             int i;
1032             if (sm_cmac_last_block_complete()){
1033                 for (i=0;i<16;i++){
1034                     sm_cmac_m_last[i] = sm_cmac_message_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i];
1035                 }
1036             } else {
1037                 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
1038                 for (i=0;i<16;i++){
1039                     if (i < valid_octets_in_last_block){
1040                         sm_cmac_m_last[i] = sm_cmac_message_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i];
1041                         continue;
1042                     }
1043                     if (i == valid_octets_in_last_block){
1044                         sm_cmac_m_last[i] = 0x80 ^ k2[i];
1045                         continue;
1046                     }
1047                     sm_cmac_m_last[i] = k2[i];
1048                 }
1049             }
1050 
1051             // next
1052             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1053             break;
1054         }
1055         case CMAC_W4_MI:
1056             memcpy(sm_cmac_x, data, 16);
1057             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1058             break;
1059         case CMAC_W4_MLAST:
1060             // done
1061             log_info_key("CMAC", data);
1062             sm_cmac_done_handler(data);
1063             sm_cmac_state = CMAC_IDLE;
1064             break;
1065         default:
1066             log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state);
1067             break;
1068     }
1069 }
1070 
1071 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1072     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1073     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1074     switch (setup->sm_stk_generation_method){
1075         case PK_RESP_INPUT:
1076             if (sm_conn->sm_role){
1077                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1078                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1079             } else {
1080                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1081             }
1082             break;
1083         case PK_INIT_INPUT:
1084             if (sm_conn->sm_role){
1085                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1086             } else {
1087                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1088                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1089             }
1090             break;
1091         case OK_BOTH_INPUT:
1092             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1093             sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1094             break;
1095         case NK_BOTH_INPUT:
1096             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1097             sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1098             break;
1099         case JUST_WORKS:
1100             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1101             sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1102             break;
1103         case OOB:
1104             // client already provided OOB data, let's skip notification.
1105             break;
1106     }
1107 }
1108 
1109 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
1110     int recv_flags;
1111     if (sm_conn->sm_role){
1112         // slave / responder
1113         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
1114     } else {
1115         // master / initiator
1116         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
1117     }
1118     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
1119     return recv_flags == setup->sm_key_distribution_received_set;
1120 }
1121 
1122 static void sm_done_for_handle(hci_con_handle_t con_handle){
1123     if (sm_active_connection == con_handle){
1124         sm_timeout_stop();
1125         sm_active_connection = 0;
1126         log_info("sm: connection 0x%x released setup context", con_handle);
1127     }
1128 }
1129 
1130 static int sm_key_distribution_flags_for_auth_req(void){
1131     int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN;
1132     if (sm_auth_req & SM_AUTHREQ_BONDING){
1133         // encryption information only if bonding requested
1134         flags |= SM_KEYDIST_ENC_KEY;
1135     }
1136     return flags;
1137 }
1138 
1139 static void sm_init_setup(sm_connection_t * sm_conn){
1140 
1141     // fill in sm setup
1142     sm_reset_tk();
1143     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1144     memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1145 
1146     // query client for OOB data
1147     int have_oob_data = 0;
1148     if (sm_get_oob_data) {
1149         have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1150     }
1151 
1152     sm_pairing_packet_t * local_packet;
1153     if (sm_conn->sm_role){
1154         // slave
1155         local_packet = &setup->sm_s_pres;
1156         gap_advertisements_get_address(&setup->sm_s_addr_type, setup->sm_s_address);
1157         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1158         memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1159     } else {
1160         // master
1161         local_packet = &setup->sm_m_preq;
1162         gap_advertisements_get_address(&setup->sm_m_addr_type, setup->sm_m_address);
1163         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1164         memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1165 
1166         int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1167         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1168         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1169     }
1170 
1171     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1172     sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data);
1173     sm_pairing_packet_set_auth_req(*local_packet, sm_auth_req);
1174     sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size);
1175 }
1176 
1177 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1178 
1179     sm_pairing_packet_t * remote_packet;
1180     int                   remote_key_request;
1181     if (sm_conn->sm_role){
1182         // slave / responder
1183         remote_packet      = &setup->sm_m_preq;
1184         remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1185     } else {
1186         // master / initiator
1187         remote_packet      = &setup->sm_s_pres;
1188         remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1189     }
1190 
1191     // check key size
1192     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1193     if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE;
1194 
1195     // decide on STK generation method
1196     sm_setup_tk();
1197     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1198 
1199     // check if STK generation method is acceptable by client
1200     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1201 
1202     // identical to responder
1203     sm_setup_key_distribution(remote_key_request);
1204 
1205     // JUST WORKS doens't provide authentication
1206     sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1;
1207 
1208     return 0;
1209 }
1210 
1211 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1212 
1213     // cache and reset context
1214     int matched_device_id = sm_address_resolution_test;
1215     address_resolution_mode_t mode = sm_address_resolution_mode;
1216     void * context = sm_address_resolution_context;
1217 
1218     // reset context
1219     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1220     sm_address_resolution_context = NULL;
1221     sm_address_resolution_test = -1;
1222     hci_con_handle_t con_handle = 0;
1223 
1224     sm_connection_t * sm_connection;
1225     uint16_t ediv;
1226     switch (mode){
1227         case ADDRESS_RESOLUTION_GENERAL:
1228             break;
1229         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1230             sm_connection = (sm_connection_t *) context;
1231             con_handle = sm_connection->sm_handle;
1232             switch (event){
1233                 case ADDRESS_RESOLUTION_SUCEEDED:
1234                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1235                     sm_connection->sm_le_db_index = matched_device_id;
1236                     log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index);
1237                     if (sm_connection->sm_role) break;
1238                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1239                     sm_connection->sm_security_request_received = 0;
1240                     sm_connection->sm_bonding_requested = 0;
1241                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
1242                     if (ediv){
1243                         sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
1244                     } else {
1245                         sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1246                     }
1247                     break;
1248                 case ADDRESS_RESOLUTION_FAILED:
1249                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1250                     if (sm_connection->sm_role) break;
1251                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1252                     sm_connection->sm_security_request_received = 0;
1253                     sm_connection->sm_bonding_requested = 0;
1254                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1255                     break;
1256             }
1257             break;
1258         default:
1259             break;
1260     }
1261 
1262     switch (event){
1263         case ADDRESS_RESOLUTION_SUCEEDED:
1264             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1265             break;
1266         case ADDRESS_RESOLUTION_FAILED:
1267             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1268             break;
1269     }
1270 }
1271 
1272 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1273 
1274     int le_db_index = -1;
1275 
1276     // lookup device based on IRK
1277     if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
1278         int i;
1279         for (i=0; i < le_device_db_count(); i++){
1280             sm_key_t irk;
1281             bd_addr_t address;
1282             int address_type;
1283             le_device_db_info(i, &address_type, address, irk);
1284             if (memcmp(irk, setup->sm_peer_irk, 16) == 0){
1285                 log_info("sm: device found for IRK, updating");
1286                 le_db_index = i;
1287                 break;
1288             }
1289         }
1290     }
1291 
1292     // if not found, lookup via public address if possible
1293     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1294     if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
1295         int i;
1296         for (i=0; i < le_device_db_count(); i++){
1297             bd_addr_t address;
1298             int address_type;
1299             le_device_db_info(i, &address_type, address, NULL);
1300             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1301             if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){
1302                 log_info("sm: device found for public address, updating");
1303                 le_db_index = i;
1304                 break;
1305             }
1306         }
1307     }
1308 
1309     // if not found, add to db
1310     if (le_db_index < 0) {
1311         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1312     }
1313 
1314     if (le_db_index >= 0){
1315         le_device_db_local_counter_set(le_db_index, 0);
1316 
1317         // store local CSRK
1318         if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1319             log_info("sm: store local CSRK");
1320             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1321             le_device_db_local_counter_set(le_db_index, 0);
1322         }
1323 
1324         // store remote CSRK
1325         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1326             log_info("sm: store remote CSRK");
1327             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1328             le_device_db_remote_counter_set(le_db_index, 0);
1329         }
1330 
1331         // store encryption information
1332         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION
1333             && setup->sm_key_distribution_received_set &  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1334             log_info("sm: set encryption information (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1335             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1336                 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
1337         }
1338     }
1339 
1340     // keep le_db_index
1341     sm_conn->sm_le_db_index = le_db_index;
1342 }
1343 
1344 static void sm_run(void){
1345 
1346     btstack_linked_list_iterator_t it;
1347 
1348     // assert that we can send at least commands
1349     if (!hci_can_send_command_packet_now()) return;
1350 
1351     //
1352     // non-connection related behaviour
1353     //
1354 
1355     // distributed key generation
1356     switch (dkg_state){
1357         case DKG_CALC_IRK:
1358             // already busy?
1359             if (sm_aes128_state == SM_AES128_IDLE) {
1360                 // IRK = d1(IR, 1, 0)
1361                 sm_key_t d1_prime;
1362                 sm_d1_d_prime(1, 0, d1_prime);  // plaintext
1363                 dkg_next_state();
1364                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1365                 return;
1366             }
1367             break;
1368         case DKG_CALC_DHK:
1369             // already busy?
1370             if (sm_aes128_state == SM_AES128_IDLE) {
1371                 // DHK = d1(IR, 3, 0)
1372                 sm_key_t d1_prime;
1373                 sm_d1_d_prime(3, 0, d1_prime);  // plaintext
1374                 dkg_next_state();
1375                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1376                 return;
1377             }
1378             break;
1379         default:
1380             break;
1381     }
1382 
1383     // random address updates
1384     switch (rau_state){
1385         case RAU_GET_RANDOM:
1386             rau_next_state();
1387             sm_random_start(NULL);
1388             return;
1389         case RAU_GET_ENC:
1390             // already busy?
1391             if (sm_aes128_state == SM_AES128_IDLE) {
1392                 sm_key_t r_prime;
1393                 sm_ah_r_prime(sm_random_address, r_prime);
1394                 rau_next_state();
1395                 sm_aes128_start(sm_persistent_irk, r_prime, NULL);
1396                 return;
1397             }
1398             break;
1399         case RAU_SET_ADDRESS:
1400             log_info("New random address: %s", bd_addr_to_str(sm_random_address));
1401             rau_state = RAU_IDLE;
1402             hci_send_cmd(&hci_le_set_random_address, sm_random_address);
1403             return;
1404         default:
1405             break;
1406     }
1407 
1408     // CMAC
1409     switch (sm_cmac_state){
1410         case CMAC_CALC_SUBKEYS:
1411         case CMAC_CALC_MI:
1412         case CMAC_CALC_MLAST:
1413             // already busy?
1414             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1415             sm_cmac_handle_aes_engine_ready();
1416             return;
1417         default:
1418             break;
1419     }
1420 
1421     // CSRK Lookup
1422     // -- if csrk lookup ready, find connection that require csrk lookup
1423     if (sm_address_resolution_idle()){
1424         hci_connections_get_iterator(&it);
1425         while(btstack_linked_list_iterator_has_next(&it)){
1426             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1427             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
1428             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
1429                 // and start lookup
1430                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
1431                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
1432                 break;
1433             }
1434         }
1435     }
1436 
1437     // -- if csrk lookup ready, resolved addresses for received addresses
1438     if (sm_address_resolution_idle()) {
1439         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
1440             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
1441             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
1442             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
1443             btstack_memory_sm_lookup_entry_free(entry);
1444         }
1445     }
1446 
1447     // -- Continue with CSRK device lookup by public or resolvable private address
1448     if (!sm_address_resolution_idle()){
1449         log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count());
1450         while (sm_address_resolution_test < le_device_db_count()){
1451             int addr_type;
1452             bd_addr_t addr;
1453             sm_key_t irk;
1454             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
1455             log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
1456 
1457             if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){
1458                 log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
1459                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
1460                 break;
1461             }
1462 
1463             if (sm_address_resolution_addr_type == 0){
1464                 sm_address_resolution_test++;
1465                 continue;
1466             }
1467 
1468             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1469 
1470             log_info("LE Device Lookup: calculate AH");
1471             log_info_key("IRK", irk);
1472 
1473             sm_key_t r_prime;
1474             sm_ah_r_prime(sm_address_resolution_address, r_prime);
1475             sm_address_resolution_ah_calculation_active = 1;
1476             sm_aes128_start(irk, r_prime, sm_address_resolution_context);   // keep context
1477             return;
1478         }
1479 
1480         if (sm_address_resolution_test >= le_device_db_count()){
1481             log_info("LE Device Lookup: not found");
1482             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
1483         }
1484     }
1485 
1486 
1487     //
1488     // active connection handling
1489     // -- use loop to handle next connection if lock on setup context is released
1490 
1491     while (1) {
1492 
1493         // Find connections that requires setup context and make active if no other is locked
1494         hci_connections_get_iterator(&it);
1495         while(!sm_active_connection && btstack_linked_list_iterator_has_next(&it)){
1496             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1497             sm_connection_t  * sm_connection = &hci_connection->sm_connection;
1498             // - if no connection locked and we're ready/waiting for setup context, fetch it and start
1499             int done = 1;
1500             int err;
1501             int encryption_key_size;
1502             int authenticated;
1503             int authorized;
1504             switch (sm_connection->sm_engine_state) {
1505                 case SM_RESPONDER_SEND_SECURITY_REQUEST:
1506                     // send packet if possible,
1507                     if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){
1508                         const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING};
1509                         sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
1510                         l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1511                     } else {
1512                         l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1513                     }
1514                     // don't lock setup context yet
1515                     done = 0;
1516                     break;
1517                 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
1518                     sm_init_setup(sm_connection);
1519                     // recover pairing request
1520                     memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t));
1521                     err = sm_stk_generation_init(sm_connection);
1522                     if (err){
1523                         setup->sm_pairing_failed_reason = err;
1524                         sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1525                         break;
1526                     }
1527                     sm_timeout_start(sm_connection);
1528                     // generate random number first, if we need to show passkey
1529                     if (setup->sm_stk_generation_method == PK_INIT_INPUT){
1530                         sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK;
1531                         break;
1532                     }
1533                     sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
1534                     break;
1535                 case SM_INITIATOR_PH0_HAS_LTK:
1536                     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
1537                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1538                                                 &encryption_key_size, &authenticated, &authorized);
1539                     log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized);
1540                     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
1541                     sm_connection->sm_connection_authenticated = authenticated;
1542                     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
1543                     sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION;
1544                     break;
1545                 case SM_RESPONDER_PH0_RECEIVED_LTK:
1546                     // re-establish previously used LTK using Rand and EDIV
1547                     memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
1548                     setup->sm_local_ediv = sm_connection->sm_local_ediv;
1549                     // re-establish used key encryption size
1550                     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
1551                     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1;
1552                     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
1553                     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4;
1554                     log_info("sm: received ltk request with key size %u, authenticated %u",
1555                             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
1556                     sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC;
1557                     break;
1558                 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
1559                     sm_init_setup(sm_connection);
1560                     sm_timeout_start(sm_connection);
1561                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST;
1562                     break;
1563                 default:
1564                     done = 0;
1565                     break;
1566             }
1567             if (done){
1568                 sm_active_connection = sm_connection->sm_handle;
1569                 log_info("sm: connection 0x%04x locked setup context as %s", sm_active_connection, sm_connection->sm_role ? "responder" : "initiator");
1570             }
1571         }
1572 
1573         //
1574         // active connection handling
1575         //
1576 
1577         if (sm_active_connection == 0) return;
1578 
1579         // assert that we could send a SM PDU - not needed for all of the following
1580         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
1581             l2cap_request_can_send_fix_channel_now_event(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1582             return;
1583         }
1584 
1585         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection);
1586         if (!connection) return;
1587 
1588         sm_key_t plaintext;
1589         int key_distribution_flags;
1590 
1591         log_info("sm_run: state %u", connection->sm_engine_state);
1592 
1593         // responding state
1594         switch (connection->sm_engine_state){
1595 
1596             // general
1597             case SM_GENERAL_SEND_PAIRING_FAILED: {
1598                 uint8_t buffer[2];
1599                 buffer[0] = SM_CODE_PAIRING_FAILED;
1600                 buffer[1] = setup->sm_pairing_failed_reason;
1601                 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
1602                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1603                 sm_done_for_handle(connection->sm_handle);
1604                 break;
1605             }
1606 
1607             // initiator side
1608             case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: {
1609                 sm_key_t peer_ltk_flipped;
1610                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
1611                 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED;
1612                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
1613                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
1614                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
1615                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
1616                 return;
1617             }
1618 
1619             case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST:
1620                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
1621                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
1622                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
1623                 sm_timeout_reset(connection);
1624                 break;
1625 
1626             // responder side
1627             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
1628                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1629                 hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
1630                 return;
1631 
1632 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1633             case SM_PH2_SEND_PUBLIC_KEY_COMMAND: {
1634                 uint8_t buffer[65];
1635                 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
1636                 //
1637 #ifdef USE_MBEDTLS_FOR_ECDH
1638                 uint8_t value[32];
1639                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1640                 reverse_256(value, &buffer[1]);
1641                 mbedtls_mpi_write_binary(&le_keypair.Q.Y, value, sizeof(value));
1642                 reverse_256(value, &buffer[33]);
1643 #endif
1644                 // TODO: use random generator to generate nonce
1645 
1646                 // generate 128-bit nonce
1647                 int i;
1648                 for (i=0;i<16;i++){
1649                     setup->sm_local_nonce[i] = rand() & 0xff;
1650                 }
1651 
1652                 // stk generation method
1653                 // passkey entry: notify app to show passkey or to request passkey
1654                 switch (setup->sm_stk_generation_method){
1655                     case JUST_WORKS:
1656                     case NK_BOTH_INPUT:
1657                         if (connection->sm_role){
1658                             connection->sm_engine_state = SM_PH2_SEND_CONFIRMATION;
1659                         } else {
1660                             connection->sm_engine_state = SM_RESPONDER_PH2_W4_PUBLIC_KEY_COMMAND;
1661                         }
1662                         break;
1663                     case PK_INIT_INPUT:
1664                     case PK_RESP_INPUT:
1665                     case OK_BOTH_INPUT:
1666                         // hack for testing: assume user entered '000000'
1667                         // memset(setup->sm_tk, 0, 16);
1668                         memcpy(setup->sm_ra, setup->sm_tk, 16);
1669                         memcpy(setup->sm_rb, setup->sm_tk, 16);
1670                         setup->sm_passkey_bit = 0;
1671                         if (connection->sm_role){
1672                             // responder
1673                             connection->sm_engine_state = SM_PH2_W4_CONFIRMATION;
1674                         } else {
1675                             // initiator
1676                             connection->sm_engine_state = SM_RESPONDER_PH2_W4_PUBLIC_KEY_COMMAND;
1677                         }
1678                         sm_trigger_user_response(connection);
1679                         break;
1680                     case OOB:
1681                         // TODO: implement SC OOB
1682                         break;
1683                 }
1684 
1685                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1686                 sm_timeout_reset(connection);
1687                 break;
1688             }
1689             case SM_PH2_SEND_CONFIRMATION: {
1690                 uint8_t buffer[17];
1691                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
1692 #ifdef USE_MBEDTLS_FOR_ECDH
1693                 uint8_t z = 0;
1694                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1695                     // some form of passkey
1696                     uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1697                     z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1);
1698                     setup->sm_passkey_bit++;
1699                 }
1700 
1701                 // TODO: use AES Engine to calculate commitment value using f4
1702                 uint8_t value[32];
1703                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1704                 sm_key_t confirm_value;
1705                 f4(confirm_value, value, setup->sm_peer_qx, setup->sm_local_nonce, z);
1706                 reverse_128(confirm_value, &buffer[1]);
1707 #endif
1708                 if (connection->sm_role){
1709                     connection->sm_engine_state = SM_PH2_W4_PAIRING_RANDOM;
1710                 } else {
1711                     connection->sm_engine_state = SM_PH2_W4_CONFIRMATION;
1712                 }
1713                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1714                 sm_timeout_reset(connection);
1715                 break;
1716             }
1717             case SM_PH2_SEND_PAIRING_RANDOM_SC: {
1718                 uint8_t buffer[17];
1719                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1720                 reverse_128(setup->sm_local_nonce, &buffer[1]);
1721 
1722                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){
1723                     if (connection->sm_role){
1724                         // responder
1725                         connection->sm_engine_state = SM_PH2_W4_CONFIRMATION;
1726                     } else {
1727                         // initiator
1728                         connection->sm_engine_state = SM_PH2_W4_PAIRING_RANDOM;
1729                     }
1730                 } else {
1731                     if (connection->sm_role){
1732                         // responder
1733                         connection->sm_engine_state = SM_PH2_W4_DHKEY_CHECK_COMMAND;
1734                         if (setup->sm_stk_generation_method == NK_BOTH_INPUT){
1735                             // calc Vb if numeric comparison
1736                             // TODO: use AES Engine to calculate g2
1737                             uint8_t value[32];
1738                             mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1739                             uint32_t vb = g2(setup->sm_peer_qx, value, setup->sm_peer_nonce, setup->sm_local_nonce) % 1000000;
1740                             big_endian_store_32(setup->sm_tk, 12, vb);
1741                             sm_trigger_user_response(connection);
1742                         }
1743                     } else {
1744                         // initiator
1745                         connection->sm_engine_state = SM_PH2_W4_PAIRING_RANDOM;
1746                     }
1747                 }
1748                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1749                 sm_timeout_reset(connection);
1750                 break;
1751             }
1752             case SM_PH2_SEND_DHKEY_CHECK_COMMAND: {
1753 
1754                 uint8_t buffer[17];
1755                 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
1756 #ifdef USE_MBEDTLS_FOR_ECDH
1757                 // calculate DHKEY
1758                 mbedtls_ecp_group grp;
1759                 mbedtls_ecp_group_init( &grp );
1760                 mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
1761                 mbedtls_ecp_point Q;
1762                 mbedtls_ecp_point_init( &Q );
1763                 mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
1764                 mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
1765                 mbedtls_mpi_read_string(&Q.Z, 16, "1" );
1766 
1767                 // da * Pb
1768                 mbedtls_ecp_point DH;
1769                 mbedtls_ecp_point_init( &DH );
1770                 mbedtls_ecp_mul(&grp, &DH, &le_keypair.d, &Q, NULL, NULL);
1771                 sm_key256_t dhkey;
1772                 mbedtls_mpi_write_binary(&DH.X, dhkey, 32);
1773                 log_info("dhkey");
1774                 log_info_hexdump(dhkey, 32);
1775 
1776                 // calculate LTK + MacKey
1777                 sm_key256_t ltk_mackey;
1778                 sm_key56_t bd_addr_master, bd_addr_slave;
1779                 bd_addr_master[0] =  setup->sm_m_addr_type;
1780                 bd_addr_slave[0]  =  setup->sm_s_addr_type;
1781                 memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1782                 memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1783                 if (connection->sm_role){
1784                     // responder
1785                     f5(ltk_mackey, dhkey, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1786                 } else {
1787                     // initiator
1788                     f5(ltk_mackey, dhkey, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1789                 }
1790                 // store LTK
1791                 memcpy(setup->sm_ltk, &ltk_mackey[16], 16);
1792 
1793                 // calc DHKCheck
1794                 memcpy(setup->sm_mackey, &ltk_mackey[0], 16);
1795 
1796                 // TODO: checks
1797 
1798                 uint8_t iocap_a[3];
1799                 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1800                 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1801                 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1802                 uint8_t iocap_b[3];
1803                 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1804                 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1805                 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1806                 if (connection->sm_role){
1807                     // responder
1808                     f6(setup->sm_local_dhkey_check, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1809                 } else {
1810                     // initiator
1811                     f6(setup->sm_local_dhkey_check, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1812                 }
1813 #endif
1814                 reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
1815                 if (connection->sm_role){
1816                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST_SC;
1817                 } else {
1818                     connection->sm_engine_state = SM_PH2_W4_DHKEY_CHECK_COMMAND;
1819                 }
1820                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1821                 sm_timeout_reset(connection);
1822                 break;
1823             }
1824 
1825 #endif
1826             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
1827                 // echo initiator for now
1828                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
1829                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1830 
1831                 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
1832 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1833                 if (setup->sm_use_secure_connections){
1834                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PUBLIC_KEY_COMMAND;
1835                     // skip LTK/EDIV for SC
1836                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
1837                 }
1838 #endif
1839                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1840                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1841 
1842                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
1843                 sm_timeout_reset(connection);
1844                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
1845                 if (setup->sm_stk_generation_method == JUST_WORKS){
1846                     sm_trigger_user_response(connection);
1847                 }
1848                 return;
1849 
1850             case SM_PH2_SEND_PAIRING_RANDOM: {
1851                 uint8_t buffer[17];
1852                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1853                 reverse_128(setup->sm_local_random, &buffer[1]);
1854                 if (connection->sm_role){
1855                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
1856                 } else {
1857                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
1858                 }
1859                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1860                 sm_timeout_reset(connection);
1861                 break;
1862             }
1863 
1864             case SM_PH2_GET_RANDOM_TK:
1865             case SM_PH2_C1_GET_RANDOM_A:
1866             case SM_PH2_C1_GET_RANDOM_B:
1867             case SM_PH3_GET_RANDOM:
1868             case SM_PH3_GET_DIV:
1869                 sm_next_responding_state(connection);
1870                 sm_random_start(connection);
1871                 return;
1872 
1873             case SM_PH2_C1_GET_ENC_B:
1874             case SM_PH2_C1_GET_ENC_D:
1875                 // already busy?
1876                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1877                 sm_next_responding_state(connection);
1878                 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection);
1879                 return;
1880 
1881             case SM_PH3_LTK_GET_ENC:
1882             case SM_RESPONDER_PH4_LTK_GET_ENC:
1883                 // already busy?
1884                 if (sm_aes128_state == SM_AES128_IDLE) {
1885                     sm_key_t d_prime;
1886                     sm_d1_d_prime(setup->sm_local_div, 0, d_prime);
1887                     sm_next_responding_state(connection);
1888                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1889                     return;
1890                 }
1891                 break;
1892 
1893             case SM_PH3_CSRK_GET_ENC:
1894                 // already busy?
1895                 if (sm_aes128_state == SM_AES128_IDLE) {
1896                     sm_key_t d_prime;
1897                     sm_d1_d_prime(setup->sm_local_div, 1, d_prime);
1898                     sm_next_responding_state(connection);
1899                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1900                     return;
1901                 }
1902                 break;
1903 
1904             case SM_PH2_C1_GET_ENC_C:
1905                 // already busy?
1906                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1907                 // calculate m_confirm using aes128 engine - step 1
1908                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1909                 sm_next_responding_state(connection);
1910                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1911                 break;
1912             case SM_PH2_C1_GET_ENC_A:
1913                 // already busy?
1914                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1915                 // calculate confirm using aes128 engine - step 1
1916                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1917                 sm_next_responding_state(connection);
1918                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1919                 break;
1920             case SM_PH2_CALC_STK:
1921                 // already busy?
1922                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1923                 // calculate STK
1924                 if (connection->sm_role){
1925                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext);
1926                 } else {
1927                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext);
1928                 }
1929                 sm_next_responding_state(connection);
1930                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1931                 break;
1932             case SM_PH3_Y_GET_ENC:
1933                 // already busy?
1934                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1935                 // PH3B2 - calculate Y from      - enc
1936                 // Y = dm(DHK, Rand)
1937                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
1938                 sm_next_responding_state(connection);
1939                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
1940                 return;
1941             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
1942                 uint8_t buffer[17];
1943                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
1944                 reverse_128(setup->sm_local_confirm, &buffer[1]);
1945                 if (connection->sm_role){
1946                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
1947                 } else {
1948                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
1949                 }
1950                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1951                 sm_timeout_reset(connection);
1952                 return;
1953             }
1954             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
1955                 sm_key_t stk_flipped;
1956                 reverse_128(setup->sm_ltk, stk_flipped);
1957                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
1958                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
1959                 return;
1960             }
1961             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
1962                 sm_key_t stk_flipped;
1963                 reverse_128(setup->sm_ltk, stk_flipped);
1964                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
1965                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
1966                 return;
1967             }
1968             case SM_RESPONDER_PH4_SEND_LTK: {
1969                 sm_key_t ltk_flipped;
1970                 reverse_128(setup->sm_ltk, ltk_flipped);
1971                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1972                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
1973                 return;
1974             }
1975             case SM_RESPONDER_PH4_Y_GET_ENC:
1976                 // already busy?
1977                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1978                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
1979                 // Y = dm(DHK, Rand)
1980                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
1981                 sm_next_responding_state(connection);
1982                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
1983                 return;
1984 
1985             case SM_PH3_DISTRIBUTE_KEYS:
1986                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
1987                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
1988                     uint8_t buffer[17];
1989                     buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
1990                     reverse_128(setup->sm_ltk, &buffer[1]);
1991                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1992                     sm_timeout_reset(connection);
1993                     return;
1994                 }
1995                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1996                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
1997                     uint8_t buffer[11];
1998                     buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
1999                     little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2000                     reverse_64(setup->sm_local_rand, &buffer[3]);
2001                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2002                     sm_timeout_reset(connection);
2003                     return;
2004                 }
2005                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
2006                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2007                     uint8_t buffer[17];
2008                     buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2009                     reverse_128(sm_persistent_irk, &buffer[1]);
2010                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2011                     sm_timeout_reset(connection);
2012                     return;
2013                 }
2014                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
2015                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2016                     bd_addr_t local_address;
2017                     uint8_t buffer[8];
2018                     buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2019                     gap_advertisements_get_address(&buffer[1], local_address);
2020                     reverse_bd_addr(local_address, &buffer[2]);
2021                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2022                     sm_timeout_reset(connection);
2023                     return;
2024                 }
2025                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
2026                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2027 
2028                     // hack to reproduce test runs
2029                     if (test_use_fixed_local_csrk){
2030                         memset(setup->sm_local_csrk, 0xcc, 16);
2031                     }
2032 
2033                     uint8_t buffer[17];
2034                     buffer[0] = SM_CODE_SIGNING_INFORMATION;
2035                     reverse_128(setup->sm_local_csrk, &buffer[1]);
2036                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2037                     sm_timeout_reset(connection);
2038                     return;
2039                 }
2040 
2041                 // keys are sent
2042                 if (connection->sm_role){
2043                     // slave -> receive master keys if any
2044                     if (sm_key_distribution_all_received(connection)){
2045                         sm_key_distribution_handle_all_received(connection);
2046                         connection->sm_engine_state = SM_RESPONDER_IDLE;
2047                         sm_done_for_handle(connection->sm_handle);
2048                     } else {
2049                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2050                     }
2051                 } else {
2052                     // master -> all done
2053                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2054                     sm_done_for_handle(connection->sm_handle);
2055                 }
2056                 break;
2057 
2058             default:
2059                 break;
2060         }
2061 
2062         // check again if active connection was released
2063         if (sm_active_connection) break;
2064     }
2065 }
2066 
2067 // note: aes engine is ready as we just got the aes result
2068 static void sm_handle_encryption_result(uint8_t * data){
2069 
2070     sm_aes128_state = SM_AES128_IDLE;
2071 
2072     if (sm_address_resolution_ah_calculation_active){
2073         sm_address_resolution_ah_calculation_active = 0;
2074         // compare calulated address against connecting device
2075         uint8_t hash[3];
2076         reverse_24(data, hash);
2077         if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
2078             log_info("LE Device Lookup: matched resolvable private address");
2079             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
2080             return;
2081         }
2082         // no match, try next
2083         sm_address_resolution_test++;
2084         return;
2085     }
2086 
2087     switch (dkg_state){
2088         case DKG_W4_IRK:
2089             reverse_128(data, sm_persistent_irk);
2090             log_info_key("irk", sm_persistent_irk);
2091             dkg_next_state();
2092             return;
2093         case DKG_W4_DHK:
2094             reverse_128(data, sm_persistent_dhk);
2095             log_info_key("dhk", sm_persistent_dhk);
2096             dkg_next_state();
2097             // SM Init Finished
2098             return;
2099         default:
2100             break;
2101     }
2102 
2103     switch (rau_state){
2104         case RAU_W4_ENC:
2105             reverse_24(data, &sm_random_address[3]);
2106             rau_next_state();
2107             return;
2108         default:
2109             break;
2110     }
2111 
2112     switch (sm_cmac_state){
2113         case CMAC_W4_SUBKEYS:
2114         case CMAC_W4_MI:
2115         case CMAC_W4_MLAST:
2116             {
2117             sm_key_t t;
2118             reverse_128(data, t);
2119             sm_cmac_handle_encryption_result(t);
2120             }
2121             return;
2122         default:
2123             break;
2124     }
2125 
2126     // retrieve sm_connection provided to sm_aes128_start_encryption
2127     sm_connection_t * connection = (sm_connection_t*) sm_aes128_context;
2128     if (!connection) return;
2129     switch (connection->sm_engine_state){
2130         case SM_PH2_C1_W4_ENC_A:
2131         case SM_PH2_C1_W4_ENC_C:
2132             {
2133             sm_key_t t2;
2134             reverse_128(data, t2);
2135             sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
2136             }
2137             sm_next_responding_state(connection);
2138             return;
2139         case SM_PH2_C1_W4_ENC_B:
2140             reverse_128(data, setup->sm_local_confirm);
2141             log_info_key("c1!", setup->sm_local_confirm);
2142             connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
2143             return;
2144         case SM_PH2_C1_W4_ENC_D:
2145             {
2146             sm_key_t peer_confirm_test;
2147             reverse_128(data, peer_confirm_test);
2148             log_info_key("c1!", peer_confirm_test);
2149             if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){
2150                 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
2151                 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2152                 return;
2153             }
2154             if (connection->sm_role){
2155                 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2156             } else {
2157                 connection->sm_engine_state = SM_PH2_CALC_STK;
2158             }
2159             }
2160             return;
2161         case SM_PH2_W4_STK:
2162             reverse_128(data, setup->sm_ltk);
2163             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2164             log_info_key("stk", setup->sm_ltk);
2165             if (connection->sm_role){
2166                 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2167             } else {
2168                 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2169             }
2170             return;
2171         case SM_PH3_Y_W4_ENC:{
2172             sm_key_t y128;
2173             reverse_128(data, y128);
2174             setup->sm_local_y = big_endian_read_16(y128, 14);
2175             log_info_hex16("y", setup->sm_local_y);
2176             // PH3B3 - calculate EDIV
2177             setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
2178             log_info_hex16("ediv", setup->sm_local_ediv);
2179             // PH3B4 - calculate LTK         - enc
2180             // LTK = d1(ER, DIV, 0))
2181             connection->sm_engine_state = SM_PH3_LTK_GET_ENC;
2182             return;
2183         }
2184         case SM_RESPONDER_PH4_Y_W4_ENC:{
2185             sm_key_t y128;
2186             reverse_128(data, y128);
2187             setup->sm_local_y = big_endian_read_16(y128, 14);
2188             log_info_hex16("y", setup->sm_local_y);
2189 
2190             // PH3B3 - calculate DIV
2191             setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
2192             log_info_hex16("ediv", setup->sm_local_ediv);
2193             // PH3B4 - calculate LTK         - enc
2194             // LTK = d1(ER, DIV, 0))
2195             connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC;
2196             return;
2197         }
2198         case SM_PH3_LTK_W4_ENC:
2199             reverse_128(data, setup->sm_ltk);
2200             log_info_key("ltk", setup->sm_ltk);
2201             // calc CSRK next
2202             connection->sm_engine_state = SM_PH3_CSRK_GET_ENC;
2203             return;
2204         case SM_PH3_CSRK_W4_ENC:
2205             reverse_128(data, setup->sm_local_csrk);
2206             log_info_key("csrk", setup->sm_local_csrk);
2207             if (setup->sm_key_distribution_send_set){
2208                 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
2209             } else {
2210                 // no keys to send, just continue
2211                 if (connection->sm_role){
2212                     // slave -> receive master keys
2213                     connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2214                 } else {
2215                     // master -> all done
2216                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2217                     sm_done_for_handle(connection->sm_handle);
2218                 }
2219             }
2220             return;
2221         case SM_RESPONDER_PH4_LTK_W4_ENC:
2222             reverse_128(data, setup->sm_ltk);
2223             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2224             log_info_key("ltk", setup->sm_ltk);
2225             connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK;
2226             return;
2227         default:
2228             break;
2229     }
2230 }
2231 
2232 // note: random generator is ready. this doesn NOT imply that aes engine is unused!
2233 static void sm_handle_random_result(uint8_t * data){
2234 
2235     switch (rau_state){
2236         case RAU_W4_RANDOM:
2237             // non-resolvable vs. resolvable
2238             switch (gap_random_adress_type){
2239                 case GAP_RANDOM_ADDRESS_RESOLVABLE:
2240                     // resolvable: use random as prand and calc address hash
2241                     // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
2242                     memcpy(sm_random_address, data, 3);
2243                     sm_random_address[0] &= 0x3f;
2244                     sm_random_address[0] |= 0x40;
2245                     rau_state = RAU_GET_ENC;
2246                     break;
2247                 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2248                 default:
2249                     // "The two most significant bits of the address shall be equal to ‘0’""
2250                     memcpy(sm_random_address, data, 6);
2251                     sm_random_address[0] &= 0x3f;
2252                     rau_state = RAU_SET_ADDRESS;
2253                     break;
2254             }
2255             return;
2256         default:
2257             break;
2258     }
2259 
2260     // retrieve sm_connection provided to sm_random_start
2261     sm_connection_t * connection = (sm_connection_t *) sm_random_context;
2262     if (!connection) return;
2263     switch (connection->sm_engine_state){
2264         case SM_PH2_W4_RANDOM_TK:
2265         {
2266             // map random to 0-999999 without speding much cycles on a modulus operation
2267             uint32_t tk = little_endian_read_32(data,0);
2268             tk = tk & 0xfffff;  // 1048575
2269             if (tk >= 999999){
2270                 tk = tk - 999999;
2271             }
2272             sm_reset_tk();
2273             big_endian_store_32(setup->sm_tk, 12, tk);
2274             if (connection->sm_role){
2275                 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
2276             } else {
2277                 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2278                 sm_trigger_user_response(connection);
2279                 // response_idle == nothing <--> sm_trigger_user_response() did not require response
2280                 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2281                     connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2282                 }
2283             }
2284             return;
2285         }
2286         case SM_PH2_C1_W4_RANDOM_A:
2287             memcpy(&setup->sm_local_random[0], data, 8); // random endinaness
2288             connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B;
2289             return;
2290         case SM_PH2_C1_W4_RANDOM_B:
2291             memcpy(&setup->sm_local_random[8], data, 8); // random endinaness
2292             connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
2293             return;
2294         case SM_PH3_W4_RANDOM:
2295             reverse_64(data, setup->sm_local_rand);
2296             // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2297             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1);
2298             // no db for authenticated flag hack: store flag in bit 4 of LSB
2299             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4);
2300             connection->sm_engine_state = SM_PH3_GET_DIV;
2301             return;
2302         case SM_PH3_W4_DIV:
2303             // use 16 bit from random value as div
2304             setup->sm_local_div = big_endian_read_16(data, 0);
2305             log_info_hex16("div", setup->sm_local_div);
2306             connection->sm_engine_state = SM_PH3_Y_GET_ENC;
2307             return;
2308         default:
2309             break;
2310     }
2311 }
2312 
2313 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
2314 
2315     sm_connection_t  * sm_conn;
2316     hci_con_handle_t con_handle;
2317 
2318     switch (packet_type) {
2319 
2320 		case HCI_EVENT_PACKET:
2321 			switch (hci_event_packet_get_type(packet)) {
2322 
2323                 case BTSTACK_EVENT_STATE:
2324 					// bt stack activated, get started
2325 					if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){
2326                         log_info("HCI Working!");
2327                         dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
2328                         rau_state = RAU_IDLE;
2329                         sm_run();
2330 					}
2331 					break;
2332 
2333                 case HCI_EVENT_LE_META:
2334                     switch (packet[2]) {
2335                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
2336 
2337                             log_info("sm: connected");
2338 
2339                             if (packet[3]) return; // connection failed
2340 
2341                             con_handle = little_endian_read_16(packet, 4);
2342                             sm_conn = sm_get_connection_for_handle(con_handle);
2343                             if (!sm_conn) break;
2344 
2345                             sm_conn->sm_handle = con_handle;
2346                             sm_conn->sm_role = packet[6];
2347                             sm_conn->sm_peer_addr_type = packet[7];
2348                             reverse_bd_addr(&packet[8],
2349                                             sm_conn->sm_peer_address);
2350 
2351                             log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
2352 
2353                             // reset security properties
2354                             sm_conn->sm_connection_encrypted = 0;
2355                             sm_conn->sm_connection_authenticated = 0;
2356                             sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
2357                             sm_conn->sm_le_db_index = -1;
2358 
2359                             // prepare CSRK lookup (does not involve setup)
2360                             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
2361 
2362                             // just connected -> everything else happens in sm_run()
2363                             if (sm_conn->sm_role){
2364                                 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead
2365                                 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
2366                                     if (sm_slave_request_security) {
2367                                         // request security if requested by app
2368                                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
2369                                     } else {
2370                                         // otherwise, wait for pairing request
2371                                         sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2372                                     }
2373                                 }
2374                                 break;
2375                             } else {
2376                                 // master
2377                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2378                             }
2379                             break;
2380 
2381                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
2382                             con_handle = little_endian_read_16(packet, 3);
2383                             sm_conn = sm_get_connection_for_handle(con_handle);
2384                             if (!sm_conn) break;
2385 
2386                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
2387                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
2388                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
2389                                 break;
2390                             }
2391                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST_SC){
2392                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2393                                 break;
2394                             }
2395 
2396                             // assume that we don't have a LTK for ediv == 0 and random == null
2397                             if (little_endian_read_16(packet, 13) == 0 && sm_is_null_random(&packet[5])){
2398                                 log_info("LTK Request: ediv & random are empty");
2399                                 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
2400                                 break;
2401                             }
2402 
2403                             // store rand and ediv
2404                             reverse_64(&packet[5], sm_conn->sm_local_rand);
2405                             sm_conn->sm_local_ediv   = little_endian_read_16(packet, 13);
2406                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK;
2407                             break;
2408 
2409                         default:
2410                             break;
2411                     }
2412                     break;
2413 
2414                 case HCI_EVENT_ENCRYPTION_CHANGE:
2415                     con_handle = little_endian_read_16(packet, 3);
2416                     sm_conn = sm_get_connection_for_handle(con_handle);
2417                     if (!sm_conn) break;
2418 
2419                     sm_conn->sm_connection_encrypted = packet[5];
2420                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
2421                         sm_conn->sm_actual_encryption_key_size);
2422                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2423                     if (!sm_conn->sm_connection_encrypted) break;
2424                     // continue if part of initial pairing
2425                     switch (sm_conn->sm_engine_state){
2426                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2427                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2428                             sm_done_for_handle(sm_conn->sm_handle);
2429                             break;
2430                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2431                             if (sm_conn->sm_role){
2432                                 // slave
2433                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2434                             } else {
2435                                 // master
2436                                 if (sm_key_distribution_all_received(sm_conn)){
2437                                     // skip receiving keys as there are none
2438                                     sm_key_distribution_handle_all_received(sm_conn);
2439                                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2440                                 } else {
2441                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2442                                 }
2443                             }
2444                             break;
2445                         default:
2446                             break;
2447                     }
2448                     break;
2449 
2450                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
2451                     con_handle = little_endian_read_16(packet, 3);
2452                     sm_conn = sm_get_connection_for_handle(con_handle);
2453                     if (!sm_conn) break;
2454 
2455                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
2456                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2457                     // continue if part of initial pairing
2458                     switch (sm_conn->sm_engine_state){
2459                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2460                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2461                             sm_done_for_handle(sm_conn->sm_handle);
2462                             break;
2463                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2464                             if (sm_conn->sm_role){
2465                                 // slave
2466                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2467                             } else {
2468                                 // master
2469                                 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2470                             }
2471                             break;
2472                         default:
2473                             break;
2474                     }
2475                     break;
2476 
2477 
2478                 case HCI_EVENT_DISCONNECTION_COMPLETE:
2479                     con_handle = little_endian_read_16(packet, 3);
2480                     sm_done_for_handle(con_handle);
2481                     sm_conn = sm_get_connection_for_handle(con_handle);
2482                     if (!sm_conn) break;
2483 
2484                     // delete stored bonding on disconnect with authentication failure in ph0
2485                     if (sm_conn->sm_role == 0
2486                         && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED
2487                         && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){
2488                         le_device_db_remove(sm_conn->sm_le_db_index);
2489                     }
2490 
2491                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
2492                     sm_conn->sm_handle = 0;
2493                     break;
2494 
2495 				case HCI_EVENT_COMMAND_COMPLETE:
2496                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
2497                         sm_handle_encryption_result(&packet[6]);
2498                         break;
2499                     }
2500                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
2501                         sm_handle_random_result(&packet[6]);
2502                         break;
2503                     }
2504                     break;
2505                 default:
2506                     break;
2507 			}
2508             break;
2509         default:
2510             break;
2511 	}
2512 
2513     sm_run();
2514 }
2515 
2516 static inline int sm_calc_actual_encryption_key_size(int other){
2517     if (other < sm_min_encryption_key_size) return 0;
2518     if (other < sm_max_encryption_key_size) return other;
2519     return sm_max_encryption_key_size;
2520 }
2521 
2522 /**
2523  * @return ok
2524  */
2525 static int sm_validate_stk_generation_method(void){
2526     // check if STK generation method is acceptable by client
2527     switch (setup->sm_stk_generation_method){
2528         case JUST_WORKS:
2529             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
2530         case PK_RESP_INPUT:
2531         case PK_INIT_INPUT:
2532         case OK_BOTH_INPUT:
2533             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
2534         case OOB:
2535             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
2536         case NK_BOTH_INPUT:
2537             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0;
2538             return 1;
2539         default:
2540             return 0;
2541     }
2542 }
2543 
2544 // helper for sm_pdu_handler, calls sm_run on exit
2545 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
2546     setup->sm_pairing_failed_reason = reason;
2547     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2548 }
2549 
2550 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
2551     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
2552 }
2553 
2554 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
2555 
2556     if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){
2557         sm_run();
2558     }
2559 
2560     if (packet_type != SM_DATA_PACKET) return;
2561 
2562     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
2563     if (!sm_conn) return;
2564 
2565     if (packet[0] == SM_CODE_PAIRING_FAILED){
2566         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2567         return;
2568     }
2569 
2570     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]);
2571 
2572     int err;
2573 
2574     switch (sm_conn->sm_engine_state){
2575 
2576         // a sm timeout requries a new physical connection
2577         case SM_GENERAL_TIMEOUT:
2578             return;
2579 
2580         // Initiator
2581         case SM_INITIATOR_CONNECTED:
2582             if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
2583                 sm_pdu_received_in_wrong_state(sm_conn);
2584                 break;
2585             }
2586             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){
2587                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2588                 break;
2589             }
2590             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){
2591                 uint16_t ediv;
2592                 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
2593                 if (ediv){
2594                     log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
2595                     sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
2596                 } else {
2597                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2598                 }
2599                 break;
2600             }
2601             // otherwise, store security request
2602             sm_conn->sm_security_request_received = 1;
2603             break;
2604 
2605         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
2606             if (packet[0] != SM_CODE_PAIRING_RESPONSE){
2607                 sm_pdu_received_in_wrong_state(sm_conn);
2608                 break;
2609             }
2610             // store pairing request
2611             memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
2612             err = sm_stk_generation_init(sm_conn);
2613             if (err){
2614                 setup->sm_pairing_failed_reason = err;
2615                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2616                 break;
2617             }
2618 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2619             if (setup->sm_use_secure_connections){
2620                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
2621                 if (setup->sm_stk_generation_method == JUST_WORKS){
2622                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2623                     sm_trigger_user_response(sm_conn);
2624                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2625                         sm_conn->sm_engine_state = SM_PH2_SEND_PUBLIC_KEY_COMMAND;
2626                     }
2627                 } else {
2628                     sm_conn->sm_engine_state = SM_PH2_SEND_PUBLIC_KEY_COMMAND;
2629                 }
2630                 break;
2631             }
2632 #endif
2633             // generate random number first, if we need to show passkey
2634             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
2635                 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK;
2636                 break;
2637             }
2638             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2639             sm_trigger_user_response(sm_conn);
2640             // response_idle == nothing <--> sm_trigger_user_response() did not require response
2641             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2642                 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2643             }
2644             break;
2645 
2646         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
2647             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2648                 sm_pdu_received_in_wrong_state(sm_conn);
2649                 break;
2650             }
2651 
2652             // store s_confirm
2653             reverse_128(&packet[1], setup->sm_peer_confirm);
2654             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2655             break;
2656 
2657         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
2658             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2659                 sm_pdu_received_in_wrong_state(sm_conn);
2660                 break;;
2661             }
2662 
2663             // received random value
2664             reverse_128(&packet[1], setup->sm_peer_random);
2665             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2666             break;
2667 
2668         // Responder
2669         case SM_RESPONDER_IDLE:
2670         case SM_RESPONDER_SEND_SECURITY_REQUEST:
2671         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
2672             if (packet[0] != SM_CODE_PAIRING_REQUEST){
2673                 sm_pdu_received_in_wrong_state(sm_conn);
2674                 break;;
2675             }
2676 
2677             // store pairing request
2678             memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
2679             sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
2680             break;
2681 
2682 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2683         case SM_RESPONDER_PH2_W4_PUBLIC_KEY_COMMAND:
2684             if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){
2685                 sm_pdu_received_in_wrong_state(sm_conn);
2686                 break;
2687             }
2688 
2689             // store public key for DH Key calculation
2690             reverse_256(&packet[01], setup->sm_peer_qx);
2691             reverse_256(&packet[33], setup->sm_peer_qy);
2692 
2693 #ifdef USE_MBEDTLS_FOR_ECDH
2694             // validate public key
2695             mbedtls_ecp_group grp;
2696             mbedtls_ecp_group_init( &grp );
2697             mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
2698 
2699             mbedtls_ecp_point Q;
2700             mbedtls_ecp_point_init( &Q );
2701             mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
2702             mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
2703             mbedtls_mpi_read_string(&Q.Z, 16, "1" );
2704             err = mbedtls_ecp_check_pubkey(&grp, &Q);
2705             if (err){
2706                 log_error("sm: peer public key invalid %x", err);
2707                 // uses "unspecified reason", there is no "public key invalid" error code
2708                 sm_pdu_received_in_wrong_state(sm_conn);
2709                 break;
2710             }
2711 #endif
2712             if (sm_conn->sm_role){
2713                 // responder
2714                 sm_conn->sm_engine_state = SM_PH2_SEND_PUBLIC_KEY_COMMAND;
2715             } else {
2716                 // initiator
2717                 // stk generation method
2718                 // passkey entry: notify app to show passkey or to request passkey
2719                 switch (setup->sm_stk_generation_method){
2720                     case JUST_WORKS:
2721                     case NK_BOTH_INPUT:
2722                         sm_conn->sm_engine_state = SM_PH2_W4_CONFIRMATION;
2723                         break;
2724                     case PK_INIT_INPUT:
2725                     case PK_RESP_INPUT:
2726                     case OK_BOTH_INPUT:
2727                         sm_conn->sm_engine_state = SM_PH2_SEND_CONFIRMATION;
2728                         break;
2729                     case OOB:
2730                         // TODO: implement SC OOB
2731                         break;
2732                 }
2733             }
2734             break;
2735 
2736         case SM_PH2_W4_CONFIRMATION:
2737             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2738                 sm_pdu_received_in_wrong_state(sm_conn);
2739                 break;
2740             }
2741             // received confirm value
2742             reverse_128(&packet[1], setup->sm_peer_confirm);
2743 
2744             if (sm_conn->sm_role){
2745                 // responder
2746                 sm_conn->sm_engine_state = SM_PH2_SEND_CONFIRMATION;
2747             } else {
2748                 // initiator
2749                 sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM_SC;
2750             }
2751             break;
2752 
2753         case SM_PH2_W4_PAIRING_RANDOM:
2754             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2755                 sm_pdu_received_in_wrong_state(sm_conn);
2756                 break;
2757             }
2758 
2759             // received random value
2760             reverse_128(&packet[1], setup->sm_peer_nonce);
2761 
2762             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
2763             uint8_t z = 0;
2764             int passkey_entry = 0;
2765             if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
2766                 // some form of passkey
2767                 passkey_entry = 1;
2768                 uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
2769                 // sm_passkey_bit was increased before sending confirm value
2770                 z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1);
2771             }
2772             // only check for JUST WORK/NC in initiator role AND passkey entry
2773             if (sm_conn->sm_role || passkey_entry) {
2774                 sm_key_t confirm_value;
2775 #ifdef USE_MBEDTLS_FOR_ECDH
2776                 uint8_t local_qx[32];
2777                 mbedtls_mpi_write_binary(&le_keypair.Q.X, local_qx, sizeof(local_qx));
2778                 f4(confirm_value, setup->sm_peer_qx, local_qx, setup->sm_peer_nonce, z);
2779 #endif
2780                 if (0 != memcmp(confirm_value, setup->sm_peer_confirm, 16)){
2781                     sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
2782                     break;
2783                 }
2784             }
2785 
2786             if (sm_conn->sm_role){
2787                 // Responder
2788                 sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM_SC;
2789             } else {
2790                 // Initiator role
2791                 switch (setup->sm_stk_generation_method){
2792                     case JUST_WORKS:
2793                         sm_conn->sm_engine_state = SM_PH2_SEND_DHKEY_CHECK_COMMAND;
2794                         break;
2795 
2796                     case NK_BOTH_INPUT: {
2797                         // calc Va if numeric comparison
2798                         // TODO: use AES Engine to calculate g2
2799                         uint8_t value[32];
2800                         mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
2801                         uint32_t va = g2(value, setup->sm_peer_qx, setup->sm_local_nonce, setup->sm_peer_nonce) % 1000000;
2802                         big_endian_store_32(setup->sm_tk, 12, va);
2803                         sm_trigger_user_response(sm_conn);
2804                         break;
2805                     }
2806                     case PK_INIT_INPUT:
2807                     case PK_RESP_INPUT:
2808                     case OK_BOTH_INPUT:
2809                         if (setup->sm_passkey_bit < 20) {
2810                             sm_conn->sm_engine_state = SM_PH2_SEND_CONFIRMATION;
2811                         } else {
2812                             sm_conn->sm_engine_state = SM_PH2_SEND_DHKEY_CHECK_COMMAND;
2813                         }
2814                         break;
2815                     case OOB:
2816                         // TODO: implement SC OOB
2817                         break;
2818                 }
2819             }
2820             break;
2821 
2822         case SM_PH2_W4_DHKEY_CHECK_COMMAND:
2823             if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){
2824                 sm_pdu_received_in_wrong_state(sm_conn);
2825                 break;
2826             }
2827             // store DHKey Check
2828             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
2829 
2830             // validate E = f6()
2831             sm_key56_t bd_addr_master, bd_addr_slave;
2832             bd_addr_master[0] =  setup->sm_m_addr_type;
2833             bd_addr_slave[0]  =  setup->sm_s_addr_type;
2834             memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
2835             memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
2836 
2837             uint8_t iocap_a[3];
2838             iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2839             iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2840             iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2841             uint8_t iocap_b[3];
2842             iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2843             iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2844             iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2845             sm_key_t peer_dhkey_check;
2846             if (sm_conn->sm_role){
2847                 // responder
2848                 f6(peer_dhkey_check, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2849             } else {
2850                 // initiator
2851                 f6(peer_dhkey_check, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2852             }
2853 
2854             if (0 != memcmp(setup->sm_peer_dhkey_check, peer_dhkey_check, 16) ){
2855                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
2856                 break;
2857             }
2858 
2859             if (sm_conn->sm_role){
2860                 // responder
2861                 // for numeric comparison, we need to wait for user confirm
2862                 if (setup->sm_stk_generation_method == NK_BOTH_INPUT && setup->sm_user_response != SM_USER_RESPONSE_CONFIRM){
2863                     sm_conn->sm_engine_state = SM_PH2_W4_USER_RESPONSE;
2864                 } else {
2865                     sm_conn->sm_engine_state = SM_PH2_SEND_DHKEY_CHECK_COMMAND;
2866                 }
2867             } else {
2868                 // initiator
2869                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2870             }
2871             break;
2872 #endif
2873 
2874         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
2875             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2876                 sm_pdu_received_in_wrong_state(sm_conn);
2877                 break;
2878             }
2879 
2880             // received confirm value
2881             reverse_128(&packet[1], setup->sm_peer_confirm);
2882 
2883             // notify client to hide shown passkey
2884             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
2885                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
2886             }
2887 
2888             // handle user cancel pairing?
2889             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
2890                 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
2891                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2892                 break;
2893             }
2894 
2895             // wait for user action?
2896             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
2897                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2898                 break;
2899             }
2900 
2901             // calculate and send local_confirm
2902             sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2903             break;
2904 
2905         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
2906             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2907                 sm_pdu_received_in_wrong_state(sm_conn);
2908                 break;;
2909             }
2910 
2911             // received random value
2912             reverse_128(&packet[1], setup->sm_peer_random);
2913             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2914             break;
2915 
2916         case SM_PH3_RECEIVE_KEYS:
2917             switch(packet[0]){
2918                 case SM_CODE_ENCRYPTION_INFORMATION:
2919                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2920                     reverse_128(&packet[1], setup->sm_peer_ltk);
2921                     break;
2922 
2923                 case SM_CODE_MASTER_IDENTIFICATION:
2924                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2925                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
2926                     reverse_64(&packet[3], setup->sm_peer_rand);
2927                     break;
2928 
2929                 case SM_CODE_IDENTITY_INFORMATION:
2930                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2931                     reverse_128(&packet[1], setup->sm_peer_irk);
2932                     break;
2933 
2934                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
2935                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2936                     setup->sm_peer_addr_type = packet[1];
2937                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
2938                     break;
2939 
2940                 case SM_CODE_SIGNING_INFORMATION:
2941                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2942                     reverse_128(&packet[1], setup->sm_peer_csrk);
2943                     break;
2944                 default:
2945                     // Unexpected PDU
2946                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
2947                     break;
2948             }
2949             // done with key distribution?
2950             if (sm_key_distribution_all_received(sm_conn)){
2951 
2952                 sm_key_distribution_handle_all_received(sm_conn);
2953 
2954                 if (sm_conn->sm_role){
2955                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2956                     sm_done_for_handle(sm_conn->sm_handle);
2957                 } else {
2958                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2959 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2960                     if (setup->sm_use_secure_connections){
2961                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
2962                     }
2963 #endif
2964                 }
2965             }
2966             break;
2967         default:
2968             // Unexpected PDU
2969             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
2970             break;
2971     }
2972 
2973     // try to send preparared packet
2974     sm_run();
2975 }
2976 
2977 // Security Manager Client API
2978 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){
2979     sm_get_oob_data = get_oob_data_callback;
2980 }
2981 
2982 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
2983     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
2984 }
2985 
2986 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
2987     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
2988 }
2989 
2990 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
2991 	sm_min_encryption_key_size = min_size;
2992 	sm_max_encryption_key_size = max_size;
2993 }
2994 
2995 void sm_set_authentication_requirements(uint8_t auth_req){
2996     sm_auth_req = auth_req;
2997 }
2998 
2999 void sm_set_io_capabilities(io_capability_t io_capability){
3000     sm_io_capabilities = io_capability;
3001 }
3002 
3003 void sm_set_request_security(int enable){
3004     sm_slave_request_security = enable;
3005 }
3006 
3007 void sm_set_er(sm_key_t er){
3008     memcpy(sm_persistent_er, er, 16);
3009 }
3010 
3011 void sm_set_ir(sm_key_t ir){
3012     memcpy(sm_persistent_ir, ir, 16);
3013 }
3014 
3015 // Testing support only
3016 void sm_test_set_irk(sm_key_t irk){
3017     memcpy(sm_persistent_irk, irk, 16);
3018     sm_persistent_irk_ready = 1;
3019 }
3020 
3021 void sm_test_use_fixed_local_csrk(void){
3022     test_use_fixed_local_csrk = 1;
3023 }
3024 
3025 void sm_init(void){
3026     // set some (BTstack default) ER and IR
3027     int i;
3028     sm_key_t er;
3029     sm_key_t ir;
3030     for (i=0;i<16;i++){
3031         er[i] = 0x30 + i;
3032         ir[i] = 0x90 + i;
3033     }
3034     sm_set_er(er);
3035     sm_set_ir(ir);
3036     // defaults
3037     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
3038                                        | SM_STK_GENERATION_METHOD_OOB
3039                                        | SM_STK_GENERATION_METHOD_PASSKEY
3040                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
3041 
3042     sm_max_encryption_key_size = 16;
3043     sm_min_encryption_key_size = 7;
3044 
3045     sm_cmac_state  = CMAC_IDLE;
3046     dkg_state = DKG_W4_WORKING;
3047     rau_state = RAU_W4_WORKING;
3048     sm_aes128_state = SM_AES128_IDLE;
3049     sm_address_resolution_test = -1;    // no private address to resolve yet
3050     sm_address_resolution_ah_calculation_active = 0;
3051     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
3052     sm_address_resolution_general_queue = NULL;
3053 
3054     gap_random_adress_update_period = 15 * 60 * 1000L;
3055 
3056     sm_active_connection = 0;
3057 
3058     test_use_fixed_local_csrk = 0;
3059 
3060     // register for HCI Events from HCI
3061     hci_event_callback_registration.callback = &sm_event_packet_handler;
3062     hci_add_event_handler(&hci_event_callback_registration);
3063 
3064     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
3065     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
3066 
3067 #ifdef USE_MBEDTLS_FOR_ECDH
3068     // TODO: calculate keypair using LE Random Number Generator
3069     // use test keypair from spec initially
3070     mbedtls_ecp_keypair_init(&le_keypair);
3071     mbedtls_ecp_group_load(&le_keypair.grp, MBEDTLS_ECP_DP_SECP256R1);
3072     mbedtls_mpi_read_string( &le_keypair.d,   16, "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd");
3073     mbedtls_mpi_read_string( &le_keypair.Q.X, 16, "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6");
3074     mbedtls_mpi_read_string( &le_keypair.Q.Y, 16, "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b");
3075     mbedtls_mpi_read_string( &le_keypair.Q.Z, 16, "1");
3076     // print keypair
3077     char buffer[100];
3078     size_t len;
3079     mbedtls_mpi_write_string( &le_keypair.d, 16, buffer, sizeof(buffer), &len);
3080     log_info("d: %s", buffer);
3081     mbedtls_mpi_write_string( &le_keypair.Q.X, 16, buffer, sizeof(buffer), &len);
3082     log_info("X: %s", buffer);
3083     mbedtls_mpi_write_string( &le_keypair.Q.Y, 16, buffer, sizeof(buffer), &len);
3084     log_info("Y: %s", buffer);
3085 #endif
3086 }
3087 
3088 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
3089     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
3090     if (!hci_con) return NULL;
3091     return &hci_con->sm_connection;
3092 }
3093 
3094 // @returns 0 if not encrypted, 7-16 otherwise
3095 int sm_encryption_key_size(hci_con_handle_t con_handle){
3096     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3097     if (!sm_conn) return 0;     // wrong connection
3098     if (!sm_conn->sm_connection_encrypted) return 0;
3099     return sm_conn->sm_actual_encryption_key_size;
3100 }
3101 
3102 int sm_authenticated(hci_con_handle_t con_handle){
3103     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3104     if (!sm_conn) return 0;     // wrong connection
3105     if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
3106     return sm_conn->sm_connection_authenticated;
3107 }
3108 
3109 authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){
3110     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3111     if (!sm_conn) return AUTHORIZATION_UNKNOWN;     // wrong connection
3112     if (!sm_conn->sm_connection_encrypted)               return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
3113     if (!sm_conn->sm_connection_authenticated)           return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
3114     return sm_conn->sm_connection_authorization_state;
3115 }
3116 
3117 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){
3118     switch (sm_conn->sm_engine_state){
3119         case SM_GENERAL_IDLE:
3120         case SM_RESPONDER_IDLE:
3121             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
3122             sm_run();
3123             break;
3124         default:
3125             break;
3126     }
3127 }
3128 
3129 /**
3130  * @brief Trigger Security Request
3131  */
3132 void sm_send_security_request(hci_con_handle_t con_handle){
3133     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3134     if (!sm_conn) return;
3135     sm_send_security_request_for_connection(sm_conn);
3136 }
3137 
3138 // request pairing
3139 void sm_request_pairing(hci_con_handle_t con_handle){
3140     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3141     if (!sm_conn) return;     // wrong connection
3142 
3143     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
3144     if (sm_conn->sm_role){
3145         sm_send_security_request_for_connection(sm_conn);
3146     } else {
3147         // used as a trigger to start central/master/initiator security procedures
3148         uint16_t ediv;
3149         if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){
3150             switch (sm_conn->sm_irk_lookup_state){
3151                 case IRK_LOOKUP_FAILED:
3152                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3153                     break;
3154                 case IRK_LOOKUP_SUCCEEDED:
3155                         le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
3156                         if (ediv){
3157                             log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
3158                             sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
3159                         } else {
3160                             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3161                         }
3162                         break;
3163                 default:
3164                     sm_conn->sm_bonding_requested = 1;
3165                     break;
3166             }
3167         } else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
3168             sm_conn->sm_bonding_requested = 1;
3169         }
3170     }
3171     sm_run();
3172 }
3173 
3174 // called by client app on authorization request
3175 void sm_authorization_decline(hci_con_handle_t con_handle){
3176     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3177     if (!sm_conn) return;     // wrong connection
3178     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
3179     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
3180 }
3181 
3182 void sm_authorization_grant(hci_con_handle_t con_handle){
3183     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3184     if (!sm_conn) return;     // wrong connection
3185     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
3186     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
3187 }
3188 
3189 // GAP Bonding API
3190 
3191 void sm_bonding_decline(hci_con_handle_t con_handle){
3192     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3193     if (!sm_conn) return;     // wrong connection
3194     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
3195 
3196     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3197         switch (setup->sm_stk_generation_method){
3198             case PK_RESP_INPUT:
3199             case PK_INIT_INPUT:
3200             case OK_BOTH_INPUT:
3201                 sm_pairing_error(sm_conn, SM_GENERAL_SEND_PAIRING_FAILED);
3202                 break;
3203             case NK_BOTH_INPUT:
3204                 sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
3205                 break;
3206             case JUST_WORKS:
3207             case OOB:
3208                 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
3209                 break;
3210         }
3211     }
3212     sm_run();
3213 }
3214 
3215 void sm_just_works_confirm(hci_con_handle_t con_handle){
3216     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3217     if (!sm_conn) return;     // wrong connection
3218     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
3219     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3220         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3221 
3222 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3223         if (setup->sm_use_secure_connections){
3224             sm_conn->sm_engine_state = SM_PH2_SEND_PUBLIC_KEY_COMMAND;
3225         }
3226 #endif
3227     }
3228     if (sm_conn->sm_engine_state == SM_PH2_W4_USER_RESPONSE){
3229         if (sm_conn->sm_role){
3230             // responder
3231             sm_conn->sm_engine_state = SM_PH2_SEND_DHKEY_CHECK_COMMAND;
3232         } else {
3233             // initiator
3234             // TODO handle intiator role
3235         }
3236     }
3237     sm_run();
3238 }
3239 
3240 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
3241     // for now, it's the same
3242     sm_just_works_confirm(con_handle);
3243 }
3244 
3245 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
3246     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3247     if (!sm_conn) return;     // wrong connection
3248     sm_reset_tk();
3249     big_endian_store_32(setup->sm_tk, 12, passkey);
3250     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
3251     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3252         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3253     }
3254     sm_run();
3255 }
3256 
3257 /**
3258  * @brief Identify device in LE Device DB
3259  * @param handle
3260  * @returns index from le_device_db or -1 if not found/identified
3261  */
3262 int sm_le_device_index(hci_con_handle_t con_handle ){
3263     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3264     if (!sm_conn) return -1;
3265     return sm_conn->sm_le_db_index;
3266 }
3267 
3268 // GAP LE API
3269 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
3270     gap_random_address_update_stop();
3271     gap_random_adress_type = random_address_type;
3272     if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3273     gap_random_address_update_start();
3274     gap_random_address_trigger();
3275 }
3276 
3277 gap_random_address_type_t gap_random_address_get_mode(void){
3278     return gap_random_adress_type;
3279 }
3280 
3281 void gap_random_address_set_update_period(int period_ms){
3282     gap_random_adress_update_period = period_ms;
3283     if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3284     gap_random_address_update_stop();
3285     gap_random_address_update_start();
3286 }
3287 
3288 void gap_random_address_set(bd_addr_t addr){
3289     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_OFF);
3290     memcpy(sm_random_address, addr, 6);
3291     rau_state = RAU_SET_ADDRESS;
3292     sm_run();
3293 }
3294 
3295 /*
3296  * @brief Set Advertisement Paramters
3297  * @param adv_int_min
3298  * @param adv_int_max
3299  * @param adv_type
3300  * @param direct_address_type
3301  * @param direct_address
3302  * @param channel_map
3303  * @param filter_policy
3304  *
3305  * @note own_address_type is used from gap_random_address_set_mode
3306  */
3307 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
3308     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
3309     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, gap_random_adress_type,
3310         direct_address_typ, direct_address, channel_map, filter_policy);
3311 }
3312 
3313