xref: /btstack/src/ble/sm.c (revision 688a08f9c2ee25792b1106eefcb3e781b374559a)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #include <stdio.h>
39 #include <string.h>
40 #include <inttypes.h>
41 
42 #include "ble/le_device_db.h"
43 #include "ble/core.h"
44 #include "ble/sm.h"
45 #include "btstack_debug.h"
46 #include "btstack_event.h"
47 #include "btstack_linked_list.h"
48 #include "btstack_memory.h"
49 #include "gap.h"
50 #include "hci.h"
51 #include "l2cap.h"
52 
53 #ifdef ENABLE_LE_SECURE_CONNECTIONS
54 // TODO: remove software AES
55 #include "rijndael.h"
56 #endif
57 
58 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(HAVE_HCI_CONTROLLER_DHKEY_SUPPORT)
59 #define USE_MBEDTLS_FOR_ECDH
60 #endif
61 
62 // Software ECDH implementation provided by mbedtls
63 #ifdef USE_MBEDTLS_FOR_ECDH
64 #if !defined(MBEDTLS_CONFIG_FILE)
65 #include "mbedtls/config.h"
66 #else
67 #include MBEDTLS_CONFIG_FILE
68 #endif
69 #if defined(MBEDTLS_PLATFORM_C)
70 #include "mbedtls/platform.h"
71 #else
72 #include <stdio.h>
73 #define mbedtls_printf     printf
74 #endif
75 #include "mbedtls/ecp.h"
76 #endif
77 
78 //
79 // SM internal types and globals
80 //
81 
82 typedef enum {
83     DKG_W4_WORKING,
84     DKG_CALC_IRK,
85     DKG_W4_IRK,
86     DKG_CALC_DHK,
87     DKG_W4_DHK,
88     DKG_READY
89 } derived_key_generation_t;
90 
91 typedef enum {
92     RAU_W4_WORKING,
93     RAU_IDLE,
94     RAU_GET_RANDOM,
95     RAU_W4_RANDOM,
96     RAU_GET_ENC,
97     RAU_W4_ENC,
98     RAU_SET_ADDRESS,
99 } random_address_update_t;
100 
101 typedef enum {
102     CMAC_IDLE,
103     CMAC_CALC_SUBKEYS,
104     CMAC_W4_SUBKEYS,
105     CMAC_CALC_MI,
106     CMAC_W4_MI,
107     CMAC_CALC_MLAST,
108     CMAC_W4_MLAST
109 } cmac_state_t;
110 
111 typedef enum {
112     JUST_WORKS,
113     PK_RESP_INPUT,  // Initiator displays PK, responder inputs PK
114     PK_INIT_INPUT,  // Responder displays PK, initiator inputs PK
115     OK_BOTH_INPUT,  // Only input on both, both input PK
116     NK_BOTH_INPUT,  // Only numerical compparison (yes/no) on on both sides
117     OOB             // OOB available on both sides
118 } stk_generation_method_t;
119 
120 typedef enum {
121     SM_USER_RESPONSE_IDLE,
122     SM_USER_RESPONSE_PENDING,
123     SM_USER_RESPONSE_CONFIRM,
124     SM_USER_RESPONSE_PASSKEY,
125     SM_USER_RESPONSE_DECLINE
126 } sm_user_response_t;
127 
128 typedef enum {
129     SM_AES128_IDLE,
130     SM_AES128_ACTIVE
131 } sm_aes128_state_t;
132 
133 typedef enum {
134     ADDRESS_RESOLUTION_IDLE,
135     ADDRESS_RESOLUTION_GENERAL,
136     ADDRESS_RESOLUTION_FOR_CONNECTION,
137 } address_resolution_mode_t;
138 
139 typedef enum {
140     ADDRESS_RESOLUTION_SUCEEDED,
141     ADDRESS_RESOLUTION_FAILED,
142 } address_resolution_event_t;
143 //
144 // GLOBAL DATA
145 //
146 
147 static uint8_t test_use_fixed_local_csrk;
148 
149 // configuration
150 static uint8_t sm_accepted_stk_generation_methods;
151 static uint8_t sm_max_encryption_key_size;
152 static uint8_t sm_min_encryption_key_size;
153 static uint8_t sm_auth_req = 0;
154 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
155 static uint8_t sm_slave_request_security;
156 
157 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
158 static sm_key_t sm_persistent_er;
159 static sm_key_t sm_persistent_ir;
160 
161 // derived from sm_persistent_ir
162 static sm_key_t sm_persistent_dhk;
163 static sm_key_t sm_persistent_irk;
164 static uint8_t  sm_persistent_irk_ready = 0;    // used for testing
165 static derived_key_generation_t dkg_state;
166 
167 // derived from sm_persistent_er
168 // ..
169 
170 // random address update
171 static random_address_update_t rau_state;
172 static bd_addr_t sm_random_address;
173 
174 // CMAC Calculation: General
175 static cmac_state_t sm_cmac_state;
176 static uint16_t     sm_cmac_message_len;
177 static sm_key_t     sm_cmac_k;
178 static sm_key_t     sm_cmac_x;
179 static sm_key_t     sm_cmac_m_last;
180 static uint8_t      sm_cmac_block_current;
181 static uint8_t      sm_cmac_block_count;
182 static uint8_t      (*sm_cmac_get_byte)(uint16_t offset);
183 static void         (*sm_cmac_done_handler)(uint8_t * hash);
184 
185 // CMAC for ATT Signed Writes
186 static uint8_t      sm_cmac_header[3];
187 static const uint8_t * sm_cmac_message;
188 static uint8_t      sm_cmac_sign_counter[4];
189 
190 // CMAC for Secure Connection functions
191 #ifdef ENABLE_LE_SECURE_CONNECTIONS
192 static sm_connection_t * sm_cmac_connection;
193 static uint8_t           sm_cmac_sc_buffer[80];
194 #endif
195 
196 // resolvable private address lookup / CSRK calculation
197 static int       sm_address_resolution_test;
198 static int       sm_address_resolution_ah_calculation_active;
199 static uint8_t   sm_address_resolution_addr_type;
200 static bd_addr_t sm_address_resolution_address;
201 static void *    sm_address_resolution_context;
202 static address_resolution_mode_t sm_address_resolution_mode;
203 static btstack_linked_list_t sm_address_resolution_general_queue;
204 
205 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context
206 static sm_aes128_state_t  sm_aes128_state;
207 static void *             sm_aes128_context;
208 
209 // random engine. store context (ususally sm_connection_t)
210 static void * sm_random_context;
211 
212 // to receive hci events
213 static btstack_packet_callback_registration_t hci_event_callback_registration;
214 
215 /* to dispatch sm event */
216 static btstack_linked_list_t sm_event_handlers;
217 
218 // Software ECDH implementation provided by mbedtls
219 #ifdef USE_MBEDTLS_FOR_ECDH
220 mbedtls_ecp_keypair le_keypair;
221 #endif
222 
223 //
224 // Volume 3, Part H, Chapter 24
225 // "Security shall be initiated by the Security Manager in the device in the master role.
226 // The device in the slave role shall be the responding device."
227 // -> master := initiator, slave := responder
228 //
229 
230 // data needed for security setup
231 typedef struct sm_setup_context {
232 
233     btstack_timer_source_t sm_timeout;
234 
235     // used in all phases
236     uint8_t   sm_pairing_failed_reason;
237 
238     // user response, (Phase 1 and/or 2)
239     uint8_t   sm_user_response;
240 
241     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
242     int       sm_key_distribution_send_set;
243     int       sm_key_distribution_received_set;
244 
245     // Phase 2 (Pairing over SMP)
246     stk_generation_method_t sm_stk_generation_method;
247     sm_key_t  sm_tk;
248     uint8_t   sm_use_secure_connections;
249 
250     sm_key_t  sm_c1_t3_value;   // c1 calculation
251     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
252     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
253     sm_key_t  sm_local_random;
254     sm_key_t  sm_local_confirm;
255     sm_key_t  sm_peer_random;
256     sm_key_t  sm_peer_confirm;
257     uint8_t   sm_m_addr_type;   // address and type can be removed
258     uint8_t   sm_s_addr_type;   //  ''
259     bd_addr_t sm_m_address;     //  ''
260     bd_addr_t sm_s_address;     //  ''
261     sm_key_t  sm_ltk;
262 
263 #ifdef ENABLE_LE_SECURE_CONNECTIONS
264     uint8_t   sm_peer_qx[32];
265     uint8_t   sm_peer_qy[32];
266     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
267     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
268     sm_key_t  sm_peer_dhkey_check;
269     sm_key_t  sm_local_dhkey_check;
270     sm_key_t  sm_ra;
271     sm_key_t  sm_rb;
272     sm_key_t  sm_mackey;
273     uint8_t   sm_passkey_bit;
274 #endif
275 
276     // Phase 3
277 
278     // key distribution, we generate
279     uint16_t  sm_local_y;
280     uint16_t  sm_local_div;
281     uint16_t  sm_local_ediv;
282     uint8_t   sm_local_rand[8];
283     sm_key_t  sm_local_ltk;
284     sm_key_t  sm_local_csrk;
285     sm_key_t  sm_local_irk;
286     // sm_local_address/addr_type not needed
287 
288     // key distribution, received from peer
289     uint16_t  sm_peer_y;
290     uint16_t  sm_peer_div;
291     uint16_t  sm_peer_ediv;
292     uint8_t   sm_peer_rand[8];
293     sm_key_t  sm_peer_ltk;
294     sm_key_t  sm_peer_irk;
295     sm_key_t  sm_peer_csrk;
296     uint8_t   sm_peer_addr_type;
297     bd_addr_t sm_peer_address;
298 
299 } sm_setup_context_t;
300 
301 //
302 static sm_setup_context_t the_setup;
303 static sm_setup_context_t * setup = &the_setup;
304 
305 // active connection - the one for which the_setup is used for
306 static uint16_t sm_active_connection = 0;
307 
308 // @returns 1 if oob data is available
309 // stores oob data in provided 16 byte buffer if not null
310 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
311 
312 // used to notify applicationss that user interaction is neccessary, see sm_notify_t below
313 static btstack_packet_handler_t sm_client_packet_handler = NULL;
314 
315 // horizontal: initiator capabilities
316 // vertial:    responder capabilities
317 static const stk_generation_method_t stk_generation_method [5] [5] = {
318     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
319     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
320     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
321     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
322     { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
323 };
324 
325 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
326 #ifdef ENABLE_LE_SECURE_CONNECTIONS
327 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
328     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
329     { JUST_WORKS,      NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
330     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
331     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
332     { PK_RESP_INPUT,   NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
333 };
334 #endif
335 
336 static void sm_run(void);
337 static void sm_done_for_handle(hci_con_handle_t con_handle);
338 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
339 static inline int sm_calc_actual_encryption_key_size(int other);
340 static int sm_validate_stk_generation_method(void);
341 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data);
342 
343 static void log_info_hex16(const char * name, uint16_t value){
344     log_info("%-6s 0x%04x", name, value);
345 }
346 
347 // @returns 1 if all bytes are 0
348 static int sm_is_null_random(uint8_t random[8]){
349     int i;
350     for (i=0; i < 8 ; i++){
351         if (random[i]) return 0;
352     }
353     return 1;
354 }
355 
356 // Key utils
357 static void sm_reset_tk(void){
358     int i;
359     for (i=0;i<16;i++){
360         setup->sm_tk[i] = 0;
361     }
362 }
363 
364 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
365 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
366 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
367     int i;
368     for (i = max_encryption_size ; i < 16 ; i++){
369         key[15-i] = 0;
370     }
371 }
372 
373 // SMP Timeout implementation
374 
375 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
376 // the Security Manager Timer shall be reset and started.
377 //
378 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
379 //
380 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
381 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
382 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
383 // established.
384 
385 static void sm_timeout_handler(btstack_timer_source_t * timer){
386     log_info("SM timeout");
387     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
388     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
389     sm_done_for_handle(sm_conn->sm_handle);
390 
391     // trigger handling of next ready connection
392     sm_run();
393 }
394 static void sm_timeout_start(sm_connection_t * sm_conn){
395     btstack_run_loop_remove_timer(&setup->sm_timeout);
396     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
397     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
398     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
399     btstack_run_loop_add_timer(&setup->sm_timeout);
400 }
401 static void sm_timeout_stop(void){
402     btstack_run_loop_remove_timer(&setup->sm_timeout);
403 }
404 static void sm_timeout_reset(sm_connection_t * sm_conn){
405     sm_timeout_stop();
406     sm_timeout_start(sm_conn);
407 }
408 
409 // end of sm timeout
410 
411 // GAP Random Address updates
412 static gap_random_address_type_t gap_random_adress_type;
413 static btstack_timer_source_t gap_random_address_update_timer;
414 static uint32_t gap_random_adress_update_period;
415 
416 static void gap_random_address_trigger(void){
417     if (rau_state != RAU_IDLE) return;
418     log_info("gap_random_address_trigger");
419     rau_state = RAU_GET_RANDOM;
420     sm_run();
421 }
422 
423 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
424     log_info("GAP Random Address Update due");
425     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
426     btstack_run_loop_add_timer(&gap_random_address_update_timer);
427     gap_random_address_trigger();
428 }
429 
430 static void gap_random_address_update_start(void){
431     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
432     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
433     btstack_run_loop_add_timer(&gap_random_address_update_timer);
434 }
435 
436 static void gap_random_address_update_stop(void){
437     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
438 }
439 
440 
441 static void sm_random_start(void * context){
442     sm_random_context = context;
443     hci_send_cmd(&hci_le_rand);
444 }
445 
446 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1
447 // context is made availabe to aes128 result handler by this
448 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){
449     sm_aes128_state = SM_AES128_ACTIVE;
450     sm_key_t key_flipped, plaintext_flipped;
451     reverse_128(key, key_flipped);
452     reverse_128(plaintext, plaintext_flipped);
453     sm_aes128_context = context;
454     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
455 }
456 
457 // ah(k,r) helper
458 // r = padding || r
459 // r - 24 bit value
460 static void sm_ah_r_prime(uint8_t r[3], sm_key_t r_prime){
461     // r'= padding || r
462     memset(r_prime, 0, 16);
463     memcpy(&r_prime[13], r, 3);
464 }
465 
466 // d1 helper
467 // d' = padding || r || d
468 // d,r - 16 bit values
469 static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){
470     // d'= padding || r || d
471     memset(d1_prime, 0, 16);
472     big_endian_store_16(d1_prime, 12, r);
473     big_endian_store_16(d1_prime, 14, d);
474 }
475 
476 // dm helper
477 // r’ = padding || r
478 // r - 64 bit value
479 static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){
480     memset(r_prime, 0, 16);
481     memcpy(&r_prime[8], r, 8);
482 }
483 
484 // calculate arguments for first AES128 operation in C1 function
485 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){
486 
487     // p1 = pres || preq || rat’ || iat’
488     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
489     // cant octet of pres becomes the most significant octet of p1.
490     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
491     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
492     // p1 is 0x05000800000302070710000001010001."
493 
494     sm_key_t p1;
495     reverse_56(pres, &p1[0]);
496     reverse_56(preq, &p1[7]);
497     p1[14] = rat;
498     p1[15] = iat;
499     log_info_key("p1", p1);
500     log_info_key("r", r);
501 
502     // t1 = r xor p1
503     int i;
504     for (i=0;i<16;i++){
505         t1[i] = r[i] ^ p1[i];
506     }
507     log_info_key("t1", t1);
508 }
509 
510 // calculate arguments for second AES128 operation in C1 function
511 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){
512      // p2 = padding || ia || ra
513     // "The least significant octet of ra becomes the least significant octet of p2 and
514     // the most significant octet of padding becomes the most significant octet of p2.
515     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
516     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
517 
518     sm_key_t p2;
519     memset(p2, 0, 16);
520     memcpy(&p2[4],  ia, 6);
521     memcpy(&p2[10], ra, 6);
522     log_info_key("p2", p2);
523 
524     // c1 = e(k, t2_xor_p2)
525     int i;
526     for (i=0;i<16;i++){
527         t3[i] = t2[i] ^ p2[i];
528     }
529     log_info_key("t3", t3);
530 }
531 
532 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){
533     log_info_key("r1", r1);
534     log_info_key("r2", r2);
535     memcpy(&r_prime[8], &r2[8], 8);
536     memcpy(&r_prime[0], &r1[8], 8);
537 }
538 
539 #ifdef ENABLE_LE_SECURE_CONNECTIONS
540 // Software implementations of crypto toolbox for LE Secure Connection
541 // TODO: replace with code to use AES Engine of HCI Controller
542 typedef uint8_t sm_key24_t[3];
543 typedef uint8_t sm_key56_t[7];
544 typedef uint8_t sm_key256_t[32];
545 
546 static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){
547     uint32_t rk[RKLENGTH(KEYBITS)];
548     int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
549     rijndaelEncrypt(rk, nrounds, plaintext, cyphertext);
550 }
551 
552 static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
553     memcpy(k1, k0, 16);
554     sm_shift_left_by_one_bit_inplace(16, k1);
555     if (k0[0] & 0x80){
556         k1[15] ^= 0x87;
557     }
558     memcpy(k2, k1, 16);
559     sm_shift_left_by_one_bit_inplace(16, k2);
560     if (k1[0] & 0x80){
561         k2[15] ^= 0x87;
562     }
563 }
564 
565 static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){
566     sm_key_t k0, k1, k2, zero;
567     memset(zero, 0, 16);
568 
569     aes128_calc_cyphertext(key, zero, k0);
570     calc_subkeys(k0, k1, k2);
571 
572     int cmac_block_count = (cmac_message_len + 15) / 16;
573 
574     // step 3: ..
575     if (cmac_block_count==0){
576         cmac_block_count = 1;
577     }
578 
579     // step 4: set m_last
580     sm_key_t cmac_m_last;
581     int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0;
582     int i;
583     if (sm_cmac_last_block_complete){
584         for (i=0;i<16;i++){
585             cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i];
586         }
587     } else {
588         int valid_octets_in_last_block = cmac_message_len & 0x0f;
589         for (i=0;i<16;i++){
590             if (i < valid_octets_in_last_block){
591                 cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i];
592                 continue;
593             }
594             if (i == valid_octets_in_last_block){
595                 cmac_m_last[i] = 0x80 ^ k2[i];
596                 continue;
597             }
598             cmac_m_last[i] = k2[i];
599         }
600     }
601 
602     // printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count);
603     // LOG_KEY(cmac_m_last);
604 
605     // Step 5
606     sm_key_t cmac_x;
607     memset(cmac_x, 0, 16);
608 
609     // Step 6
610     sm_key_t sm_cmac_y;
611     for (int block = 0 ; block < cmac_block_count-1 ; block++){
612         for (i=0;i<16;i++){
613             sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i];
614         }
615         aes128_calc_cyphertext(key, sm_cmac_y, cmac_x);
616     }
617     for (i=0;i<16;i++){
618         sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
619     }
620 
621     // Step 7
622     aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac);
623 }
624 
625 const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
626 const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
627 const uint8_t f5_length[] = { 0x01, 0x00};
628 static void f5(sm_key256_t res, const sm_key256_t w, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
629     // T = AES-CMACSAL_T(W)
630     sm_key_t t;
631     aes_cmac(t, f5_salt, w, 32);
632     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
633     uint8_t buffer[53];
634     buffer[0] = 0;
635     memcpy(buffer+01, f5_key_id, 4);
636     memcpy(buffer+05, n1, 16);
637     memcpy(buffer+21, n2, 16);
638     memcpy(buffer+37, a1, 7);
639     memcpy(buffer+44, a2, 7);
640     memcpy(buffer+51, f5_length, 2);
641     log_info("f5 DHKEY");
642     log_info_hexdump(w, 32);
643     log_info("f5 key");
644     log_info_hexdump(t, 16);
645     log_info("f5 message for MacKey");
646     log_info_hexdump(buffer, sizeof(buffer));
647     aes_cmac(res, t, buffer, sizeof(buffer));
648     // hexdump2(res, 16);
649     //                      || AES-CMACT (Counter = 1 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the LTK
650     buffer[0] = 1;
651     // hexdump2(buffer, sizeof(buffer));
652     log_info("f5 message for LTK");
653     log_info_hexdump(buffer, sizeof(buffer));
654     aes_cmac(res+16, t, buffer, sizeof(buffer));
655     // hexdump2(res+16, 16);
656 }
657 
658 // f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMACW (N1 || N2 || R || IOcap || A1 || A2
659 // - W is 128 bits
660 // - N1 is 128 bits
661 // - N2 is 128 bits
662 // - R is 128 bits
663 // - IOcap is 24 bits
664 // - A1 is 56 bits
665 // - A2 is 56 bits
666 static void f6(sm_key_t res, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
667     uint8_t buffer[65];
668     memcpy(buffer, n1, 16);
669     memcpy(buffer+16, n2, 16);
670     memcpy(buffer+32, r, 16);
671     memcpy(buffer+48, io_cap, 3);
672     memcpy(buffer+51, a1, 7);
673     memcpy(buffer+58, a2, 7);
674     log_info("f6 key");
675     log_info_hexdump(w, 16);
676     log_info("f6 message");
677     log_info_hexdump(buffer, sizeof(buffer));
678     aes_cmac(res, w, buffer,sizeof(buffer));
679     log_info("f6 result");
680     log_info_hexdump(res, 16);
681 }
682 
683 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
684 // - U is 256 bits
685 // - V is 256 bits
686 // - X is 128 bits
687 // - Y is 128 bits
688 static uint32_t g2(const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
689     uint8_t buffer[80];
690     memcpy(buffer, u, 32);
691     memcpy(buffer+32, v, 32);
692     memcpy(buffer+64, y, 16);
693     sm_key_t cmac;
694     log_info("g2 key");
695     log_info_hexdump(x, 16);
696     log_info("g2 message");
697     log_info_hexdump(buffer, sizeof(buffer));
698     aes_cmac(cmac, x, buffer, sizeof(buffer));
699     log_info("g2 result");
700     log_info_hexdump(x, 16);
701     return big_endian_read_32(cmac, 12);
702 }
703 
704 #if 0
705 // h6(W, keyID) = AES-CMACW(keyID)
706 // - W is 128 bits
707 // - keyID is 32 bits
708 static void h6(sm_key_t res, const sm_key_t w, const uint32_t key_id){
709     uint8_t key_id_buffer[4];
710     big_endian_store_32(key_id_buffer, 0, key_id);
711     aes_cmac(res, w, key_id_buffer, 4);
712 }
713 #endif
714 #endif
715 
716 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
717     event[0] = type;
718     event[1] = event_size - 2;
719     little_endian_store_16(event, 2, con_handle);
720     event[4] = addr_type;
721     reverse_bd_addr(address, &event[5]);
722 }
723 
724 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
725     if (sm_client_packet_handler) {
726         sm_client_packet_handler(HCI_EVENT_PACKET, 0, packet, size);
727     }
728     // dispatch to all event handlers
729     btstack_linked_list_iterator_t it;
730     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
731     while (btstack_linked_list_iterator_has_next(&it)){
732         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
733         entry->callback(packet_type, 0, packet, size);
734     }
735 }
736 
737 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
738     uint8_t event[11];
739     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
740     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
741 }
742 
743 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
744     uint8_t event[15];
745     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
746     little_endian_store_32(event, 11, passkey);
747     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
748 }
749 
750 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
751     uint8_t event[13];
752     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
753     little_endian_store_16(event, 11, index);
754     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
755 }
756 
757 static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){
758 
759     uint8_t event[18];
760     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
761     event[11] = result;
762     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
763 }
764 
765 // decide on stk generation based on
766 // - pairing request
767 // - io capabilities
768 // - OOB data availability
769 static void sm_setup_tk(void){
770 
771     // default: just works
772     setup->sm_stk_generation_method = JUST_WORKS;
773 
774 #ifdef ENABLE_LE_SECURE_CONNECTIONS
775     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
776                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
777                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0;
778     memset(setup->sm_ra, 0, 16);
779     memset(setup->sm_rb, 0, 16);
780 #else
781     setup->sm_use_secure_connections = 0;
782 #endif
783 
784     // If both devices have not set the MITM option in the Authentication Requirements
785     // Flags, then the IO capabilities shall be ignored and the Just Works association
786     // model shall be used.
787     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0)
788     &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){
789         log_info("SM: MITM not required by both -> JUST WORKS");
790         return;
791     }
792 
793     // TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient
794 
795     // If both devices have out of band authentication data, then the Authentication
796     // Requirements Flags shall be ignored when selecting the pairing method and the
797     // Out of Band pairing method shall be used.
798     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq)
799     &&  sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){
800         log_info("SM: have OOB data");
801         log_info_key("OOB", setup->sm_tk);
802         setup->sm_stk_generation_method = OOB;
803         return;
804     }
805 
806     // Reset TK as it has been setup in sm_init_setup
807     sm_reset_tk();
808 
809     // Also use just works if unknown io capabilites
810     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
811         return;
812     }
813 
814     // Otherwise the IO capabilities of the devices shall be used to determine the
815     // pairing method as defined in Table 2.4.
816     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
817     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
818 
819 #ifdef ENABLE_LE_SECURE_CONNECTIONS
820     // table not define by default
821     if (setup->sm_use_secure_connections){
822         generation_method = stk_generation_method_with_secure_connection;
823     }
824 #endif
825     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
826 
827     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
828         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
829 }
830 
831 static int sm_key_distribution_flags_for_set(uint8_t key_set){
832     int flags = 0;
833     if (key_set & SM_KEYDIST_ENC_KEY){
834         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
835         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
836     }
837     if (key_set & SM_KEYDIST_ID_KEY){
838         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
839         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
840     }
841     if (key_set & SM_KEYDIST_SIGN){
842         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
843     }
844     return flags;
845 }
846 
847 static void sm_setup_key_distribution(uint8_t key_set){
848     setup->sm_key_distribution_received_set = 0;
849     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
850 }
851 
852 // CSRK Key Lookup
853 
854 
855 static int sm_address_resolution_idle(void){
856     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
857 }
858 
859 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
860     memcpy(sm_address_resolution_address, addr, 6);
861     sm_address_resolution_addr_type = addr_type;
862     sm_address_resolution_test = 0;
863     sm_address_resolution_mode = mode;
864     sm_address_resolution_context = context;
865     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
866 }
867 
868 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
869     // check if already in list
870     btstack_linked_list_iterator_t it;
871     sm_lookup_entry_t * entry;
872     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
873     while(btstack_linked_list_iterator_has_next(&it)){
874         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
875         if (entry->address_type != address_type) continue;
876         if (memcmp(entry->address, address, 6))  continue;
877         // already in list
878         return BTSTACK_BUSY;
879     }
880     entry = btstack_memory_sm_lookup_entry_get();
881     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
882     entry->address_type = (bd_addr_type_t) address_type;
883     memcpy(entry->address, address, 6);
884     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
885     sm_run();
886     return 0;
887 }
888 
889 // CMAC Implementation using AES128 engine
890 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
891     int i;
892     int carry = 0;
893     for (i=len-1; i >= 0 ; i--){
894         int new_carry = data[i] >> 7;
895         data[i] = data[i] << 1 | carry;
896         carry = new_carry;
897     }
898 }
899 
900 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now
901 static inline void sm_next_responding_state(sm_connection_t * sm_conn){
902     sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1);
903 }
904 static inline void dkg_next_state(void){
905     dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1);
906 }
907 static inline void rau_next_state(void){
908     rau_state = (random_address_update_t) (((int)rau_state) + 1);
909 }
910 
911 // CMAC calculation using AES Engine
912 
913 static inline void sm_cmac_next_state(void){
914     sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1);
915 }
916 
917 static int sm_cmac_last_block_complete(void){
918     if (sm_cmac_message_len == 0) return 0;
919     return (sm_cmac_message_len & 0x0f) == 0;
920 }
921 
922 static inline uint8_t sm_cmac_message_get_byte(uint16_t offset){
923     if (offset >= sm_cmac_message_len) {
924         log_error("sm_cmac_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len);
925         return 0;
926     }
927 
928     offset = sm_cmac_message_len - 1 - offset;
929 
930     // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4]
931     if (offset < 3){
932         return sm_cmac_header[offset];
933     }
934     int actual_message_len_incl_header = sm_cmac_message_len - 4;
935     if (offset <  actual_message_len_incl_header){
936         return sm_cmac_message[offset - 3];
937     }
938     return sm_cmac_sign_counter[offset - actual_message_len_incl_header];
939 }
940 
941 // generic cmac calculation
942 void sm_cmac_general_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t hash[8])){
943     // Generalized CMAC
944     memcpy(sm_cmac_k, key, 16);
945     memset(sm_cmac_x, 0, 16);
946     sm_cmac_block_current = 0;
947     sm_cmac_message_len  = message_len;
948     sm_cmac_done_handler = done_callback;
949     sm_cmac_get_byte     = get_byte_callback;
950 
951     // step 2: n := ceil(len/const_Bsize);
952     sm_cmac_block_count = (sm_cmac_message_len + 15) / 16;
953 
954     // step 3: ..
955     if (sm_cmac_block_count==0){
956         sm_cmac_block_count = 1;
957     }
958 
959     log_info("sm_cmac_general_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count);
960 
961     // first, we need to compute l for k1, k2, and m_last
962     sm_cmac_state = CMAC_CALC_SUBKEYS;
963 
964     // let's go
965     sm_run();
966 }
967 
968 // cmac for ATT Message signing
969 void sm_cmac_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
970     // ATT Message Signing
971     sm_cmac_header[0] = opcode;
972     little_endian_store_16(sm_cmac_header, 1, con_handle);
973     little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter);
974     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
975     sm_cmac_message = message;
976     sm_cmac_general_start(k, total_message_len, &sm_cmac_message_get_byte, done_handler);
977 }
978 
979 int sm_cmac_ready(void){
980     return sm_cmac_state == CMAC_IDLE;
981 }
982 
983 static void sm_cmac_handle_aes_engine_ready(void){
984     switch (sm_cmac_state){
985         case CMAC_CALC_SUBKEYS: {
986             sm_key_t const_zero;
987             memset(const_zero, 0, 16);
988             sm_cmac_next_state();
989             sm_aes128_start(sm_cmac_k, const_zero, NULL);
990             break;
991         }
992         case CMAC_CALC_MI: {
993             int j;
994             sm_key_t y;
995             for (j=0;j<16;j++){
996                 y[j] = sm_cmac_x[j] ^ sm_cmac_get_byte(sm_cmac_block_current*16 + j);
997             }
998             sm_cmac_block_current++;
999             sm_cmac_next_state();
1000             sm_aes128_start(sm_cmac_k, y, NULL);
1001             break;
1002         }
1003         case CMAC_CALC_MLAST: {
1004             int i;
1005             sm_key_t y;
1006             for (i=0;i<16;i++){
1007                 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
1008             }
1009             log_info_key("Y", y);
1010             sm_cmac_block_current++;
1011             sm_cmac_next_state();
1012             sm_aes128_start(sm_cmac_k, y, NULL);
1013             break;
1014         }
1015         default:
1016             log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state);
1017             break;
1018     }
1019 }
1020 
1021 static void sm_cmac_handle_encryption_result(sm_key_t data){
1022     switch (sm_cmac_state){
1023         case CMAC_W4_SUBKEYS: {
1024             sm_key_t k1;
1025             memcpy(k1, data, 16);
1026             sm_shift_left_by_one_bit_inplace(16, k1);
1027             if (data[0] & 0x80){
1028                 k1[15] ^= 0x87;
1029             }
1030             sm_key_t k2;
1031             memcpy(k2, k1, 16);
1032             sm_shift_left_by_one_bit_inplace(16, k2);
1033             if (k1[0] & 0x80){
1034                 k2[15] ^= 0x87;
1035             }
1036 
1037             log_info_key("k", sm_cmac_k);
1038             log_info_key("k1", k1);
1039             log_info_key("k2", k2);
1040 
1041             // step 4: set m_last
1042             int i;
1043             if (sm_cmac_last_block_complete()){
1044                 for (i=0;i<16;i++){
1045                     sm_cmac_m_last[i] = sm_cmac_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i];
1046                 }
1047             } else {
1048                 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
1049                 for (i=0;i<16;i++){
1050                     if (i < valid_octets_in_last_block){
1051                         sm_cmac_m_last[i] = sm_cmac_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i];
1052                         continue;
1053                     }
1054                     if (i == valid_octets_in_last_block){
1055                         sm_cmac_m_last[i] = 0x80 ^ k2[i];
1056                         continue;
1057                     }
1058                     sm_cmac_m_last[i] = k2[i];
1059                 }
1060             }
1061 
1062             // next
1063             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1064             break;
1065         }
1066         case CMAC_W4_MI:
1067             memcpy(sm_cmac_x, data, 16);
1068             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1069             break;
1070         case CMAC_W4_MLAST:
1071             // done
1072             log_info_key("CMAC", data);
1073             sm_cmac_done_handler(data);
1074             sm_cmac_state = CMAC_IDLE;
1075             break;
1076         default:
1077             log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state);
1078             break;
1079     }
1080 }
1081 
1082 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1083     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1084     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1085     switch (setup->sm_stk_generation_method){
1086         case PK_RESP_INPUT:
1087             if (sm_conn->sm_role){
1088                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1089                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1090             } else {
1091                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1092             }
1093             break;
1094         case PK_INIT_INPUT:
1095             if (sm_conn->sm_role){
1096                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1097             } else {
1098                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1099                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1100             }
1101             break;
1102         case OK_BOTH_INPUT:
1103             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1104             sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1105             break;
1106         case NK_BOTH_INPUT:
1107             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1108             sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1109             break;
1110         case JUST_WORKS:
1111             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1112             sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1113             break;
1114         case OOB:
1115             // client already provided OOB data, let's skip notification.
1116             break;
1117     }
1118 }
1119 
1120 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
1121     int recv_flags;
1122     if (sm_conn->sm_role){
1123         // slave / responder
1124         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
1125     } else {
1126         // master / initiator
1127         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
1128     }
1129     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
1130     return recv_flags == setup->sm_key_distribution_received_set;
1131 }
1132 
1133 static void sm_done_for_handle(hci_con_handle_t con_handle){
1134     if (sm_active_connection == con_handle){
1135         sm_timeout_stop();
1136         sm_active_connection = 0;
1137         log_info("sm: connection 0x%x released setup context", con_handle);
1138     }
1139 }
1140 
1141 static int sm_key_distribution_flags_for_auth_req(void){
1142     int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN;
1143     if (sm_auth_req & SM_AUTHREQ_BONDING){
1144         // encryption information only if bonding requested
1145         flags |= SM_KEYDIST_ENC_KEY;
1146     }
1147     return flags;
1148 }
1149 
1150 static void sm_init_setup(sm_connection_t * sm_conn){
1151 
1152     // fill in sm setup
1153     sm_reset_tk();
1154     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1155     memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1156 
1157     // query client for OOB data
1158     int have_oob_data = 0;
1159     if (sm_get_oob_data) {
1160         have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1161     }
1162 
1163     sm_pairing_packet_t * local_packet;
1164     if (sm_conn->sm_role){
1165         // slave
1166         local_packet = &setup->sm_s_pres;
1167         gap_advertisements_get_address(&setup->sm_s_addr_type, setup->sm_s_address);
1168         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1169         memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1170     } else {
1171         // master
1172         local_packet = &setup->sm_m_preq;
1173         gap_advertisements_get_address(&setup->sm_m_addr_type, setup->sm_m_address);
1174         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1175         memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1176 
1177         int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1178         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1179         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1180     }
1181 
1182     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1183     sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data);
1184     sm_pairing_packet_set_auth_req(*local_packet, sm_auth_req);
1185     sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size);
1186 }
1187 
1188 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1189 
1190     sm_pairing_packet_t * remote_packet;
1191     int                   remote_key_request;
1192     if (sm_conn->sm_role){
1193         // slave / responder
1194         remote_packet      = &setup->sm_m_preq;
1195         remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1196     } else {
1197         // master / initiator
1198         remote_packet      = &setup->sm_s_pres;
1199         remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1200     }
1201 
1202     // check key size
1203     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1204     if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE;
1205 
1206     // decide on STK generation method
1207     sm_setup_tk();
1208     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1209 
1210     // check if STK generation method is acceptable by client
1211     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1212 
1213     // identical to responder
1214     sm_setup_key_distribution(remote_key_request);
1215 
1216     // JUST WORKS doens't provide authentication
1217     sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1;
1218 
1219     return 0;
1220 }
1221 
1222 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1223 
1224     // cache and reset context
1225     int matched_device_id = sm_address_resolution_test;
1226     address_resolution_mode_t mode = sm_address_resolution_mode;
1227     void * context = sm_address_resolution_context;
1228 
1229     // reset context
1230     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1231     sm_address_resolution_context = NULL;
1232     sm_address_resolution_test = -1;
1233     hci_con_handle_t con_handle = 0;
1234 
1235     sm_connection_t * sm_connection;
1236     uint16_t ediv;
1237     switch (mode){
1238         case ADDRESS_RESOLUTION_GENERAL:
1239             break;
1240         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1241             sm_connection = (sm_connection_t *) context;
1242             con_handle = sm_connection->sm_handle;
1243             switch (event){
1244                 case ADDRESS_RESOLUTION_SUCEEDED:
1245                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1246                     sm_connection->sm_le_db_index = matched_device_id;
1247                     log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index);
1248                     if (sm_connection->sm_role) break;
1249                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1250                     sm_connection->sm_security_request_received = 0;
1251                     sm_connection->sm_bonding_requested = 0;
1252                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
1253                     if (ediv){
1254                         sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
1255                     } else {
1256                         sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1257                     }
1258                     break;
1259                 case ADDRESS_RESOLUTION_FAILED:
1260                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1261                     if (sm_connection->sm_role) break;
1262                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1263                     sm_connection->sm_security_request_received = 0;
1264                     sm_connection->sm_bonding_requested = 0;
1265                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1266                     break;
1267             }
1268             break;
1269         default:
1270             break;
1271     }
1272 
1273     switch (event){
1274         case ADDRESS_RESOLUTION_SUCEEDED:
1275             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1276             break;
1277         case ADDRESS_RESOLUTION_FAILED:
1278             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1279             break;
1280     }
1281 }
1282 
1283 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1284 
1285     int le_db_index = -1;
1286 
1287     // lookup device based on IRK
1288     if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
1289         int i;
1290         for (i=0; i < le_device_db_count(); i++){
1291             sm_key_t irk;
1292             bd_addr_t address;
1293             int address_type;
1294             le_device_db_info(i, &address_type, address, irk);
1295             if (memcmp(irk, setup->sm_peer_irk, 16) == 0){
1296                 log_info("sm: device found for IRK, updating");
1297                 le_db_index = i;
1298                 break;
1299             }
1300         }
1301     }
1302 
1303     // if not found, lookup via public address if possible
1304     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1305     if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
1306         int i;
1307         for (i=0; i < le_device_db_count(); i++){
1308             bd_addr_t address;
1309             int address_type;
1310             le_device_db_info(i, &address_type, address, NULL);
1311             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1312             if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){
1313                 log_info("sm: device found for public address, updating");
1314                 le_db_index = i;
1315                 break;
1316             }
1317         }
1318     }
1319 
1320     // if not found, add to db
1321     if (le_db_index < 0) {
1322         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1323     }
1324 
1325     if (le_db_index >= 0){
1326         le_device_db_local_counter_set(le_db_index, 0);
1327 
1328         // store local CSRK
1329         if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1330             log_info("sm: store local CSRK");
1331             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1332             le_device_db_local_counter_set(le_db_index, 0);
1333         }
1334 
1335         // store remote CSRK
1336         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1337             log_info("sm: store remote CSRK");
1338             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1339             le_device_db_remote_counter_set(le_db_index, 0);
1340         }
1341 
1342         // store encryption information
1343         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION
1344             && setup->sm_key_distribution_received_set &  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1345             log_info("sm: set encryption information (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1346             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1347                 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
1348         }
1349     }
1350 
1351     // keep le_db_index
1352     sm_conn->sm_le_db_index = le_db_index;
1353 }
1354 
1355 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
1356     setup->sm_pairing_failed_reason = reason;
1357     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1358 }
1359 
1360 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
1361     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
1362 }
1363 
1364 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1365 
1366 static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){
1367     if (sm_conn->sm_role){
1368         // Responder
1369         sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
1370     } else {
1371         // Initiator role
1372         switch (setup->sm_stk_generation_method){
1373             case JUST_WORKS:
1374                 sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1375                 break;
1376 
1377             case NK_BOTH_INPUT: {
1378                 // calc Va if numeric comparison
1379                 // TODO: use AES Engine to calculate g2
1380                 uint8_t value[32];
1381                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1382                 uint32_t va = g2(value, setup->sm_peer_qx, setup->sm_local_nonce, setup->sm_peer_nonce) % 1000000;
1383                 big_endian_store_32(setup->sm_tk, 12, va);
1384                 sm_trigger_user_response(sm_conn);
1385                 break;
1386             }
1387             case PK_INIT_INPUT:
1388             case PK_RESP_INPUT:
1389             case OK_BOTH_INPUT:
1390                 if (setup->sm_passkey_bit < 20) {
1391                     sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1392                 } else {
1393                     sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
1394                 }
1395                 break;
1396             case OOB:
1397                 // TODO: implement SC OOB
1398                 break;
1399         }
1400     }
1401 }
1402 
1403 static uint8_t sm_sc_cmac_get_byte(uint16_t offset){
1404     return sm_cmac_sc_buffer[offset];
1405 }
1406 
1407 static void sm_sc_cmac_done(uint8_t * hash){
1408     log_info("sm_sc_cmac_done: ");
1409     log_info_hexdump(hash, 16);
1410 
1411     switch (sm_cmac_connection->sm_engine_state){
1412         case SM_SC_W4_CMAC_FOR_CONFIRMATION:
1413             memcpy(setup->sm_local_confirm, hash, 16);
1414             sm_cmac_connection->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1415             break;
1416         case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION:
1417             // check
1418             if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){
1419                 sm_pairing_error(sm_cmac_connection, SM_REASON_CONFIRM_VALUE_FAILED);
1420                 break;
1421             }
1422             // next state
1423             sm_sc_state_after_receiving_random(sm_cmac_connection);
1424             break;
1425         default:
1426             log_error("sm_sc_cmac_done in state %u", sm_cmac_connection->sm_engine_state);
1427             break;
1428     }
1429     sm_cmac_connection = 0;
1430     sm_run();
1431 }
1432 
1433 static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
1434     sm_cmac_connection = sm_conn;
1435     memcpy(sm_cmac_sc_buffer, u, 32);
1436     memcpy(sm_cmac_sc_buffer+32, v, 32);
1437     sm_cmac_sc_buffer[64] = z;
1438     log_info("f4 key");
1439     log_info_hexdump(x, 16);
1440     log_info("f4 message");
1441     log_info_hexdump(sm_cmac_sc_buffer, 65);
1442     sm_cmac_general_start(x, 65, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1443 }
1444 
1445 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
1446     uint8_t z = 0;
1447     if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1448         // some form of passkey
1449         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1450         z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1);
1451         setup->sm_passkey_bit++;
1452     }
1453 #ifdef USE_MBEDTLS_FOR_ECDH
1454     uint8_t local_qx[32];
1455     mbedtls_mpi_write_binary(&le_keypair.Q.X, local_qx, sizeof(local_qx));
1456 #endif
1457     f4_engine(sm_conn, local_qx, setup->sm_peer_qx, setup->sm_local_nonce, z);
1458 }
1459 
1460 static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){
1461     uint8_t z = 0;
1462     if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1463         // some form of passkey
1464         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1465         // sm_passkey_bit was increased before sending confirm value
1466         z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1);
1467     }
1468 #ifdef USE_MBEDTLS_FOR_ECDH
1469     uint8_t local_qx[32];
1470     mbedtls_mpi_write_binary(&le_keypair.Q.X, local_qx, sizeof(local_qx));
1471 #endif
1472     f4_engine(sm_conn, setup->sm_peer_qx, local_qx, setup->sm_peer_nonce, z);
1473 }
1474 
1475 #endif
1476 
1477 static void sm_run(void){
1478 
1479     btstack_linked_list_iterator_t it;
1480 
1481     // assert that we can send at least commands
1482     if (!hci_can_send_command_packet_now()) return;
1483 
1484     //
1485     // non-connection related behaviour
1486     //
1487 
1488     // distributed key generation
1489     switch (dkg_state){
1490         case DKG_CALC_IRK:
1491             // already busy?
1492             if (sm_aes128_state == SM_AES128_IDLE) {
1493                 // IRK = d1(IR, 1, 0)
1494                 sm_key_t d1_prime;
1495                 sm_d1_d_prime(1, 0, d1_prime);  // plaintext
1496                 dkg_next_state();
1497                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1498                 return;
1499             }
1500             break;
1501         case DKG_CALC_DHK:
1502             // already busy?
1503             if (sm_aes128_state == SM_AES128_IDLE) {
1504                 // DHK = d1(IR, 3, 0)
1505                 sm_key_t d1_prime;
1506                 sm_d1_d_prime(3, 0, d1_prime);  // plaintext
1507                 dkg_next_state();
1508                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1509                 return;
1510             }
1511             break;
1512         default:
1513             break;
1514     }
1515 
1516     // random address updates
1517     switch (rau_state){
1518         case RAU_GET_RANDOM:
1519             rau_next_state();
1520             sm_random_start(NULL);
1521             return;
1522         case RAU_GET_ENC:
1523             // already busy?
1524             if (sm_aes128_state == SM_AES128_IDLE) {
1525                 sm_key_t r_prime;
1526                 sm_ah_r_prime(sm_random_address, r_prime);
1527                 rau_next_state();
1528                 sm_aes128_start(sm_persistent_irk, r_prime, NULL);
1529                 return;
1530             }
1531             break;
1532         case RAU_SET_ADDRESS:
1533             log_info("New random address: %s", bd_addr_to_str(sm_random_address));
1534             rau_state = RAU_IDLE;
1535             hci_send_cmd(&hci_le_set_random_address, sm_random_address);
1536             return;
1537         default:
1538             break;
1539     }
1540 
1541     // CMAC
1542     switch (sm_cmac_state){
1543         case CMAC_CALC_SUBKEYS:
1544         case CMAC_CALC_MI:
1545         case CMAC_CALC_MLAST:
1546             // already busy?
1547             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1548             sm_cmac_handle_aes_engine_ready();
1549             return;
1550         default:
1551             break;
1552     }
1553 
1554     // CSRK Lookup
1555     // -- if csrk lookup ready, find connection that require csrk lookup
1556     if (sm_address_resolution_idle()){
1557         hci_connections_get_iterator(&it);
1558         while(btstack_linked_list_iterator_has_next(&it)){
1559             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1560             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
1561             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
1562                 // and start lookup
1563                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
1564                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
1565                 break;
1566             }
1567         }
1568     }
1569 
1570     // -- if csrk lookup ready, resolved addresses for received addresses
1571     if (sm_address_resolution_idle()) {
1572         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
1573             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
1574             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
1575             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
1576             btstack_memory_sm_lookup_entry_free(entry);
1577         }
1578     }
1579 
1580     // -- Continue with CSRK device lookup by public or resolvable private address
1581     if (!sm_address_resolution_idle()){
1582         log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count());
1583         while (sm_address_resolution_test < le_device_db_count()){
1584             int addr_type;
1585             bd_addr_t addr;
1586             sm_key_t irk;
1587             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
1588             log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
1589 
1590             if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){
1591                 log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
1592                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
1593                 break;
1594             }
1595 
1596             if (sm_address_resolution_addr_type == 0){
1597                 sm_address_resolution_test++;
1598                 continue;
1599             }
1600 
1601             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1602 
1603             log_info("LE Device Lookup: calculate AH");
1604             log_info_key("IRK", irk);
1605 
1606             sm_key_t r_prime;
1607             sm_ah_r_prime(sm_address_resolution_address, r_prime);
1608             sm_address_resolution_ah_calculation_active = 1;
1609             sm_aes128_start(irk, r_prime, sm_address_resolution_context);   // keep context
1610             return;
1611         }
1612 
1613         if (sm_address_resolution_test >= le_device_db_count()){
1614             log_info("LE Device Lookup: not found");
1615             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
1616         }
1617     }
1618 
1619 
1620     //
1621     // active connection handling
1622     // -- use loop to handle next connection if lock on setup context is released
1623 
1624     while (1) {
1625 
1626         // Find connections that requires setup context and make active if no other is locked
1627         hci_connections_get_iterator(&it);
1628         while(!sm_active_connection && btstack_linked_list_iterator_has_next(&it)){
1629             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1630             sm_connection_t  * sm_connection = &hci_connection->sm_connection;
1631             // - if no connection locked and we're ready/waiting for setup context, fetch it and start
1632             int done = 1;
1633             int err;
1634             int encryption_key_size;
1635             int authenticated;
1636             int authorized;
1637             switch (sm_connection->sm_engine_state) {
1638                 case SM_RESPONDER_SEND_SECURITY_REQUEST:
1639                     // send packet if possible,
1640                     if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){
1641                         const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING};
1642                         sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
1643                         l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1644                     } else {
1645                         l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1646                     }
1647                     // don't lock setup context yet
1648                     done = 0;
1649                     break;
1650                 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
1651                     sm_init_setup(sm_connection);
1652                     // recover pairing request
1653                     memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t));
1654                     err = sm_stk_generation_init(sm_connection);
1655                     if (err){
1656                         setup->sm_pairing_failed_reason = err;
1657                         sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1658                         break;
1659                     }
1660                     sm_timeout_start(sm_connection);
1661                     // generate random number first, if we need to show passkey
1662                     if (setup->sm_stk_generation_method == PK_INIT_INPUT){
1663                         sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK;
1664                         break;
1665                     }
1666                     sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
1667                     break;
1668                 case SM_INITIATOR_PH0_HAS_LTK:
1669                     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
1670                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1671                                                 &encryption_key_size, &authenticated, &authorized);
1672                     log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized);
1673                     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
1674                     sm_connection->sm_connection_authenticated = authenticated;
1675                     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
1676                     sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION;
1677                     break;
1678                 case SM_RESPONDER_PH0_RECEIVED_LTK:
1679                     // re-establish previously used LTK using Rand and EDIV
1680                     memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
1681                     setup->sm_local_ediv = sm_connection->sm_local_ediv;
1682                     // re-establish used key encryption size
1683                     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
1684                     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1;
1685                     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
1686                     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4;
1687                     log_info("sm: received ltk request with key size %u, authenticated %u",
1688                             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
1689                     sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC;
1690                     break;
1691                 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
1692                     sm_init_setup(sm_connection);
1693                     sm_timeout_start(sm_connection);
1694                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST;
1695                     break;
1696                 default:
1697                     done = 0;
1698                     break;
1699             }
1700             if (done){
1701                 sm_active_connection = sm_connection->sm_handle;
1702                 log_info("sm: connection 0x%04x locked setup context as %s", sm_active_connection, sm_connection->sm_role ? "responder" : "initiator");
1703             }
1704         }
1705 
1706         //
1707         // active connection handling
1708         //
1709 
1710         if (sm_active_connection == 0) return;
1711 
1712         // assert that we could send a SM PDU - not needed for all of the following
1713         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
1714             l2cap_request_can_send_fix_channel_now_event(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1715             return;
1716         }
1717 
1718         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection);
1719         if (!connection) return;
1720 
1721         sm_key_t plaintext;
1722         int key_distribution_flags;
1723 
1724         log_info("sm_run: state %u", connection->sm_engine_state);
1725 
1726         // responding state
1727         switch (connection->sm_engine_state){
1728 
1729             // general
1730             case SM_GENERAL_SEND_PAIRING_FAILED: {
1731                 uint8_t buffer[2];
1732                 buffer[0] = SM_CODE_PAIRING_FAILED;
1733                 buffer[1] = setup->sm_pairing_failed_reason;
1734                 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
1735                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1736                 sm_done_for_handle(connection->sm_handle);
1737                 break;
1738             }
1739 
1740 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1741             case SM_SC_W2_CMAC_FOR_CONFIRMATION:
1742                 if (!sm_cmac_ready()) break;
1743                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
1744                 sm_sc_calculate_local_confirm(connection);
1745                 break;
1746 
1747             case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION:
1748                 if (!sm_cmac_ready()) break;
1749                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION;
1750                 sm_sc_calculate_remote_confirm(connection);
1751                 break;
1752 #endif
1753             // initiator side
1754             case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: {
1755                 sm_key_t peer_ltk_flipped;
1756                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
1757                 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED;
1758                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
1759                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
1760                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
1761                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
1762                 return;
1763             }
1764 
1765             case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST:
1766                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
1767                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
1768                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
1769                 sm_timeout_reset(connection);
1770                 break;
1771 
1772             // responder side
1773             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
1774                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1775                 hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
1776                 return;
1777 
1778 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1779             case SM_SC_SEND_PUBLIC_KEY_COMMAND: {
1780                 uint8_t buffer[65];
1781                 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
1782                 //
1783 #ifdef USE_MBEDTLS_FOR_ECDH
1784                 uint8_t value[32];
1785                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1786                 reverse_256(value, &buffer[1]);
1787                 mbedtls_mpi_write_binary(&le_keypair.Q.Y, value, sizeof(value));
1788                 reverse_256(value, &buffer[33]);
1789 #endif
1790                 // TODO: use random generator to generate nonce
1791 
1792                 // generate 128-bit nonce
1793                 int i;
1794                 for (i=0;i<16;i++){
1795                     setup->sm_local_nonce[i] = rand() & 0xff;
1796                 }
1797 
1798                 // stk generation method
1799                 // passkey entry: notify app to show passkey or to request passkey
1800                 switch (setup->sm_stk_generation_method){
1801                     case JUST_WORKS:
1802                     case NK_BOTH_INPUT:
1803                         if (connection->sm_role){
1804                             connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1805                         } else {
1806                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1807                         }
1808                         break;
1809                     case PK_INIT_INPUT:
1810                     case PK_RESP_INPUT:
1811                     case OK_BOTH_INPUT:
1812                         // hack for testing: assume user entered '000000'
1813                         // memset(setup->sm_tk, 0, 16);
1814                         memcpy(setup->sm_ra, setup->sm_tk, 16);
1815                         memcpy(setup->sm_rb, setup->sm_tk, 16);
1816                         setup->sm_passkey_bit = 0;
1817                         if (connection->sm_role){
1818                             // responder
1819                             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1820                         } else {
1821                             // initiator
1822                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1823                         }
1824                         sm_trigger_user_response(connection);
1825                         break;
1826                     case OOB:
1827                         // TODO: implement SC OOB
1828                         break;
1829                 }
1830 
1831                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1832                 sm_timeout_reset(connection);
1833                 break;
1834             }
1835             case SM_SC_SEND_CONFIRMATION: {
1836                 uint8_t buffer[17];
1837                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
1838                 reverse_128(setup->sm_local_confirm, &buffer[1]);
1839                 if (connection->sm_role){
1840                     connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
1841                 } else {
1842                     connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1843                 }
1844                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1845                 sm_timeout_reset(connection);
1846                 break;
1847             }
1848             case SM_SC_SEND_PAIRING_RANDOM: {
1849                 uint8_t buffer[17];
1850                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1851                 reverse_128(setup->sm_local_nonce, &buffer[1]);
1852                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){
1853                     if (connection->sm_role){
1854                         // responder
1855                         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1856                     } else {
1857                         // initiator
1858                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
1859                     }
1860                 } else {
1861                     if (connection->sm_role){
1862                         // responder
1863                         connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1864                         if (setup->sm_stk_generation_method == NK_BOTH_INPUT){
1865                             // calc Vb if numeric comparison
1866                             // TODO: use AES Engine to calculate g2
1867                             uint8_t value[32];
1868                             mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1869                             uint32_t vb = g2(setup->sm_peer_qx, value, setup->sm_peer_nonce, setup->sm_local_nonce) % 1000000;
1870                             big_endian_store_32(setup->sm_tk, 12, vb);
1871                             sm_trigger_user_response(connection);
1872                         }
1873                     } else {
1874                         // initiator
1875                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
1876                     }
1877                 }
1878                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1879                 sm_timeout_reset(connection);
1880                 break;
1881             }
1882             case SM_SC_SEND_DHKEY_CHECK_COMMAND: {
1883 
1884                 uint8_t buffer[17];
1885                 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
1886 #ifdef USE_MBEDTLS_FOR_ECDH
1887                 // calculate DHKEY
1888                 mbedtls_ecp_group grp;
1889                 mbedtls_ecp_group_init( &grp );
1890                 mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
1891                 mbedtls_ecp_point Q;
1892                 mbedtls_ecp_point_init( &Q );
1893                 mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
1894                 mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
1895                 mbedtls_mpi_read_string(&Q.Z, 16, "1" );
1896 
1897                 // da * Pb
1898                 mbedtls_ecp_point DH;
1899                 mbedtls_ecp_point_init( &DH );
1900                 mbedtls_ecp_mul(&grp, &DH, &le_keypair.d, &Q, NULL, NULL);
1901                 sm_key256_t dhkey;
1902                 mbedtls_mpi_write_binary(&DH.X, dhkey, 32);
1903                 log_info("dhkey");
1904                 log_info_hexdump(dhkey, 32);
1905 
1906                 // calculate LTK + MacKey
1907                 sm_key256_t ltk_mackey;
1908                 sm_key56_t bd_addr_master, bd_addr_slave;
1909                 bd_addr_master[0] =  setup->sm_m_addr_type;
1910                 bd_addr_slave[0]  =  setup->sm_s_addr_type;
1911                 memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1912                 memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1913                 if (connection->sm_role){
1914                     // responder
1915                     f5(ltk_mackey, dhkey, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1916                 } else {
1917                     // initiator
1918                     f5(ltk_mackey, dhkey, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1919                 }
1920                 // store LTK
1921                 memcpy(setup->sm_ltk, &ltk_mackey[16], 16);
1922 
1923                 // calc DHKCheck
1924                 memcpy(setup->sm_mackey, &ltk_mackey[0], 16);
1925 
1926                 // TODO: checks
1927 
1928                 uint8_t iocap_a[3];
1929                 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1930                 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1931                 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1932                 uint8_t iocap_b[3];
1933                 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1934                 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1935                 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1936                 if (connection->sm_role){
1937                     // responder
1938                     f6(setup->sm_local_dhkey_check, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1939                 } else {
1940                     // initiator
1941                     f6(setup->sm_local_dhkey_check, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1942                 }
1943 #endif
1944                 reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
1945                 if (connection->sm_role){
1946                     connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
1947                 } else {
1948                     connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1949                 }
1950                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1951                 sm_timeout_reset(connection);
1952                 break;
1953             }
1954 
1955 #endif
1956             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
1957                 // echo initiator for now
1958                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
1959                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1960 
1961                 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
1962 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1963                 if (setup->sm_use_secure_connections){
1964                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1965                     // skip LTK/EDIV for SC
1966                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
1967                 }
1968 #endif
1969                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1970                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1971 
1972                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
1973                 sm_timeout_reset(connection);
1974                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
1975                 if (setup->sm_stk_generation_method == JUST_WORKS){
1976                     sm_trigger_user_response(connection);
1977                 }
1978                 return;
1979 
1980             case SM_PH2_SEND_PAIRING_RANDOM: {
1981                 uint8_t buffer[17];
1982                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1983                 reverse_128(setup->sm_local_random, &buffer[1]);
1984                 if (connection->sm_role){
1985                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
1986                 } else {
1987                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
1988                 }
1989                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1990                 sm_timeout_reset(connection);
1991                 break;
1992             }
1993 
1994             case SM_PH2_GET_RANDOM_TK:
1995             case SM_PH2_C1_GET_RANDOM_A:
1996             case SM_PH2_C1_GET_RANDOM_B:
1997             case SM_PH3_GET_RANDOM:
1998             case SM_PH3_GET_DIV:
1999                 sm_next_responding_state(connection);
2000                 sm_random_start(connection);
2001                 return;
2002 
2003             case SM_PH2_C1_GET_ENC_B:
2004             case SM_PH2_C1_GET_ENC_D:
2005                 // already busy?
2006                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2007                 sm_next_responding_state(connection);
2008                 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection);
2009                 return;
2010 
2011             case SM_PH3_LTK_GET_ENC:
2012             case SM_RESPONDER_PH4_LTK_GET_ENC:
2013                 // already busy?
2014                 if (sm_aes128_state == SM_AES128_IDLE) {
2015                     sm_key_t d_prime;
2016                     sm_d1_d_prime(setup->sm_local_div, 0, d_prime);
2017                     sm_next_responding_state(connection);
2018                     sm_aes128_start(sm_persistent_er, d_prime, connection);
2019                     return;
2020                 }
2021                 break;
2022 
2023             case SM_PH3_CSRK_GET_ENC:
2024                 // already busy?
2025                 if (sm_aes128_state == SM_AES128_IDLE) {
2026                     sm_key_t d_prime;
2027                     sm_d1_d_prime(setup->sm_local_div, 1, d_prime);
2028                     sm_next_responding_state(connection);
2029                     sm_aes128_start(sm_persistent_er, d_prime, connection);
2030                     return;
2031                 }
2032                 break;
2033 
2034             case SM_PH2_C1_GET_ENC_C:
2035                 // already busy?
2036                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2037                 // calculate m_confirm using aes128 engine - step 1
2038                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
2039                 sm_next_responding_state(connection);
2040                 sm_aes128_start(setup->sm_tk, plaintext, connection);
2041                 break;
2042             case SM_PH2_C1_GET_ENC_A:
2043                 // already busy?
2044                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2045                 // calculate confirm using aes128 engine - step 1
2046                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
2047                 sm_next_responding_state(connection);
2048                 sm_aes128_start(setup->sm_tk, plaintext, connection);
2049                 break;
2050             case SM_PH2_CALC_STK:
2051                 // already busy?
2052                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2053                 // calculate STK
2054                 if (connection->sm_role){
2055                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext);
2056                 } else {
2057                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext);
2058                 }
2059                 sm_next_responding_state(connection);
2060                 sm_aes128_start(setup->sm_tk, plaintext, connection);
2061                 break;
2062             case SM_PH3_Y_GET_ENC:
2063                 // already busy?
2064                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2065                 // PH3B2 - calculate Y from      - enc
2066                 // Y = dm(DHK, Rand)
2067                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
2068                 sm_next_responding_state(connection);
2069                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
2070                 return;
2071             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
2072                 uint8_t buffer[17];
2073                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
2074                 reverse_128(setup->sm_local_confirm, &buffer[1]);
2075                 if (connection->sm_role){
2076                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
2077                 } else {
2078                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
2079                 }
2080                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2081                 sm_timeout_reset(connection);
2082                 return;
2083             }
2084             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
2085                 sm_key_t stk_flipped;
2086                 reverse_128(setup->sm_ltk, stk_flipped);
2087                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
2088                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
2089                 return;
2090             }
2091             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
2092                 sm_key_t stk_flipped;
2093                 reverse_128(setup->sm_ltk, stk_flipped);
2094                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
2095                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
2096                 return;
2097             }
2098             case SM_RESPONDER_PH4_SEND_LTK: {
2099                 sm_key_t ltk_flipped;
2100                 reverse_128(setup->sm_ltk, ltk_flipped);
2101                 connection->sm_engine_state = SM_RESPONDER_IDLE;
2102                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
2103                 return;
2104             }
2105             case SM_RESPONDER_PH4_Y_GET_ENC:
2106                 // already busy?
2107                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2108                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
2109                 // Y = dm(DHK, Rand)
2110                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
2111                 sm_next_responding_state(connection);
2112                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
2113                 return;
2114 
2115             case SM_PH3_DISTRIBUTE_KEYS:
2116                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
2117                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2118                     uint8_t buffer[17];
2119                     buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2120                     reverse_128(setup->sm_ltk, &buffer[1]);
2121                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2122                     sm_timeout_reset(connection);
2123                     return;
2124                 }
2125                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
2126                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2127                     uint8_t buffer[11];
2128                     buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2129                     little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2130                     reverse_64(setup->sm_local_rand, &buffer[3]);
2131                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2132                     sm_timeout_reset(connection);
2133                     return;
2134                 }
2135                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
2136                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2137                     uint8_t buffer[17];
2138                     buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2139                     reverse_128(sm_persistent_irk, &buffer[1]);
2140                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2141                     sm_timeout_reset(connection);
2142                     return;
2143                 }
2144                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
2145                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2146                     bd_addr_t local_address;
2147                     uint8_t buffer[8];
2148                     buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2149                     gap_advertisements_get_address(&buffer[1], local_address);
2150                     reverse_bd_addr(local_address, &buffer[2]);
2151                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2152                     sm_timeout_reset(connection);
2153                     return;
2154                 }
2155                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
2156                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2157 
2158                     // hack to reproduce test runs
2159                     if (test_use_fixed_local_csrk){
2160                         memset(setup->sm_local_csrk, 0xcc, 16);
2161                     }
2162 
2163                     uint8_t buffer[17];
2164                     buffer[0] = SM_CODE_SIGNING_INFORMATION;
2165                     reverse_128(setup->sm_local_csrk, &buffer[1]);
2166                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2167                     sm_timeout_reset(connection);
2168                     return;
2169                 }
2170 
2171                 // keys are sent
2172                 if (connection->sm_role){
2173                     // slave -> receive master keys if any
2174                     if (sm_key_distribution_all_received(connection)){
2175                         sm_key_distribution_handle_all_received(connection);
2176                         connection->sm_engine_state = SM_RESPONDER_IDLE;
2177                         sm_done_for_handle(connection->sm_handle);
2178                     } else {
2179                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2180                     }
2181                 } else {
2182                     // master -> all done
2183                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2184                     sm_done_for_handle(connection->sm_handle);
2185                 }
2186                 break;
2187 
2188             default:
2189                 break;
2190         }
2191 
2192         // check again if active connection was released
2193         if (sm_active_connection) break;
2194     }
2195 }
2196 
2197 // note: aes engine is ready as we just got the aes result
2198 static void sm_handle_encryption_result(uint8_t * data){
2199 
2200     sm_aes128_state = SM_AES128_IDLE;
2201 
2202     if (sm_address_resolution_ah_calculation_active){
2203         sm_address_resolution_ah_calculation_active = 0;
2204         // compare calulated address against connecting device
2205         uint8_t hash[3];
2206         reverse_24(data, hash);
2207         if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
2208             log_info("LE Device Lookup: matched resolvable private address");
2209             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
2210             return;
2211         }
2212         // no match, try next
2213         sm_address_resolution_test++;
2214         return;
2215     }
2216 
2217     switch (dkg_state){
2218         case DKG_W4_IRK:
2219             reverse_128(data, sm_persistent_irk);
2220             log_info_key("irk", sm_persistent_irk);
2221             dkg_next_state();
2222             return;
2223         case DKG_W4_DHK:
2224             reverse_128(data, sm_persistent_dhk);
2225             log_info_key("dhk", sm_persistent_dhk);
2226             dkg_next_state();
2227             // SM Init Finished
2228             return;
2229         default:
2230             break;
2231     }
2232 
2233     switch (rau_state){
2234         case RAU_W4_ENC:
2235             reverse_24(data, &sm_random_address[3]);
2236             rau_next_state();
2237             return;
2238         default:
2239             break;
2240     }
2241 
2242     switch (sm_cmac_state){
2243         case CMAC_W4_SUBKEYS:
2244         case CMAC_W4_MI:
2245         case CMAC_W4_MLAST:
2246             {
2247             sm_key_t t;
2248             reverse_128(data, t);
2249             sm_cmac_handle_encryption_result(t);
2250             }
2251             return;
2252         default:
2253             break;
2254     }
2255 
2256     // retrieve sm_connection provided to sm_aes128_start_encryption
2257     sm_connection_t * connection = (sm_connection_t*) sm_aes128_context;
2258     if (!connection) return;
2259     switch (connection->sm_engine_state){
2260         case SM_PH2_C1_W4_ENC_A:
2261         case SM_PH2_C1_W4_ENC_C:
2262             {
2263             sm_key_t t2;
2264             reverse_128(data, t2);
2265             sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
2266             }
2267             sm_next_responding_state(connection);
2268             return;
2269         case SM_PH2_C1_W4_ENC_B:
2270             reverse_128(data, setup->sm_local_confirm);
2271             log_info_key("c1!", setup->sm_local_confirm);
2272             connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
2273             return;
2274         case SM_PH2_C1_W4_ENC_D:
2275             {
2276             sm_key_t peer_confirm_test;
2277             reverse_128(data, peer_confirm_test);
2278             log_info_key("c1!", peer_confirm_test);
2279             if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){
2280                 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
2281                 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2282                 return;
2283             }
2284             if (connection->sm_role){
2285                 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2286             } else {
2287                 connection->sm_engine_state = SM_PH2_CALC_STK;
2288             }
2289             }
2290             return;
2291         case SM_PH2_W4_STK:
2292             reverse_128(data, setup->sm_ltk);
2293             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2294             log_info_key("stk", setup->sm_ltk);
2295             if (connection->sm_role){
2296                 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2297             } else {
2298                 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2299             }
2300             return;
2301         case SM_PH3_Y_W4_ENC:{
2302             sm_key_t y128;
2303             reverse_128(data, y128);
2304             setup->sm_local_y = big_endian_read_16(y128, 14);
2305             log_info_hex16("y", setup->sm_local_y);
2306             // PH3B3 - calculate EDIV
2307             setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
2308             log_info_hex16("ediv", setup->sm_local_ediv);
2309             // PH3B4 - calculate LTK         - enc
2310             // LTK = d1(ER, DIV, 0))
2311             connection->sm_engine_state = SM_PH3_LTK_GET_ENC;
2312             return;
2313         }
2314         case SM_RESPONDER_PH4_Y_W4_ENC:{
2315             sm_key_t y128;
2316             reverse_128(data, y128);
2317             setup->sm_local_y = big_endian_read_16(y128, 14);
2318             log_info_hex16("y", setup->sm_local_y);
2319 
2320             // PH3B3 - calculate DIV
2321             setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
2322             log_info_hex16("ediv", setup->sm_local_ediv);
2323             // PH3B4 - calculate LTK         - enc
2324             // LTK = d1(ER, DIV, 0))
2325             connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC;
2326             return;
2327         }
2328         case SM_PH3_LTK_W4_ENC:
2329             reverse_128(data, setup->sm_ltk);
2330             log_info_key("ltk", setup->sm_ltk);
2331             // calc CSRK next
2332             connection->sm_engine_state = SM_PH3_CSRK_GET_ENC;
2333             return;
2334         case SM_PH3_CSRK_W4_ENC:
2335             reverse_128(data, setup->sm_local_csrk);
2336             log_info_key("csrk", setup->sm_local_csrk);
2337             if (setup->sm_key_distribution_send_set){
2338                 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
2339             } else {
2340                 // no keys to send, just continue
2341                 if (connection->sm_role){
2342                     // slave -> receive master keys
2343                     connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2344                 } else {
2345                     // master -> all done
2346                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2347                     sm_done_for_handle(connection->sm_handle);
2348                 }
2349             }
2350             return;
2351         case SM_RESPONDER_PH4_LTK_W4_ENC:
2352             reverse_128(data, setup->sm_ltk);
2353             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2354             log_info_key("ltk", setup->sm_ltk);
2355             connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK;
2356             return;
2357         default:
2358             break;
2359     }
2360 }
2361 
2362 // note: random generator is ready. this doesn NOT imply that aes engine is unused!
2363 static void sm_handle_random_result(uint8_t * data){
2364 
2365     switch (rau_state){
2366         case RAU_W4_RANDOM:
2367             // non-resolvable vs. resolvable
2368             switch (gap_random_adress_type){
2369                 case GAP_RANDOM_ADDRESS_RESOLVABLE:
2370                     // resolvable: use random as prand and calc address hash
2371                     // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
2372                     memcpy(sm_random_address, data, 3);
2373                     sm_random_address[0] &= 0x3f;
2374                     sm_random_address[0] |= 0x40;
2375                     rau_state = RAU_GET_ENC;
2376                     break;
2377                 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2378                 default:
2379                     // "The two most significant bits of the address shall be equal to ‘0’""
2380                     memcpy(sm_random_address, data, 6);
2381                     sm_random_address[0] &= 0x3f;
2382                     rau_state = RAU_SET_ADDRESS;
2383                     break;
2384             }
2385             return;
2386         default:
2387             break;
2388     }
2389 
2390     // retrieve sm_connection provided to sm_random_start
2391     sm_connection_t * connection = (sm_connection_t *) sm_random_context;
2392     if (!connection) return;
2393     switch (connection->sm_engine_state){
2394         case SM_PH2_W4_RANDOM_TK:
2395         {
2396             // map random to 0-999999 without speding much cycles on a modulus operation
2397             uint32_t tk = little_endian_read_32(data,0);
2398             tk = tk & 0xfffff;  // 1048575
2399             if (tk >= 999999){
2400                 tk = tk - 999999;
2401             }
2402             sm_reset_tk();
2403             big_endian_store_32(setup->sm_tk, 12, tk);
2404             if (connection->sm_role){
2405                 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
2406             } else {
2407                 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2408                 sm_trigger_user_response(connection);
2409                 // response_idle == nothing <--> sm_trigger_user_response() did not require response
2410                 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2411                     connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2412                 }
2413             }
2414             return;
2415         }
2416         case SM_PH2_C1_W4_RANDOM_A:
2417             memcpy(&setup->sm_local_random[0], data, 8); // random endinaness
2418             connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B;
2419             return;
2420         case SM_PH2_C1_W4_RANDOM_B:
2421             memcpy(&setup->sm_local_random[8], data, 8); // random endinaness
2422             connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
2423             return;
2424         case SM_PH3_W4_RANDOM:
2425             reverse_64(data, setup->sm_local_rand);
2426             // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2427             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1);
2428             // no db for authenticated flag hack: store flag in bit 4 of LSB
2429             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4);
2430             connection->sm_engine_state = SM_PH3_GET_DIV;
2431             return;
2432         case SM_PH3_W4_DIV:
2433             // use 16 bit from random value as div
2434             setup->sm_local_div = big_endian_read_16(data, 0);
2435             log_info_hex16("div", setup->sm_local_div);
2436             connection->sm_engine_state = SM_PH3_Y_GET_ENC;
2437             return;
2438         default:
2439             break;
2440     }
2441 }
2442 
2443 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
2444 
2445     sm_connection_t  * sm_conn;
2446     hci_con_handle_t con_handle;
2447 
2448     switch (packet_type) {
2449 
2450 		case HCI_EVENT_PACKET:
2451 			switch (hci_event_packet_get_type(packet)) {
2452 
2453                 case BTSTACK_EVENT_STATE:
2454 					// bt stack activated, get started
2455 					if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){
2456                         log_info("HCI Working!");
2457                         dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
2458                         rau_state = RAU_IDLE;
2459                         sm_run();
2460 					}
2461 					break;
2462 
2463                 case HCI_EVENT_LE_META:
2464                     switch (packet[2]) {
2465                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
2466 
2467                             log_info("sm: connected");
2468 
2469                             if (packet[3]) return; // connection failed
2470 
2471                             con_handle = little_endian_read_16(packet, 4);
2472                             sm_conn = sm_get_connection_for_handle(con_handle);
2473                             if (!sm_conn) break;
2474 
2475                             sm_conn->sm_handle = con_handle;
2476                             sm_conn->sm_role = packet[6];
2477                             sm_conn->sm_peer_addr_type = packet[7];
2478                             reverse_bd_addr(&packet[8],
2479                                             sm_conn->sm_peer_address);
2480 
2481                             log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
2482 
2483                             // reset security properties
2484                             sm_conn->sm_connection_encrypted = 0;
2485                             sm_conn->sm_connection_authenticated = 0;
2486                             sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
2487                             sm_conn->sm_le_db_index = -1;
2488 
2489                             // prepare CSRK lookup (does not involve setup)
2490                             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
2491 
2492                             // just connected -> everything else happens in sm_run()
2493                             if (sm_conn->sm_role){
2494                                 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead
2495                                 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
2496                                     if (sm_slave_request_security) {
2497                                         // request security if requested by app
2498                                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
2499                                     } else {
2500                                         // otherwise, wait for pairing request
2501                                         sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2502                                     }
2503                                 }
2504                                 break;
2505                             } else {
2506                                 // master
2507                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2508                             }
2509                             break;
2510 
2511                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
2512                             con_handle = little_endian_read_16(packet, 3);
2513                             sm_conn = sm_get_connection_for_handle(con_handle);
2514                             if (!sm_conn) break;
2515 
2516                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
2517                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
2518                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
2519                                 break;
2520                             }
2521                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
2522                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2523                                 break;
2524                             }
2525 
2526                             // assume that we don't have a LTK for ediv == 0 and random == null
2527                             if (little_endian_read_16(packet, 13) == 0 && sm_is_null_random(&packet[5])){
2528                                 log_info("LTK Request: ediv & random are empty");
2529                                 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
2530                                 break;
2531                             }
2532 
2533                             // store rand and ediv
2534                             reverse_64(&packet[5], sm_conn->sm_local_rand);
2535                             sm_conn->sm_local_ediv   = little_endian_read_16(packet, 13);
2536                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK;
2537                             break;
2538 
2539                         default:
2540                             break;
2541                     }
2542                     break;
2543 
2544                 case HCI_EVENT_ENCRYPTION_CHANGE:
2545                     con_handle = little_endian_read_16(packet, 3);
2546                     sm_conn = sm_get_connection_for_handle(con_handle);
2547                     if (!sm_conn) break;
2548 
2549                     sm_conn->sm_connection_encrypted = packet[5];
2550                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
2551                         sm_conn->sm_actual_encryption_key_size);
2552                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2553                     if (!sm_conn->sm_connection_encrypted) break;
2554                     // continue if part of initial pairing
2555                     switch (sm_conn->sm_engine_state){
2556                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2557                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2558                             sm_done_for_handle(sm_conn->sm_handle);
2559                             break;
2560                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2561                             if (sm_conn->sm_role){
2562                                 // slave
2563                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2564                             } else {
2565                                 // master
2566                                 if (sm_key_distribution_all_received(sm_conn)){
2567                                     // skip receiving keys as there are none
2568                                     sm_key_distribution_handle_all_received(sm_conn);
2569                                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2570                                 } else {
2571                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2572                                 }
2573                             }
2574                             break;
2575                         default:
2576                             break;
2577                     }
2578                     break;
2579 
2580                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
2581                     con_handle = little_endian_read_16(packet, 3);
2582                     sm_conn = sm_get_connection_for_handle(con_handle);
2583                     if (!sm_conn) break;
2584 
2585                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
2586                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2587                     // continue if part of initial pairing
2588                     switch (sm_conn->sm_engine_state){
2589                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2590                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2591                             sm_done_for_handle(sm_conn->sm_handle);
2592                             break;
2593                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2594                             if (sm_conn->sm_role){
2595                                 // slave
2596                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2597                             } else {
2598                                 // master
2599                                 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2600                             }
2601                             break;
2602                         default:
2603                             break;
2604                     }
2605                     break;
2606 
2607 
2608                 case HCI_EVENT_DISCONNECTION_COMPLETE:
2609                     con_handle = little_endian_read_16(packet, 3);
2610                     sm_done_for_handle(con_handle);
2611                     sm_conn = sm_get_connection_for_handle(con_handle);
2612                     if (!sm_conn) break;
2613 
2614                     // delete stored bonding on disconnect with authentication failure in ph0
2615                     if (sm_conn->sm_role == 0
2616                         && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED
2617                         && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){
2618                         le_device_db_remove(sm_conn->sm_le_db_index);
2619                     }
2620 
2621                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
2622                     sm_conn->sm_handle = 0;
2623                     break;
2624 
2625 				case HCI_EVENT_COMMAND_COMPLETE:
2626                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
2627                         sm_handle_encryption_result(&packet[6]);
2628                         break;
2629                     }
2630                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
2631                         sm_handle_random_result(&packet[6]);
2632                         break;
2633                     }
2634                     break;
2635                 default:
2636                     break;
2637 			}
2638             break;
2639         default:
2640             break;
2641 	}
2642 
2643     sm_run();
2644 }
2645 
2646 static inline int sm_calc_actual_encryption_key_size(int other){
2647     if (other < sm_min_encryption_key_size) return 0;
2648     if (other < sm_max_encryption_key_size) return other;
2649     return sm_max_encryption_key_size;
2650 }
2651 
2652 static int sm_passkey_used(stk_generation_method_t method){
2653     switch (method){
2654         case PK_RESP_INPUT:
2655         case PK_INIT_INPUT:
2656         case OK_BOTH_INPUT:
2657             return 1;
2658         default:
2659             return 0;
2660     }
2661 }
2662 
2663 /**
2664  * @return ok
2665  */
2666 static int sm_validate_stk_generation_method(void){
2667     // check if STK generation method is acceptable by client
2668     switch (setup->sm_stk_generation_method){
2669         case JUST_WORKS:
2670             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
2671         case PK_RESP_INPUT:
2672         case PK_INIT_INPUT:
2673         case OK_BOTH_INPUT:
2674             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
2675         case OOB:
2676             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
2677         case NK_BOTH_INPUT:
2678             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0;
2679             return 1;
2680         default:
2681             return 0;
2682     }
2683 }
2684 
2685 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
2686 
2687     if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){
2688         sm_run();
2689     }
2690 
2691     if (packet_type != SM_DATA_PACKET) return;
2692 
2693     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
2694     if (!sm_conn) return;
2695 
2696     if (packet[0] == SM_CODE_PAIRING_FAILED){
2697         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2698         return;
2699     }
2700 
2701     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]);
2702 
2703     int err;
2704 
2705     switch (sm_conn->sm_engine_state){
2706 
2707         // a sm timeout requries a new physical connection
2708         case SM_GENERAL_TIMEOUT:
2709             return;
2710 
2711         // Initiator
2712         case SM_INITIATOR_CONNECTED:
2713             if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
2714                 sm_pdu_received_in_wrong_state(sm_conn);
2715                 break;
2716             }
2717             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){
2718                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2719                 break;
2720             }
2721             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){
2722                 uint16_t ediv;
2723                 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
2724                 if (ediv){
2725                     log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
2726                     sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
2727                 } else {
2728                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2729                 }
2730                 break;
2731             }
2732             // otherwise, store security request
2733             sm_conn->sm_security_request_received = 1;
2734             break;
2735 
2736         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
2737             if (packet[0] != SM_CODE_PAIRING_RESPONSE){
2738                 sm_pdu_received_in_wrong_state(sm_conn);
2739                 break;
2740             }
2741             // store pairing request
2742             memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
2743             err = sm_stk_generation_init(sm_conn);
2744             if (err){
2745                 setup->sm_pairing_failed_reason = err;
2746                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2747                 break;
2748             }
2749 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2750             if (setup->sm_use_secure_connections){
2751                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
2752                 if (setup->sm_stk_generation_method == JUST_WORKS){
2753                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2754                     sm_trigger_user_response(sm_conn);
2755                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2756                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2757                     }
2758                 } else {
2759                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2760                 }
2761                 break;
2762             }
2763 #endif
2764             // generate random number first, if we need to show passkey
2765             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
2766                 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK;
2767                 break;
2768             }
2769             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2770             sm_trigger_user_response(sm_conn);
2771             // response_idle == nothing <--> sm_trigger_user_response() did not require response
2772             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2773                 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2774             }
2775             break;
2776 
2777         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
2778             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2779                 sm_pdu_received_in_wrong_state(sm_conn);
2780                 break;
2781             }
2782 
2783             // store s_confirm
2784             reverse_128(&packet[1], setup->sm_peer_confirm);
2785             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2786             break;
2787 
2788         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
2789             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2790                 sm_pdu_received_in_wrong_state(sm_conn);
2791                 break;;
2792             }
2793 
2794             // received random value
2795             reverse_128(&packet[1], setup->sm_peer_random);
2796             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2797             break;
2798 
2799         // Responder
2800         case SM_RESPONDER_IDLE:
2801         case SM_RESPONDER_SEND_SECURITY_REQUEST:
2802         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
2803             if (packet[0] != SM_CODE_PAIRING_REQUEST){
2804                 sm_pdu_received_in_wrong_state(sm_conn);
2805                 break;;
2806             }
2807 
2808             // store pairing request
2809             memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
2810             sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
2811             break;
2812 
2813 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2814         case SM_SC_W4_PUBLIC_KEY_COMMAND:
2815             if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){
2816                 sm_pdu_received_in_wrong_state(sm_conn);
2817                 break;
2818             }
2819 
2820             // store public key for DH Key calculation
2821             reverse_256(&packet[01], setup->sm_peer_qx);
2822             reverse_256(&packet[33], setup->sm_peer_qy);
2823 
2824 #ifdef USE_MBEDTLS_FOR_ECDH
2825             // validate public key
2826             mbedtls_ecp_group grp;
2827             mbedtls_ecp_group_init( &grp );
2828             mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
2829 
2830             mbedtls_ecp_point Q;
2831             mbedtls_ecp_point_init( &Q );
2832             mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
2833             mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
2834             mbedtls_mpi_read_string(&Q.Z, 16, "1" );
2835             err = mbedtls_ecp_check_pubkey(&grp, &Q);
2836             if (err){
2837                 log_error("sm: peer public key invalid %x", err);
2838                 // uses "unspecified reason", there is no "public key invalid" error code
2839                 sm_pdu_received_in_wrong_state(sm_conn);
2840                 break;
2841             }
2842 #endif
2843             if (sm_conn->sm_role){
2844                 // responder
2845                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2846             } else {
2847                 // initiator
2848                 // stk generation method
2849                 // passkey entry: notify app to show passkey or to request passkey
2850                 switch (setup->sm_stk_generation_method){
2851                     case JUST_WORKS:
2852                     case NK_BOTH_INPUT:
2853                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
2854                         break;
2855                     case PK_INIT_INPUT:
2856                     case PK_RESP_INPUT:
2857                     case OK_BOTH_INPUT:
2858                         sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
2859                         break;
2860                     case OOB:
2861                         // TODO: implement SC OOB
2862                         break;
2863                 }
2864             }
2865             break;
2866 
2867         case SM_SC_W4_CONFIRMATION:
2868             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2869                 sm_pdu_received_in_wrong_state(sm_conn);
2870                 break;
2871             }
2872             // received confirm value
2873             reverse_128(&packet[1], setup->sm_peer_confirm);
2874 
2875             if (sm_conn->sm_role){
2876                 // responder
2877                 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
2878             } else {
2879                 // initiator
2880                 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
2881             }
2882             break;
2883 
2884         case SM_SC_W4_PAIRING_RANDOM:
2885             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2886                 sm_pdu_received_in_wrong_state(sm_conn);
2887                 break;
2888             }
2889 
2890             // received random value
2891             reverse_128(&packet[1], setup->sm_peer_nonce);
2892 
2893             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
2894             // only check for JUST WORK/NC in initiator role AND passkey entry
2895             int passkey_entry = sm_passkey_used(setup->sm_stk_generation_method);
2896             if (sm_conn->sm_role || passkey_entry) {
2897                  sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
2898             }
2899 
2900             sm_sc_state_after_receiving_random(sm_conn);
2901             break;
2902 
2903         case SM_SC_W4_DHKEY_CHECK_COMMAND:
2904             if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){
2905                 sm_pdu_received_in_wrong_state(sm_conn);
2906                 break;
2907             }
2908             // store DHKey Check
2909             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
2910 
2911             // validate E = f6()
2912             sm_key56_t bd_addr_master, bd_addr_slave;
2913             bd_addr_master[0] =  setup->sm_m_addr_type;
2914             bd_addr_slave[0]  =  setup->sm_s_addr_type;
2915             memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
2916             memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
2917 
2918             uint8_t iocap_a[3];
2919             iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2920             iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2921             iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2922             uint8_t iocap_b[3];
2923             iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2924             iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2925             iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2926             sm_key_t peer_dhkey_check;
2927             if (sm_conn->sm_role){
2928                 // responder
2929                 f6(peer_dhkey_check, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2930             } else {
2931                 // initiator
2932                 f6(peer_dhkey_check, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2933             }
2934 
2935             if (0 != memcmp(setup->sm_peer_dhkey_check, peer_dhkey_check, 16) ){
2936                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
2937                 break;
2938             }
2939 
2940             if (sm_conn->sm_role){
2941                 // responder
2942                 // for numeric comparison, we need to wait for user confirm
2943                 if (setup->sm_stk_generation_method == NK_BOTH_INPUT && setup->sm_user_response != SM_USER_RESPONSE_CONFIRM){
2944                     sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
2945                 } else {
2946                     sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
2947                 }
2948             } else {
2949                 // initiator
2950                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2951             }
2952             break;
2953 #endif
2954 
2955         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
2956             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2957                 sm_pdu_received_in_wrong_state(sm_conn);
2958                 break;
2959             }
2960 
2961             // received confirm value
2962             reverse_128(&packet[1], setup->sm_peer_confirm);
2963 
2964             // notify client to hide shown passkey
2965             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
2966                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
2967             }
2968 
2969             // handle user cancel pairing?
2970             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
2971                 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
2972                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2973                 break;
2974             }
2975 
2976             // wait for user action?
2977             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
2978                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2979                 break;
2980             }
2981 
2982             // calculate and send local_confirm
2983             sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2984             break;
2985 
2986         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
2987             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2988                 sm_pdu_received_in_wrong_state(sm_conn);
2989                 break;;
2990             }
2991 
2992             // received random value
2993             reverse_128(&packet[1], setup->sm_peer_random);
2994             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2995             break;
2996 
2997         case SM_PH3_RECEIVE_KEYS:
2998             switch(packet[0]){
2999                 case SM_CODE_ENCRYPTION_INFORMATION:
3000                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
3001                     reverse_128(&packet[1], setup->sm_peer_ltk);
3002                     break;
3003 
3004                 case SM_CODE_MASTER_IDENTIFICATION:
3005                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
3006                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
3007                     reverse_64(&packet[3], setup->sm_peer_rand);
3008                     break;
3009 
3010                 case SM_CODE_IDENTITY_INFORMATION:
3011                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
3012                     reverse_128(&packet[1], setup->sm_peer_irk);
3013                     break;
3014 
3015                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
3016                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
3017                     setup->sm_peer_addr_type = packet[1];
3018                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
3019                     break;
3020 
3021                 case SM_CODE_SIGNING_INFORMATION:
3022                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
3023                     reverse_128(&packet[1], setup->sm_peer_csrk);
3024                     break;
3025                 default:
3026                     // Unexpected PDU
3027                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
3028                     break;
3029             }
3030             // done with key distribution?
3031             if (sm_key_distribution_all_received(sm_conn)){
3032 
3033                 sm_key_distribution_handle_all_received(sm_conn);
3034 
3035                 if (sm_conn->sm_role){
3036                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3037                     sm_done_for_handle(sm_conn->sm_handle);
3038                 } else {
3039                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
3040 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3041                     if (setup->sm_use_secure_connections){
3042                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3043                     }
3044 #endif
3045                 }
3046             }
3047             break;
3048         default:
3049             // Unexpected PDU
3050             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
3051             break;
3052     }
3053 
3054     // try to send preparared packet
3055     sm_run();
3056 }
3057 
3058 // Security Manager Client API
3059 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){
3060     sm_get_oob_data = get_oob_data_callback;
3061 }
3062 
3063 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
3064     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
3065 }
3066 
3067 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
3068     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
3069 }
3070 
3071 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
3072 	sm_min_encryption_key_size = min_size;
3073 	sm_max_encryption_key_size = max_size;
3074 }
3075 
3076 void sm_set_authentication_requirements(uint8_t auth_req){
3077     sm_auth_req = auth_req;
3078 }
3079 
3080 void sm_set_io_capabilities(io_capability_t io_capability){
3081     sm_io_capabilities = io_capability;
3082 }
3083 
3084 void sm_set_request_security(int enable){
3085     sm_slave_request_security = enable;
3086 }
3087 
3088 void sm_set_er(sm_key_t er){
3089     memcpy(sm_persistent_er, er, 16);
3090 }
3091 
3092 void sm_set_ir(sm_key_t ir){
3093     memcpy(sm_persistent_ir, ir, 16);
3094 }
3095 
3096 // Testing support only
3097 void sm_test_set_irk(sm_key_t irk){
3098     memcpy(sm_persistent_irk, irk, 16);
3099     sm_persistent_irk_ready = 1;
3100 }
3101 
3102 void sm_test_use_fixed_local_csrk(void){
3103     test_use_fixed_local_csrk = 1;
3104 }
3105 
3106 void sm_init(void){
3107     // set some (BTstack default) ER and IR
3108     int i;
3109     sm_key_t er;
3110     sm_key_t ir;
3111     for (i=0;i<16;i++){
3112         er[i] = 0x30 + i;
3113         ir[i] = 0x90 + i;
3114     }
3115     sm_set_er(er);
3116     sm_set_ir(ir);
3117     // defaults
3118     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
3119                                        | SM_STK_GENERATION_METHOD_OOB
3120                                        | SM_STK_GENERATION_METHOD_PASSKEY
3121                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
3122 
3123     sm_max_encryption_key_size = 16;
3124     sm_min_encryption_key_size = 7;
3125 
3126     sm_cmac_state  = CMAC_IDLE;
3127     dkg_state = DKG_W4_WORKING;
3128     rau_state = RAU_W4_WORKING;
3129     sm_aes128_state = SM_AES128_IDLE;
3130     sm_address_resolution_test = -1;    // no private address to resolve yet
3131     sm_address_resolution_ah_calculation_active = 0;
3132     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
3133     sm_address_resolution_general_queue = NULL;
3134 
3135     gap_random_adress_update_period = 15 * 60 * 1000L;
3136 
3137     sm_active_connection = 0;
3138 
3139     test_use_fixed_local_csrk = 0;
3140 
3141     // register for HCI Events from HCI
3142     hci_event_callback_registration.callback = &sm_event_packet_handler;
3143     hci_add_event_handler(&hci_event_callback_registration);
3144 
3145     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
3146     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
3147 
3148 #ifdef USE_MBEDTLS_FOR_ECDH
3149     // TODO: calculate keypair using LE Random Number Generator
3150     // use test keypair from spec initially
3151     mbedtls_ecp_keypair_init(&le_keypair);
3152     mbedtls_ecp_group_load(&le_keypair.grp, MBEDTLS_ECP_DP_SECP256R1);
3153     mbedtls_mpi_read_string( &le_keypair.d,   16, "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd");
3154     mbedtls_mpi_read_string( &le_keypair.Q.X, 16, "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6");
3155     mbedtls_mpi_read_string( &le_keypair.Q.Y, 16, "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b");
3156     mbedtls_mpi_read_string( &le_keypair.Q.Z, 16, "1");
3157     // print keypair
3158     char buffer[100];
3159     size_t len;
3160     mbedtls_mpi_write_string( &le_keypair.d, 16, buffer, sizeof(buffer), &len);
3161     log_info("d: %s", buffer);
3162     mbedtls_mpi_write_string( &le_keypair.Q.X, 16, buffer, sizeof(buffer), &len);
3163     log_info("X: %s", buffer);
3164     mbedtls_mpi_write_string( &le_keypair.Q.Y, 16, buffer, sizeof(buffer), &len);
3165     log_info("Y: %s", buffer);
3166 #endif
3167 }
3168 
3169 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
3170     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
3171     if (!hci_con) return NULL;
3172     return &hci_con->sm_connection;
3173 }
3174 
3175 // @returns 0 if not encrypted, 7-16 otherwise
3176 int sm_encryption_key_size(hci_con_handle_t con_handle){
3177     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3178     if (!sm_conn) return 0;     // wrong connection
3179     if (!sm_conn->sm_connection_encrypted) return 0;
3180     return sm_conn->sm_actual_encryption_key_size;
3181 }
3182 
3183 int sm_authenticated(hci_con_handle_t con_handle){
3184     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3185     if (!sm_conn) return 0;     // wrong connection
3186     if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
3187     return sm_conn->sm_connection_authenticated;
3188 }
3189 
3190 authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){
3191     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3192     if (!sm_conn) return AUTHORIZATION_UNKNOWN;     // wrong connection
3193     if (!sm_conn->sm_connection_encrypted)               return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
3194     if (!sm_conn->sm_connection_authenticated)           return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
3195     return sm_conn->sm_connection_authorization_state;
3196 }
3197 
3198 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){
3199     switch (sm_conn->sm_engine_state){
3200         case SM_GENERAL_IDLE:
3201         case SM_RESPONDER_IDLE:
3202             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
3203             sm_run();
3204             break;
3205         default:
3206             break;
3207     }
3208 }
3209 
3210 /**
3211  * @brief Trigger Security Request
3212  */
3213 void sm_send_security_request(hci_con_handle_t con_handle){
3214     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3215     if (!sm_conn) return;
3216     sm_send_security_request_for_connection(sm_conn);
3217 }
3218 
3219 // request pairing
3220 void sm_request_pairing(hci_con_handle_t con_handle){
3221     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3222     if (!sm_conn) return;     // wrong connection
3223 
3224     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
3225     if (sm_conn->sm_role){
3226         sm_send_security_request_for_connection(sm_conn);
3227     } else {
3228         // used as a trigger to start central/master/initiator security procedures
3229         uint16_t ediv;
3230         if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){
3231             switch (sm_conn->sm_irk_lookup_state){
3232                 case IRK_LOOKUP_FAILED:
3233                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3234                     break;
3235                 case IRK_LOOKUP_SUCCEEDED:
3236                         le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
3237                         if (ediv){
3238                             log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
3239                             sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
3240                         } else {
3241                             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3242                         }
3243                         break;
3244                 default:
3245                     sm_conn->sm_bonding_requested = 1;
3246                     break;
3247             }
3248         } else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
3249             sm_conn->sm_bonding_requested = 1;
3250         }
3251     }
3252     sm_run();
3253 }
3254 
3255 // called by client app on authorization request
3256 void sm_authorization_decline(hci_con_handle_t con_handle){
3257     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3258     if (!sm_conn) return;     // wrong connection
3259     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
3260     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
3261 }
3262 
3263 void sm_authorization_grant(hci_con_handle_t con_handle){
3264     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3265     if (!sm_conn) return;     // wrong connection
3266     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
3267     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
3268 }
3269 
3270 // GAP Bonding API
3271 
3272 void sm_bonding_decline(hci_con_handle_t con_handle){
3273     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3274     if (!sm_conn) return;     // wrong connection
3275     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
3276 
3277     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3278         switch (setup->sm_stk_generation_method){
3279             case PK_RESP_INPUT:
3280             case PK_INIT_INPUT:
3281             case OK_BOTH_INPUT:
3282                 sm_pairing_error(sm_conn, SM_GENERAL_SEND_PAIRING_FAILED);
3283                 break;
3284             case NK_BOTH_INPUT:
3285                 sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
3286                 break;
3287             case JUST_WORKS:
3288             case OOB:
3289                 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
3290                 break;
3291         }
3292     }
3293     sm_run();
3294 }
3295 
3296 void sm_just_works_confirm(hci_con_handle_t con_handle){
3297     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3298     if (!sm_conn) return;     // wrong connection
3299     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
3300     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3301         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3302 
3303 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3304         if (setup->sm_use_secure_connections){
3305             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3306         }
3307 #endif
3308     }
3309     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
3310         if (sm_conn->sm_role){
3311             // responder
3312             sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
3313         } else {
3314             // initiator
3315             // TODO handle intiator role
3316         }
3317     }
3318     sm_run();
3319 }
3320 
3321 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
3322     // for now, it's the same
3323     sm_just_works_confirm(con_handle);
3324 }
3325 
3326 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
3327     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3328     if (!sm_conn) return;     // wrong connection
3329     sm_reset_tk();
3330     big_endian_store_32(setup->sm_tk, 12, passkey);
3331     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
3332     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3333         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3334     }
3335     sm_run();
3336 }
3337 
3338 /**
3339  * @brief Identify device in LE Device DB
3340  * @param handle
3341  * @returns index from le_device_db or -1 if not found/identified
3342  */
3343 int sm_le_device_index(hci_con_handle_t con_handle ){
3344     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3345     if (!sm_conn) return -1;
3346     return sm_conn->sm_le_db_index;
3347 }
3348 
3349 // GAP LE API
3350 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
3351     gap_random_address_update_stop();
3352     gap_random_adress_type = random_address_type;
3353     if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3354     gap_random_address_update_start();
3355     gap_random_address_trigger();
3356 }
3357 
3358 gap_random_address_type_t gap_random_address_get_mode(void){
3359     return gap_random_adress_type;
3360 }
3361 
3362 void gap_random_address_set_update_period(int period_ms){
3363     gap_random_adress_update_period = period_ms;
3364     if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3365     gap_random_address_update_stop();
3366     gap_random_address_update_start();
3367 }
3368 
3369 void gap_random_address_set(bd_addr_t addr){
3370     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_OFF);
3371     memcpy(sm_random_address, addr, 6);
3372     rau_state = RAU_SET_ADDRESS;
3373     sm_run();
3374 }
3375 
3376 /*
3377  * @brief Set Advertisement Paramters
3378  * @param adv_int_min
3379  * @param adv_int_max
3380  * @param adv_type
3381  * @param direct_address_type
3382  * @param direct_address
3383  * @param channel_map
3384  * @param filter_policy
3385  *
3386  * @note own_address_type is used from gap_random_address_set_mode
3387  */
3388 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
3389     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
3390     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, gap_random_adress_type,
3391         direct_address_typ, direct_address, channel_map, filter_policy);
3392 }
3393 
3394