xref: /btstack/src/ble/sm.c (revision aec9414068263330b5d6ce331ae226f49c0f558d)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #include <stdio.h>
39 #include <string.h>
40 #include <inttypes.h>
41 
42 #include "ble/le_device_db.h"
43 #include "ble/core.h"
44 #include "ble/sm.h"
45 #include "btstack_debug.h"
46 #include "btstack_event.h"
47 #include "btstack_linked_list.h"
48 #include "btstack_memory.h"
49 #include "gap.h"
50 #include "hci.h"
51 #include "l2cap.h"
52 
53 #ifdef ENABLE_LE_SECURE_CONNECTIONS
54 // TODO: remove software AES
55 #include "rijndael.h"
56 #endif
57 
58 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(HAVE_HCI_CONTROLLER_DHKEY_SUPPORT)
59 #define USE_MBEDTLS_FOR_ECDH
60 #endif
61 
62 // Software ECDH implementation provided by mbedtls
63 #ifdef USE_MBEDTLS_FOR_ECDH
64 #if !defined(MBEDTLS_CONFIG_FILE)
65 #include "mbedtls/config.h"
66 #else
67 #include MBEDTLS_CONFIG_FILE
68 #endif
69 #if defined(MBEDTLS_PLATFORM_C)
70 #include "mbedtls/platform.h"
71 #else
72 #include <stdio.h>
73 #define mbedtls_printf     printf
74 #endif
75 #include "mbedtls/ecp.h"
76 #endif
77 
78 //
79 // SM internal types and globals
80 //
81 
82 typedef enum {
83     DKG_W4_WORKING,
84     DKG_CALC_IRK,
85     DKG_W4_IRK,
86     DKG_CALC_DHK,
87     DKG_W4_DHK,
88     DKG_READY
89 } derived_key_generation_t;
90 
91 typedef enum {
92     RAU_W4_WORKING,
93     RAU_IDLE,
94     RAU_GET_RANDOM,
95     RAU_W4_RANDOM,
96     RAU_GET_ENC,
97     RAU_W4_ENC,
98     RAU_SET_ADDRESS,
99 } random_address_update_t;
100 
101 typedef enum {
102     CMAC_IDLE,
103     CMAC_CALC_SUBKEYS,
104     CMAC_W4_SUBKEYS,
105     CMAC_CALC_MI,
106     CMAC_W4_MI,
107     CMAC_CALC_MLAST,
108     CMAC_W4_MLAST
109 } cmac_state_t;
110 
111 typedef enum {
112     JUST_WORKS,
113     PK_RESP_INPUT,  // Initiator displays PK, responder inputs PK
114     PK_INIT_INPUT,  // Responder displays PK, initiator inputs PK
115     OK_BOTH_INPUT,  // Only input on both, both input PK
116     NK_BOTH_INPUT,  // Only numerical compparison (yes/no) on on both sides
117     OOB             // OOB available on both sides
118 } stk_generation_method_t;
119 
120 typedef enum {
121     SM_USER_RESPONSE_IDLE,
122     SM_USER_RESPONSE_PENDING,
123     SM_USER_RESPONSE_CONFIRM,
124     SM_USER_RESPONSE_PASSKEY,
125     SM_USER_RESPONSE_DECLINE
126 } sm_user_response_t;
127 
128 typedef enum {
129     SM_AES128_IDLE,
130     SM_AES128_ACTIVE
131 } sm_aes128_state_t;
132 
133 typedef enum {
134     ADDRESS_RESOLUTION_IDLE,
135     ADDRESS_RESOLUTION_GENERAL,
136     ADDRESS_RESOLUTION_FOR_CONNECTION,
137 } address_resolution_mode_t;
138 
139 typedef enum {
140     ADDRESS_RESOLUTION_SUCEEDED,
141     ADDRESS_RESOLUTION_FAILED,
142 } address_resolution_event_t;
143 //
144 // GLOBAL DATA
145 //
146 
147 static uint8_t test_use_fixed_local_csrk;
148 
149 // configuration
150 static uint8_t sm_accepted_stk_generation_methods;
151 static uint8_t sm_max_encryption_key_size;
152 static uint8_t sm_min_encryption_key_size;
153 static uint8_t sm_auth_req = 0;
154 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
155 static uint8_t sm_slave_request_security;
156 
157 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
158 static sm_key_t sm_persistent_er;
159 static sm_key_t sm_persistent_ir;
160 
161 // derived from sm_persistent_ir
162 static sm_key_t sm_persistent_dhk;
163 static sm_key_t sm_persistent_irk;
164 static uint8_t  sm_persistent_irk_ready = 0;    // used for testing
165 static derived_key_generation_t dkg_state;
166 
167 // derived from sm_persistent_er
168 // ..
169 
170 // random address update
171 static random_address_update_t rau_state;
172 static bd_addr_t sm_random_address;
173 
174 // CMAC Calculation: General
175 static cmac_state_t sm_cmac_state;
176 static uint16_t     sm_cmac_message_len;
177 static sm_key_t     sm_cmac_k;
178 static sm_key_t     sm_cmac_x;
179 static sm_key_t     sm_cmac_m_last;
180 static uint8_t      sm_cmac_block_current;
181 static uint8_t      sm_cmac_block_count;
182 static uint8_t      (*sm_cmac_get_byte)(uint16_t offset);
183 static void         (*sm_cmac_done_handler)(uint8_t * hash);
184 
185 // CMAC for ATT Signed Writes
186 static uint8_t      sm_cmac_header[3];
187 static const uint8_t * sm_cmac_message;
188 static uint8_t      sm_cmac_sign_counter[4];
189 
190 // CMAC for Secure Connection functions
191 #ifdef ENABLE_LE_SECURE_CONNECTIONS
192 static sm_connection_t * sm_cmac_connection;
193 static uint8_t           sm_cmac_sc_buffer[80];
194 #endif
195 
196 // resolvable private address lookup / CSRK calculation
197 static int       sm_address_resolution_test;
198 static int       sm_address_resolution_ah_calculation_active;
199 static uint8_t   sm_address_resolution_addr_type;
200 static bd_addr_t sm_address_resolution_address;
201 static void *    sm_address_resolution_context;
202 static address_resolution_mode_t sm_address_resolution_mode;
203 static btstack_linked_list_t sm_address_resolution_general_queue;
204 
205 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context
206 static sm_aes128_state_t  sm_aes128_state;
207 static void *             sm_aes128_context;
208 
209 // random engine. store context (ususally sm_connection_t)
210 static void * sm_random_context;
211 
212 // to receive hci events
213 static btstack_packet_callback_registration_t hci_event_callback_registration;
214 
215 /* to dispatch sm event */
216 static btstack_linked_list_t sm_event_handlers;
217 
218 // Software ECDH implementation provided by mbedtls
219 #ifdef USE_MBEDTLS_FOR_ECDH
220 mbedtls_ecp_keypair le_keypair;
221 #endif
222 
223 //
224 // Volume 3, Part H, Chapter 24
225 // "Security shall be initiated by the Security Manager in the device in the master role.
226 // The device in the slave role shall be the responding device."
227 // -> master := initiator, slave := responder
228 //
229 
230 // data needed for security setup
231 typedef struct sm_setup_context {
232 
233     btstack_timer_source_t sm_timeout;
234 
235     // used in all phases
236     uint8_t   sm_pairing_failed_reason;
237 
238     // user response, (Phase 1 and/or 2)
239     uint8_t   sm_user_response;
240 
241     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
242     int       sm_key_distribution_send_set;
243     int       sm_key_distribution_received_set;
244 
245     // Phase 2 (Pairing over SMP)
246     stk_generation_method_t sm_stk_generation_method;
247     sm_key_t  sm_tk;
248     uint8_t   sm_use_secure_connections;
249 
250     sm_key_t  sm_c1_t3_value;   // c1 calculation
251     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
252     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
253     sm_key_t  sm_local_random;
254     sm_key_t  sm_local_confirm;
255     sm_key_t  sm_peer_random;
256     sm_key_t  sm_peer_confirm;
257     uint8_t   sm_m_addr_type;   // address and type can be removed
258     uint8_t   sm_s_addr_type;   //  ''
259     bd_addr_t sm_m_address;     //  ''
260     bd_addr_t sm_s_address;     //  ''
261     sm_key_t  sm_ltk;
262 
263 #ifdef ENABLE_LE_SECURE_CONNECTIONS
264     uint8_t   sm_peer_qx[32];
265     uint8_t   sm_peer_qy[32];
266     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
267     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
268     sm_key_t  sm_peer_dhkey_check;
269     sm_key_t  sm_local_dhkey_check;
270     sm_key_t  sm_ra;
271     sm_key_t  sm_rb;
272     sm_key_t  sm_mackey;
273     uint8_t   sm_passkey_bit;
274 #endif
275 
276     // Phase 3
277 
278     // key distribution, we generate
279     uint16_t  sm_local_y;
280     uint16_t  sm_local_div;
281     uint16_t  sm_local_ediv;
282     uint8_t   sm_local_rand[8];
283     sm_key_t  sm_local_ltk;
284     sm_key_t  sm_local_csrk;
285     sm_key_t  sm_local_irk;
286     // sm_local_address/addr_type not needed
287 
288     // key distribution, received from peer
289     uint16_t  sm_peer_y;
290     uint16_t  sm_peer_div;
291     uint16_t  sm_peer_ediv;
292     uint8_t   sm_peer_rand[8];
293     sm_key_t  sm_peer_ltk;
294     sm_key_t  sm_peer_irk;
295     sm_key_t  sm_peer_csrk;
296     uint8_t   sm_peer_addr_type;
297     bd_addr_t sm_peer_address;
298 
299 } sm_setup_context_t;
300 
301 //
302 static sm_setup_context_t the_setup;
303 static sm_setup_context_t * setup = &the_setup;
304 
305 // active connection - the one for which the_setup is used for
306 static uint16_t sm_active_connection = 0;
307 
308 // @returns 1 if oob data is available
309 // stores oob data in provided 16 byte buffer if not null
310 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
311 
312 // used to notify applicationss that user interaction is neccessary, see sm_notify_t below
313 static btstack_packet_handler_t sm_client_packet_handler = NULL;
314 
315 // horizontal: initiator capabilities
316 // vertial:    responder capabilities
317 static const stk_generation_method_t stk_generation_method [5] [5] = {
318     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
319     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
320     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
321     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
322     { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
323 };
324 
325 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
326 #ifdef ENABLE_LE_SECURE_CONNECTIONS
327 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
328     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
329     { JUST_WORKS,      NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
330     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
331     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
332     { PK_RESP_INPUT,   NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
333 };
334 #endif
335 
336 static void sm_run(void);
337 static void sm_done_for_handle(hci_con_handle_t con_handle);
338 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
339 static inline int sm_calc_actual_encryption_key_size(int other);
340 static int sm_validate_stk_generation_method(void);
341 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data);
342 
343 static void log_info_hex16(const char * name, uint16_t value){
344     log_info("%-6s 0x%04x", name, value);
345 }
346 
347 // @returns 1 if all bytes are 0
348 static int sm_is_null_random(uint8_t random[8]){
349     int i;
350     for (i=0; i < 8 ; i++){
351         if (random[i]) return 0;
352     }
353     return 1;
354 }
355 
356 // Key utils
357 static void sm_reset_tk(void){
358     int i;
359     for (i=0;i<16;i++){
360         setup->sm_tk[i] = 0;
361     }
362 }
363 
364 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
365 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
366 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
367     int i;
368     for (i = max_encryption_size ; i < 16 ; i++){
369         key[15-i] = 0;
370     }
371 }
372 
373 // SMP Timeout implementation
374 
375 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
376 // the Security Manager Timer shall be reset and started.
377 //
378 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
379 //
380 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
381 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
382 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
383 // established.
384 
385 static void sm_timeout_handler(btstack_timer_source_t * timer){
386     log_info("SM timeout");
387     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
388     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
389     sm_done_for_handle(sm_conn->sm_handle);
390 
391     // trigger handling of next ready connection
392     sm_run();
393 }
394 static void sm_timeout_start(sm_connection_t * sm_conn){
395     btstack_run_loop_remove_timer(&setup->sm_timeout);
396     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
397     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
398     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
399     btstack_run_loop_add_timer(&setup->sm_timeout);
400 }
401 static void sm_timeout_stop(void){
402     btstack_run_loop_remove_timer(&setup->sm_timeout);
403 }
404 static void sm_timeout_reset(sm_connection_t * sm_conn){
405     sm_timeout_stop();
406     sm_timeout_start(sm_conn);
407 }
408 
409 // end of sm timeout
410 
411 // GAP Random Address updates
412 static gap_random_address_type_t gap_random_adress_type;
413 static btstack_timer_source_t gap_random_address_update_timer;
414 static uint32_t gap_random_adress_update_period;
415 
416 static void gap_random_address_trigger(void){
417     if (rau_state != RAU_IDLE) return;
418     log_info("gap_random_address_trigger");
419     rau_state = RAU_GET_RANDOM;
420     sm_run();
421 }
422 
423 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
424     log_info("GAP Random Address Update due");
425     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
426     btstack_run_loop_add_timer(&gap_random_address_update_timer);
427     gap_random_address_trigger();
428 }
429 
430 static void gap_random_address_update_start(void){
431     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
432     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
433     btstack_run_loop_add_timer(&gap_random_address_update_timer);
434 }
435 
436 static void gap_random_address_update_stop(void){
437     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
438 }
439 
440 
441 static void sm_random_start(void * context){
442     sm_random_context = context;
443     hci_send_cmd(&hci_le_rand);
444 }
445 
446 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1
447 // context is made availabe to aes128 result handler by this
448 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){
449     sm_aes128_state = SM_AES128_ACTIVE;
450     sm_key_t key_flipped, plaintext_flipped;
451     reverse_128(key, key_flipped);
452     reverse_128(plaintext, plaintext_flipped);
453     sm_aes128_context = context;
454     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
455 }
456 
457 // ah(k,r) helper
458 // r = padding || r
459 // r - 24 bit value
460 static void sm_ah_r_prime(uint8_t r[3], sm_key_t r_prime){
461     // r'= padding || r
462     memset(r_prime, 0, 16);
463     memcpy(&r_prime[13], r, 3);
464 }
465 
466 // d1 helper
467 // d' = padding || r || d
468 // d,r - 16 bit values
469 static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){
470     // d'= padding || r || d
471     memset(d1_prime, 0, 16);
472     big_endian_store_16(d1_prime, 12, r);
473     big_endian_store_16(d1_prime, 14, d);
474 }
475 
476 // dm helper
477 // r’ = padding || r
478 // r - 64 bit value
479 static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){
480     memset(r_prime, 0, 16);
481     memcpy(&r_prime[8], r, 8);
482 }
483 
484 // calculate arguments for first AES128 operation in C1 function
485 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){
486 
487     // p1 = pres || preq || rat’ || iat’
488     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
489     // cant octet of pres becomes the most significant octet of p1.
490     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
491     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
492     // p1 is 0x05000800000302070710000001010001."
493 
494     sm_key_t p1;
495     reverse_56(pres, &p1[0]);
496     reverse_56(preq, &p1[7]);
497     p1[14] = rat;
498     p1[15] = iat;
499     log_info_key("p1", p1);
500     log_info_key("r", r);
501 
502     // t1 = r xor p1
503     int i;
504     for (i=0;i<16;i++){
505         t1[i] = r[i] ^ p1[i];
506     }
507     log_info_key("t1", t1);
508 }
509 
510 // calculate arguments for second AES128 operation in C1 function
511 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){
512      // p2 = padding || ia || ra
513     // "The least significant octet of ra becomes the least significant octet of p2 and
514     // the most significant octet of padding becomes the most significant octet of p2.
515     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
516     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
517 
518     sm_key_t p2;
519     memset(p2, 0, 16);
520     memcpy(&p2[4],  ia, 6);
521     memcpy(&p2[10], ra, 6);
522     log_info_key("p2", p2);
523 
524     // c1 = e(k, t2_xor_p2)
525     int i;
526     for (i=0;i<16;i++){
527         t3[i] = t2[i] ^ p2[i];
528     }
529     log_info_key("t3", t3);
530 }
531 
532 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){
533     log_info_key("r1", r1);
534     log_info_key("r2", r2);
535     memcpy(&r_prime[8], &r2[8], 8);
536     memcpy(&r_prime[0], &r1[8], 8);
537 }
538 
539 #ifdef ENABLE_LE_SECURE_CONNECTIONS
540 // Software implementations of crypto toolbox for LE Secure Connection
541 // TODO: replace with code to use AES Engine of HCI Controller
542 typedef uint8_t sm_key24_t[3];
543 typedef uint8_t sm_key56_t[7];
544 typedef uint8_t sm_key256_t[32];
545 
546 static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){
547     uint32_t rk[RKLENGTH(KEYBITS)];
548     int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
549     rijndaelEncrypt(rk, nrounds, plaintext, cyphertext);
550 }
551 
552 static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
553     memcpy(k1, k0, 16);
554     sm_shift_left_by_one_bit_inplace(16, k1);
555     if (k0[0] & 0x80){
556         k1[15] ^= 0x87;
557     }
558     memcpy(k2, k1, 16);
559     sm_shift_left_by_one_bit_inplace(16, k2);
560     if (k1[0] & 0x80){
561         k2[15] ^= 0x87;
562     }
563 }
564 
565 static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){
566     sm_key_t k0, k1, k2, zero;
567     memset(zero, 0, 16);
568 
569     aes128_calc_cyphertext(key, zero, k0);
570     calc_subkeys(k0, k1, k2);
571 
572     int cmac_block_count = (cmac_message_len + 15) / 16;
573 
574     // step 3: ..
575     if (cmac_block_count==0){
576         cmac_block_count = 1;
577     }
578 
579     // step 4: set m_last
580     sm_key_t cmac_m_last;
581     int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0;
582     int i;
583     if (sm_cmac_last_block_complete){
584         for (i=0;i<16;i++){
585             cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i];
586         }
587     } else {
588         int valid_octets_in_last_block = cmac_message_len & 0x0f;
589         for (i=0;i<16;i++){
590             if (i < valid_octets_in_last_block){
591                 cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i];
592                 continue;
593             }
594             if (i == valid_octets_in_last_block){
595                 cmac_m_last[i] = 0x80 ^ k2[i];
596                 continue;
597             }
598             cmac_m_last[i] = k2[i];
599         }
600     }
601 
602     // printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count);
603     // LOG_KEY(cmac_m_last);
604 
605     // Step 5
606     sm_key_t cmac_x;
607     memset(cmac_x, 0, 16);
608 
609     // Step 6
610     sm_key_t sm_cmac_y;
611     for (int block = 0 ; block < cmac_block_count-1 ; block++){
612         for (i=0;i<16;i++){
613             sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i];
614         }
615         aes128_calc_cyphertext(key, sm_cmac_y, cmac_x);
616     }
617     for (i=0;i<16;i++){
618         sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
619     }
620 
621     // Step 7
622     aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac);
623 }
624 
625 static void f4(sm_key_t res, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
626     uint8_t buffer[65];
627     memcpy(buffer, u, 32);
628     memcpy(buffer+32, v, 32);
629     buffer[64] = z;
630     log_info("f4 key");
631     log_info_hexdump(x, 16);
632     log_info("f4 message");
633     log_info_hexdump(buffer, sizeof(buffer));
634     aes_cmac(res, x, buffer, sizeof(buffer));
635     log_info("f4 result");
636     log_info_hexdump(res, sizeof(sm_key_t));
637 }
638 
639 const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
640 const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
641 const uint8_t f5_length[] = { 0x01, 0x00};
642 static void f5(sm_key256_t res, const sm_key256_t w, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
643     // T = AES-CMACSAL_T(W)
644     sm_key_t t;
645     aes_cmac(t, f5_salt, w, 32);
646     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
647     uint8_t buffer[53];
648     buffer[0] = 0;
649     memcpy(buffer+01, f5_key_id, 4);
650     memcpy(buffer+05, n1, 16);
651     memcpy(buffer+21, n2, 16);
652     memcpy(buffer+37, a1, 7);
653     memcpy(buffer+44, a2, 7);
654     memcpy(buffer+51, f5_length, 2);
655     log_info("f5 DHKEY");
656     log_info_hexdump(w, 32);
657     log_info("f5 key");
658     log_info_hexdump(t, 16);
659     log_info("f5 message for MacKey");
660     log_info_hexdump(buffer, sizeof(buffer));
661     aes_cmac(res, t, buffer, sizeof(buffer));
662     // hexdump2(res, 16);
663     //                      || AES-CMACT (Counter = 1 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the LTK
664     buffer[0] = 1;
665     // hexdump2(buffer, sizeof(buffer));
666     log_info("f5 message for LTK");
667     log_info_hexdump(buffer, sizeof(buffer));
668     aes_cmac(res+16, t, buffer, sizeof(buffer));
669     // hexdump2(res+16, 16);
670 }
671 
672 // f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMACW (N1 || N2 || R || IOcap || A1 || A2
673 // - W is 128 bits
674 // - N1 is 128 bits
675 // - N2 is 128 bits
676 // - R is 128 bits
677 // - IOcap is 24 bits
678 // - A1 is 56 bits
679 // - A2 is 56 bits
680 static void f6(sm_key_t res, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
681     uint8_t buffer[65];
682     memcpy(buffer, n1, 16);
683     memcpy(buffer+16, n2, 16);
684     memcpy(buffer+32, r, 16);
685     memcpy(buffer+48, io_cap, 3);
686     memcpy(buffer+51, a1, 7);
687     memcpy(buffer+58, a2, 7);
688     log_info("f6 key");
689     log_info_hexdump(w, 16);
690     log_info("f6 message");
691     log_info_hexdump(buffer, sizeof(buffer));
692     aes_cmac(res, w, buffer,sizeof(buffer));
693     log_info("f6 result");
694     log_info_hexdump(res, 16);
695 }
696 
697 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
698 // - U is 256 bits
699 // - V is 256 bits
700 // - X is 128 bits
701 // - Y is 128 bits
702 static uint32_t g2(const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
703     uint8_t buffer[80];
704     memcpy(buffer, u, 32);
705     memcpy(buffer+32, v, 32);
706     memcpy(buffer+64, y, 16);
707     sm_key_t cmac;
708     log_info("g2 key");
709     log_info_hexdump(x, 16);
710     log_info("g2 message");
711     log_info_hexdump(buffer, sizeof(buffer));
712     aes_cmac(cmac, x, buffer, sizeof(buffer));
713     log_info("g2 result");
714     log_info_hexdump(x, 16);
715     return big_endian_read_32(cmac, 12);
716 }
717 
718 #if 0
719 // h6(W, keyID) = AES-CMACW(keyID)
720 // - W is 128 bits
721 // - keyID is 32 bits
722 static void h6(sm_key_t res, const sm_key_t w, const uint32_t key_id){
723     uint8_t key_id_buffer[4];
724     big_endian_store_32(key_id_buffer, 0, key_id);
725     aes_cmac(res, w, key_id_buffer, 4);
726 }
727 #endif
728 #endif
729 
730 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
731     event[0] = type;
732     event[1] = event_size - 2;
733     little_endian_store_16(event, 2, con_handle);
734     event[4] = addr_type;
735     reverse_bd_addr(address, &event[5]);
736 }
737 
738 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
739     if (sm_client_packet_handler) {
740         sm_client_packet_handler(HCI_EVENT_PACKET, 0, packet, size);
741     }
742     // dispatch to all event handlers
743     btstack_linked_list_iterator_t it;
744     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
745     while (btstack_linked_list_iterator_has_next(&it)){
746         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
747         entry->callback(packet_type, 0, packet, size);
748     }
749 }
750 
751 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
752     uint8_t event[11];
753     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
754     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
755 }
756 
757 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
758     uint8_t event[15];
759     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
760     little_endian_store_32(event, 11, passkey);
761     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
762 }
763 
764 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
765     uint8_t event[13];
766     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
767     little_endian_store_16(event, 11, index);
768     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
769 }
770 
771 static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){
772 
773     uint8_t event[18];
774     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
775     event[11] = result;
776     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
777 }
778 
779 // decide on stk generation based on
780 // - pairing request
781 // - io capabilities
782 // - OOB data availability
783 static void sm_setup_tk(void){
784 
785     // default: just works
786     setup->sm_stk_generation_method = JUST_WORKS;
787 
788 #ifdef ENABLE_LE_SECURE_CONNECTIONS
789     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
790                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
791                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0;
792     memset(setup->sm_ra, 0, 16);
793     memset(setup->sm_rb, 0, 16);
794 #else
795     setup->sm_use_secure_connections = 0;
796 #endif
797 
798     // If both devices have not set the MITM option in the Authentication Requirements
799     // Flags, then the IO capabilities shall be ignored and the Just Works association
800     // model shall be used.
801     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0)
802     &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){
803         log_info("SM: MITM not required by both -> JUST WORKS");
804         return;
805     }
806 
807     // TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient
808 
809     // If both devices have out of band authentication data, then the Authentication
810     // Requirements Flags shall be ignored when selecting the pairing method and the
811     // Out of Band pairing method shall be used.
812     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq)
813     &&  sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){
814         log_info("SM: have OOB data");
815         log_info_key("OOB", setup->sm_tk);
816         setup->sm_stk_generation_method = OOB;
817         return;
818     }
819 
820     // Reset TK as it has been setup in sm_init_setup
821     sm_reset_tk();
822 
823     // Also use just works if unknown io capabilites
824     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
825         return;
826     }
827 
828     // Otherwise the IO capabilities of the devices shall be used to determine the
829     // pairing method as defined in Table 2.4.
830     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
831     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
832 
833 #ifdef ENABLE_LE_SECURE_CONNECTIONS
834     // table not define by default
835     if (setup->sm_use_secure_connections){
836         generation_method = stk_generation_method_with_secure_connection;
837     }
838 #endif
839     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
840 
841     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
842         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
843 }
844 
845 static int sm_key_distribution_flags_for_set(uint8_t key_set){
846     int flags = 0;
847     if (key_set & SM_KEYDIST_ENC_KEY){
848         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
849         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
850     }
851     if (key_set & SM_KEYDIST_ID_KEY){
852         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
853         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
854     }
855     if (key_set & SM_KEYDIST_SIGN){
856         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
857     }
858     return flags;
859 }
860 
861 static void sm_setup_key_distribution(uint8_t key_set){
862     setup->sm_key_distribution_received_set = 0;
863     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
864 }
865 
866 // CSRK Key Lookup
867 
868 
869 static int sm_address_resolution_idle(void){
870     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
871 }
872 
873 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
874     memcpy(sm_address_resolution_address, addr, 6);
875     sm_address_resolution_addr_type = addr_type;
876     sm_address_resolution_test = 0;
877     sm_address_resolution_mode = mode;
878     sm_address_resolution_context = context;
879     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
880 }
881 
882 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
883     // check if already in list
884     btstack_linked_list_iterator_t it;
885     sm_lookup_entry_t * entry;
886     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
887     while(btstack_linked_list_iterator_has_next(&it)){
888         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
889         if (entry->address_type != address_type) continue;
890         if (memcmp(entry->address, address, 6))  continue;
891         // already in list
892         return BTSTACK_BUSY;
893     }
894     entry = btstack_memory_sm_lookup_entry_get();
895     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
896     entry->address_type = (bd_addr_type_t) address_type;
897     memcpy(entry->address, address, 6);
898     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
899     sm_run();
900     return 0;
901 }
902 
903 // CMAC Implementation using AES128 engine
904 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
905     int i;
906     int carry = 0;
907     for (i=len-1; i >= 0 ; i--){
908         int new_carry = data[i] >> 7;
909         data[i] = data[i] << 1 | carry;
910         carry = new_carry;
911     }
912 }
913 
914 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now
915 static inline void sm_next_responding_state(sm_connection_t * sm_conn){
916     sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1);
917 }
918 static inline void dkg_next_state(void){
919     dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1);
920 }
921 static inline void rau_next_state(void){
922     rau_state = (random_address_update_t) (((int)rau_state) + 1);
923 }
924 
925 // CMAC calculation using AES Engine
926 
927 static inline void sm_cmac_next_state(void){
928     sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1);
929 }
930 
931 static int sm_cmac_last_block_complete(void){
932     if (sm_cmac_message_len == 0) return 0;
933     return (sm_cmac_message_len & 0x0f) == 0;
934 }
935 
936 static inline uint8_t sm_cmac_message_get_byte(uint16_t offset){
937     if (offset >= sm_cmac_message_len) {
938         log_error("sm_cmac_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len);
939         return 0;
940     }
941 
942     offset = sm_cmac_message_len - 1 - offset;
943 
944     // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4]
945     if (offset < 3){
946         return sm_cmac_header[offset];
947     }
948     int actual_message_len_incl_header = sm_cmac_message_len - 4;
949     if (offset <  actual_message_len_incl_header){
950         return sm_cmac_message[offset - 3];
951     }
952     return sm_cmac_sign_counter[offset - actual_message_len_incl_header];
953 }
954 
955 // generic cmac calculation
956 void sm_cmac_general_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t hash[8])){
957     // Generalized CMAC
958     memcpy(sm_cmac_k, key, 16);
959     memset(sm_cmac_x, 0, 16);
960     sm_cmac_block_current = 0;
961     sm_cmac_message_len  = message_len;
962     sm_cmac_done_handler = done_callback;
963     sm_cmac_get_byte     = get_byte_callback;
964 
965     // step 2: n := ceil(len/const_Bsize);
966     sm_cmac_block_count = (sm_cmac_message_len + 15) / 16;
967 
968     // step 3: ..
969     if (sm_cmac_block_count==0){
970         sm_cmac_block_count = 1;
971     }
972 
973     log_info("sm_cmac_general_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count);
974 
975     // first, we need to compute l for k1, k2, and m_last
976     sm_cmac_state = CMAC_CALC_SUBKEYS;
977 
978     // let's go
979     sm_run();
980 }
981 
982 // cmac for ATT Message signing
983 void sm_cmac_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
984     // ATT Message Signing
985     sm_cmac_header[0] = opcode;
986     little_endian_store_16(sm_cmac_header, 1, con_handle);
987     little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter);
988     uint16_t total_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
989     sm_cmac_message = message;
990     sm_cmac_general_start(k, total_message_len, &sm_cmac_message_get_byte, done_handler);
991 }
992 
993 int sm_cmac_ready(void){
994     return sm_cmac_state == CMAC_IDLE;
995 }
996 
997 static void sm_cmac_handle_aes_engine_ready(void){
998     switch (sm_cmac_state){
999         case CMAC_CALC_SUBKEYS: {
1000             sm_key_t const_zero;
1001             memset(const_zero, 0, 16);
1002             sm_cmac_next_state();
1003             sm_aes128_start(sm_cmac_k, const_zero, NULL);
1004             break;
1005         }
1006         case CMAC_CALC_MI: {
1007             int j;
1008             sm_key_t y;
1009             for (j=0;j<16;j++){
1010                 y[j] = sm_cmac_x[j] ^ sm_cmac_get_byte(sm_cmac_block_current*16 + j);
1011             }
1012             sm_cmac_block_current++;
1013             sm_cmac_next_state();
1014             sm_aes128_start(sm_cmac_k, y, NULL);
1015             break;
1016         }
1017         case CMAC_CALC_MLAST: {
1018             int i;
1019             sm_key_t y;
1020             for (i=0;i<16;i++){
1021                 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
1022             }
1023             log_info_key("Y", y);
1024             sm_cmac_block_current++;
1025             sm_cmac_next_state();
1026             sm_aes128_start(sm_cmac_k, y, NULL);
1027             break;
1028         }
1029         default:
1030             log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state);
1031             break;
1032     }
1033 }
1034 
1035 static void sm_cmac_handle_encryption_result(sm_key_t data){
1036     switch (sm_cmac_state){
1037         case CMAC_W4_SUBKEYS: {
1038             sm_key_t k1;
1039             memcpy(k1, data, 16);
1040             sm_shift_left_by_one_bit_inplace(16, k1);
1041             if (data[0] & 0x80){
1042                 k1[15] ^= 0x87;
1043             }
1044             sm_key_t k2;
1045             memcpy(k2, k1, 16);
1046             sm_shift_left_by_one_bit_inplace(16, k2);
1047             if (k1[0] & 0x80){
1048                 k2[15] ^= 0x87;
1049             }
1050 
1051             log_info_key("k", sm_cmac_k);
1052             log_info_key("k1", k1);
1053             log_info_key("k2", k2);
1054 
1055             // step 4: set m_last
1056             int i;
1057             if (sm_cmac_last_block_complete()){
1058                 for (i=0;i<16;i++){
1059                     sm_cmac_m_last[i] = sm_cmac_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i];
1060                 }
1061             } else {
1062                 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
1063                 for (i=0;i<16;i++){
1064                     if (i < valid_octets_in_last_block){
1065                         sm_cmac_m_last[i] = sm_cmac_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i];
1066                         continue;
1067                     }
1068                     if (i == valid_octets_in_last_block){
1069                         sm_cmac_m_last[i] = 0x80 ^ k2[i];
1070                         continue;
1071                     }
1072                     sm_cmac_m_last[i] = k2[i];
1073                 }
1074             }
1075 
1076             // next
1077             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1078             break;
1079         }
1080         case CMAC_W4_MI:
1081             memcpy(sm_cmac_x, data, 16);
1082             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1083             break;
1084         case CMAC_W4_MLAST:
1085             // done
1086             log_info_key("CMAC", data);
1087             sm_cmac_done_handler(data);
1088             sm_cmac_state = CMAC_IDLE;
1089             break;
1090         default:
1091             log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state);
1092             break;
1093     }
1094 }
1095 
1096 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1097     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1098     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1099     switch (setup->sm_stk_generation_method){
1100         case PK_RESP_INPUT:
1101             if (sm_conn->sm_role){
1102                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1103                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1104             } else {
1105                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1106             }
1107             break;
1108         case PK_INIT_INPUT:
1109             if (sm_conn->sm_role){
1110                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1111             } else {
1112                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1113                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1114             }
1115             break;
1116         case OK_BOTH_INPUT:
1117             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1118             sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1119             break;
1120         case NK_BOTH_INPUT:
1121             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1122             sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1123             break;
1124         case JUST_WORKS:
1125             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1126             sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1127             break;
1128         case OOB:
1129             // client already provided OOB data, let's skip notification.
1130             break;
1131     }
1132 }
1133 
1134 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
1135     int recv_flags;
1136     if (sm_conn->sm_role){
1137         // slave / responder
1138         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
1139     } else {
1140         // master / initiator
1141         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
1142     }
1143     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
1144     return recv_flags == setup->sm_key_distribution_received_set;
1145 }
1146 
1147 static void sm_done_for_handle(hci_con_handle_t con_handle){
1148     if (sm_active_connection == con_handle){
1149         sm_timeout_stop();
1150         sm_active_connection = 0;
1151         log_info("sm: connection 0x%x released setup context", con_handle);
1152     }
1153 }
1154 
1155 static int sm_key_distribution_flags_for_auth_req(void){
1156     int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN;
1157     if (sm_auth_req & SM_AUTHREQ_BONDING){
1158         // encryption information only if bonding requested
1159         flags |= SM_KEYDIST_ENC_KEY;
1160     }
1161     return flags;
1162 }
1163 
1164 static void sm_init_setup(sm_connection_t * sm_conn){
1165 
1166     // fill in sm setup
1167     sm_reset_tk();
1168     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1169     memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1170 
1171     // query client for OOB data
1172     int have_oob_data = 0;
1173     if (sm_get_oob_data) {
1174         have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1175     }
1176 
1177     sm_pairing_packet_t * local_packet;
1178     if (sm_conn->sm_role){
1179         // slave
1180         local_packet = &setup->sm_s_pres;
1181         gap_advertisements_get_address(&setup->sm_s_addr_type, setup->sm_s_address);
1182         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1183         memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1184     } else {
1185         // master
1186         local_packet = &setup->sm_m_preq;
1187         gap_advertisements_get_address(&setup->sm_m_addr_type, setup->sm_m_address);
1188         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1189         memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1190 
1191         int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1192         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1193         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1194     }
1195 
1196     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1197     sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data);
1198     sm_pairing_packet_set_auth_req(*local_packet, sm_auth_req);
1199     sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size);
1200 }
1201 
1202 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1203 
1204     sm_pairing_packet_t * remote_packet;
1205     int                   remote_key_request;
1206     if (sm_conn->sm_role){
1207         // slave / responder
1208         remote_packet      = &setup->sm_m_preq;
1209         remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1210     } else {
1211         // master / initiator
1212         remote_packet      = &setup->sm_s_pres;
1213         remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1214     }
1215 
1216     // check key size
1217     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1218     if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE;
1219 
1220     // decide on STK generation method
1221     sm_setup_tk();
1222     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1223 
1224     // check if STK generation method is acceptable by client
1225     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1226 
1227     // identical to responder
1228     sm_setup_key_distribution(remote_key_request);
1229 
1230     // JUST WORKS doens't provide authentication
1231     sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1;
1232 
1233     return 0;
1234 }
1235 
1236 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1237 
1238     // cache and reset context
1239     int matched_device_id = sm_address_resolution_test;
1240     address_resolution_mode_t mode = sm_address_resolution_mode;
1241     void * context = sm_address_resolution_context;
1242 
1243     // reset context
1244     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1245     sm_address_resolution_context = NULL;
1246     sm_address_resolution_test = -1;
1247     hci_con_handle_t con_handle = 0;
1248 
1249     sm_connection_t * sm_connection;
1250     uint16_t ediv;
1251     switch (mode){
1252         case ADDRESS_RESOLUTION_GENERAL:
1253             break;
1254         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1255             sm_connection = (sm_connection_t *) context;
1256             con_handle = sm_connection->sm_handle;
1257             switch (event){
1258                 case ADDRESS_RESOLUTION_SUCEEDED:
1259                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1260                     sm_connection->sm_le_db_index = matched_device_id;
1261                     log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index);
1262                     if (sm_connection->sm_role) break;
1263                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1264                     sm_connection->sm_security_request_received = 0;
1265                     sm_connection->sm_bonding_requested = 0;
1266                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
1267                     if (ediv){
1268                         sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
1269                     } else {
1270                         sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1271                     }
1272                     break;
1273                 case ADDRESS_RESOLUTION_FAILED:
1274                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1275                     if (sm_connection->sm_role) break;
1276                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1277                     sm_connection->sm_security_request_received = 0;
1278                     sm_connection->sm_bonding_requested = 0;
1279                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1280                     break;
1281             }
1282             break;
1283         default:
1284             break;
1285     }
1286 
1287     switch (event){
1288         case ADDRESS_RESOLUTION_SUCEEDED:
1289             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1290             break;
1291         case ADDRESS_RESOLUTION_FAILED:
1292             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1293             break;
1294     }
1295 }
1296 
1297 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1298 
1299     int le_db_index = -1;
1300 
1301     // lookup device based on IRK
1302     if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
1303         int i;
1304         for (i=0; i < le_device_db_count(); i++){
1305             sm_key_t irk;
1306             bd_addr_t address;
1307             int address_type;
1308             le_device_db_info(i, &address_type, address, irk);
1309             if (memcmp(irk, setup->sm_peer_irk, 16) == 0){
1310                 log_info("sm: device found for IRK, updating");
1311                 le_db_index = i;
1312                 break;
1313             }
1314         }
1315     }
1316 
1317     // if not found, lookup via public address if possible
1318     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1319     if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
1320         int i;
1321         for (i=0; i < le_device_db_count(); i++){
1322             bd_addr_t address;
1323             int address_type;
1324             le_device_db_info(i, &address_type, address, NULL);
1325             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1326             if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){
1327                 log_info("sm: device found for public address, updating");
1328                 le_db_index = i;
1329                 break;
1330             }
1331         }
1332     }
1333 
1334     // if not found, add to db
1335     if (le_db_index < 0) {
1336         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1337     }
1338 
1339     if (le_db_index >= 0){
1340         le_device_db_local_counter_set(le_db_index, 0);
1341 
1342         // store local CSRK
1343         if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1344             log_info("sm: store local CSRK");
1345             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1346             le_device_db_local_counter_set(le_db_index, 0);
1347         }
1348 
1349         // store remote CSRK
1350         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1351             log_info("sm: store remote CSRK");
1352             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1353             le_device_db_remote_counter_set(le_db_index, 0);
1354         }
1355 
1356         // store encryption information
1357         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION
1358             && setup->sm_key_distribution_received_set &  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1359             log_info("sm: set encryption information (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1360             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1361                 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
1362         }
1363     }
1364 
1365     // keep le_db_index
1366     sm_conn->sm_le_db_index = le_db_index;
1367 }
1368 
1369 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1370 static uint8_t sm_sc_cmac_get_byte(uint16_t offset){
1371     return sm_cmac_sc_buffer[offset];
1372 }
1373 static void sm_sc_cmac_done(uint8_t * hash){
1374     switch (sm_cmac_connection->sm_engine_state){
1375         case SM_SC_W4_CMAC_FOR_CONFIRMATION:
1376             memcpy(setup->sm_local_confirm, hash, 16);
1377             sm_cmac_connection->sm_engine_state = SM_SC_SEND_CONFIRMATION;
1378             break;
1379         default:
1380             log_error("sm_sc_cmac_done in state %u", sm_cmac_connection->sm_engine_state);
1381             break;
1382     }
1383     sm_cmac_connection = 0;
1384     sm_run();
1385 }
1386 
1387 static void f4_engine(sm_connection_t * sm_conn, sm_key_t res, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
1388     sm_cmac_connection = sm_conn;
1389     memcpy(sm_cmac_sc_buffer, u, 32);
1390     memcpy(sm_cmac_sc_buffer+32, v, 32);
1391     sm_cmac_sc_buffer[64] = z;
1392     log_info("f4 key");
1393     log_info_hexdump(x, 16);
1394     log_info("f4 message");
1395     log_info_hexdump(sm_cmac_sc_buffer, sizeof(sm_cmac_sc_buffer));
1396     sm_cmac_general_start(x, 65, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
1397 }
1398 
1399 static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
1400     uint8_t z = 0;
1401     if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1402         // some form of passkey
1403         uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1404         z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1);
1405         setup->sm_passkey_bit++;
1406     }
1407 #ifdef USE_MBEDTLS_FOR_ECDH
1408     uint8_t value[32];
1409     mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1410 #endif
1411     f4_engine(sm_conn, setup->sm_local_confirm, value, setup->sm_peer_qx, setup->sm_local_nonce, z);
1412 }
1413 #endif
1414 
1415 static void sm_run(void){
1416 
1417     btstack_linked_list_iterator_t it;
1418 
1419     // assert that we can send at least commands
1420     if (!hci_can_send_command_packet_now()) return;
1421 
1422     //
1423     // non-connection related behaviour
1424     //
1425 
1426     // distributed key generation
1427     switch (dkg_state){
1428         case DKG_CALC_IRK:
1429             // already busy?
1430             if (sm_aes128_state == SM_AES128_IDLE) {
1431                 // IRK = d1(IR, 1, 0)
1432                 sm_key_t d1_prime;
1433                 sm_d1_d_prime(1, 0, d1_prime);  // plaintext
1434                 dkg_next_state();
1435                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1436                 return;
1437             }
1438             break;
1439         case DKG_CALC_DHK:
1440             // already busy?
1441             if (sm_aes128_state == SM_AES128_IDLE) {
1442                 // DHK = d1(IR, 3, 0)
1443                 sm_key_t d1_prime;
1444                 sm_d1_d_prime(3, 0, d1_prime);  // plaintext
1445                 dkg_next_state();
1446                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1447                 return;
1448             }
1449             break;
1450         default:
1451             break;
1452     }
1453 
1454     // random address updates
1455     switch (rau_state){
1456         case RAU_GET_RANDOM:
1457             rau_next_state();
1458             sm_random_start(NULL);
1459             return;
1460         case RAU_GET_ENC:
1461             // already busy?
1462             if (sm_aes128_state == SM_AES128_IDLE) {
1463                 sm_key_t r_prime;
1464                 sm_ah_r_prime(sm_random_address, r_prime);
1465                 rau_next_state();
1466                 sm_aes128_start(sm_persistent_irk, r_prime, NULL);
1467                 return;
1468             }
1469             break;
1470         case RAU_SET_ADDRESS:
1471             log_info("New random address: %s", bd_addr_to_str(sm_random_address));
1472             rau_state = RAU_IDLE;
1473             hci_send_cmd(&hci_le_set_random_address, sm_random_address);
1474             return;
1475         default:
1476             break;
1477     }
1478 
1479     // CMAC
1480     switch (sm_cmac_state){
1481         case CMAC_CALC_SUBKEYS:
1482         case CMAC_CALC_MI:
1483         case CMAC_CALC_MLAST:
1484             // already busy?
1485             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1486             sm_cmac_handle_aes_engine_ready();
1487             return;
1488         default:
1489             break;
1490     }
1491 
1492     // CSRK Lookup
1493     // -- if csrk lookup ready, find connection that require csrk lookup
1494     if (sm_address_resolution_idle()){
1495         hci_connections_get_iterator(&it);
1496         while(btstack_linked_list_iterator_has_next(&it)){
1497             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1498             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
1499             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
1500                 // and start lookup
1501                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
1502                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
1503                 break;
1504             }
1505         }
1506     }
1507 
1508     // -- if csrk lookup ready, resolved addresses for received addresses
1509     if (sm_address_resolution_idle()) {
1510         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
1511             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
1512             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
1513             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
1514             btstack_memory_sm_lookup_entry_free(entry);
1515         }
1516     }
1517 
1518     // -- Continue with CSRK device lookup by public or resolvable private address
1519     if (!sm_address_resolution_idle()){
1520         log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count());
1521         while (sm_address_resolution_test < le_device_db_count()){
1522             int addr_type;
1523             bd_addr_t addr;
1524             sm_key_t irk;
1525             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
1526             log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
1527 
1528             if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){
1529                 log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
1530                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
1531                 break;
1532             }
1533 
1534             if (sm_address_resolution_addr_type == 0){
1535                 sm_address_resolution_test++;
1536                 continue;
1537             }
1538 
1539             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1540 
1541             log_info("LE Device Lookup: calculate AH");
1542             log_info_key("IRK", irk);
1543 
1544             sm_key_t r_prime;
1545             sm_ah_r_prime(sm_address_resolution_address, r_prime);
1546             sm_address_resolution_ah_calculation_active = 1;
1547             sm_aes128_start(irk, r_prime, sm_address_resolution_context);   // keep context
1548             return;
1549         }
1550 
1551         if (sm_address_resolution_test >= le_device_db_count()){
1552             log_info("LE Device Lookup: not found");
1553             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
1554         }
1555     }
1556 
1557 
1558     //
1559     // active connection handling
1560     // -- use loop to handle next connection if lock on setup context is released
1561 
1562     while (1) {
1563 
1564         // Find connections that requires setup context and make active if no other is locked
1565         hci_connections_get_iterator(&it);
1566         while(!sm_active_connection && btstack_linked_list_iterator_has_next(&it)){
1567             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1568             sm_connection_t  * sm_connection = &hci_connection->sm_connection;
1569             // - if no connection locked and we're ready/waiting for setup context, fetch it and start
1570             int done = 1;
1571             int err;
1572             int encryption_key_size;
1573             int authenticated;
1574             int authorized;
1575             switch (sm_connection->sm_engine_state) {
1576                 case SM_RESPONDER_SEND_SECURITY_REQUEST:
1577                     // send packet if possible,
1578                     if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){
1579                         const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING};
1580                         sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
1581                         l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1582                     } else {
1583                         l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1584                     }
1585                     // don't lock setup context yet
1586                     done = 0;
1587                     break;
1588                 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
1589                     sm_init_setup(sm_connection);
1590                     // recover pairing request
1591                     memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t));
1592                     err = sm_stk_generation_init(sm_connection);
1593                     if (err){
1594                         setup->sm_pairing_failed_reason = err;
1595                         sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1596                         break;
1597                     }
1598                     sm_timeout_start(sm_connection);
1599                     // generate random number first, if we need to show passkey
1600                     if (setup->sm_stk_generation_method == PK_INIT_INPUT){
1601                         sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK;
1602                         break;
1603                     }
1604                     sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
1605                     break;
1606                 case SM_INITIATOR_PH0_HAS_LTK:
1607                     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
1608                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1609                                                 &encryption_key_size, &authenticated, &authorized);
1610                     log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized);
1611                     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
1612                     sm_connection->sm_connection_authenticated = authenticated;
1613                     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
1614                     sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION;
1615                     break;
1616                 case SM_RESPONDER_PH0_RECEIVED_LTK:
1617                     // re-establish previously used LTK using Rand and EDIV
1618                     memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
1619                     setup->sm_local_ediv = sm_connection->sm_local_ediv;
1620                     // re-establish used key encryption size
1621                     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
1622                     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1;
1623                     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
1624                     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4;
1625                     log_info("sm: received ltk request with key size %u, authenticated %u",
1626                             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
1627                     sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC;
1628                     break;
1629                 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
1630                     sm_init_setup(sm_connection);
1631                     sm_timeout_start(sm_connection);
1632                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST;
1633                     break;
1634                 default:
1635                     done = 0;
1636                     break;
1637             }
1638             if (done){
1639                 sm_active_connection = sm_connection->sm_handle;
1640                 log_info("sm: connection 0x%04x locked setup context as %s", sm_active_connection, sm_connection->sm_role ? "responder" : "initiator");
1641             }
1642         }
1643 
1644         //
1645         // active connection handling
1646         //
1647 
1648         if (sm_active_connection == 0) return;
1649 
1650         // assert that we could send a SM PDU - not needed for all of the following
1651         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
1652             l2cap_request_can_send_fix_channel_now_event(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1653             return;
1654         }
1655 
1656         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection);
1657         if (!connection) return;
1658 
1659         sm_key_t plaintext;
1660         int key_distribution_flags;
1661 
1662         log_info("sm_run: state %u", connection->sm_engine_state);
1663 
1664         // responding state
1665         switch (connection->sm_engine_state){
1666 
1667             // general
1668             case SM_GENERAL_SEND_PAIRING_FAILED: {
1669                 uint8_t buffer[2];
1670                 buffer[0] = SM_CODE_PAIRING_FAILED;
1671                 buffer[1] = setup->sm_pairing_failed_reason;
1672                 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
1673                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1674                 sm_done_for_handle(connection->sm_handle);
1675                 break;
1676             }
1677 
1678 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1679             case SM_SC_W2_CMAC_FOR_CONFIRMATION:
1680                 if (!sm_cmac_ready()) break;
1681                 connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
1682                 sm_sc_calculate_local_confirm(connection);
1683                 break;
1684 #endif
1685             // initiator side
1686             case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: {
1687                 sm_key_t peer_ltk_flipped;
1688                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
1689                 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED;
1690                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
1691                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
1692                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
1693                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
1694                 return;
1695             }
1696 
1697             case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST:
1698                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
1699                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
1700                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
1701                 sm_timeout_reset(connection);
1702                 break;
1703 
1704             // responder side
1705             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
1706                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1707                 hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
1708                 return;
1709 
1710 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1711             case SM_SC_SEND_PUBLIC_KEY_COMMAND: {
1712                 uint8_t buffer[65];
1713                 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
1714                 //
1715 #ifdef USE_MBEDTLS_FOR_ECDH
1716                 uint8_t value[32];
1717                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1718                 reverse_256(value, &buffer[1]);
1719                 mbedtls_mpi_write_binary(&le_keypair.Q.Y, value, sizeof(value));
1720                 reverse_256(value, &buffer[33]);
1721 #endif
1722                 // TODO: use random generator to generate nonce
1723 
1724                 // generate 128-bit nonce
1725                 int i;
1726                 for (i=0;i<16;i++){
1727                     setup->sm_local_nonce[i] = rand() & 0xff;
1728                 }
1729 
1730                 // stk generation method
1731                 // passkey entry: notify app to show passkey or to request passkey
1732                 switch (setup->sm_stk_generation_method){
1733                     case JUST_WORKS:
1734                     case NK_BOTH_INPUT:
1735                         if (connection->sm_role){
1736                             connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
1737                         } else {
1738                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1739                         }
1740                         break;
1741                     case PK_INIT_INPUT:
1742                     case PK_RESP_INPUT:
1743                     case OK_BOTH_INPUT:
1744                         // hack for testing: assume user entered '000000'
1745                         // memset(setup->sm_tk, 0, 16);
1746                         memcpy(setup->sm_ra, setup->sm_tk, 16);
1747                         memcpy(setup->sm_rb, setup->sm_tk, 16);
1748                         setup->sm_passkey_bit = 0;
1749                         if (connection->sm_role){
1750                             // responder
1751                             connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1752                         } else {
1753                             // initiator
1754                             connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1755                         }
1756                         sm_trigger_user_response(connection);
1757                         break;
1758                     case OOB:
1759                         // TODO: implement SC OOB
1760                         break;
1761                 }
1762 
1763                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1764                 sm_timeout_reset(connection);
1765                 break;
1766             }
1767             case SM_SC_SEND_CONFIRMATION: {
1768                 uint8_t buffer[17];
1769                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
1770                 reverse_128(setup->sm_local_confirm, &buffer[1]);
1771                 if (connection->sm_role){
1772                     connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
1773                 } else {
1774                     connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1775                 }
1776                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1777                 sm_timeout_reset(connection);
1778                 break;
1779             }
1780             case SM_SC_SEND_PAIRING_RANDOM: {
1781                 uint8_t buffer[17];
1782                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1783                 reverse_128(setup->sm_local_nonce, &buffer[1]);
1784                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){
1785                     if (connection->sm_role){
1786                         // responder
1787                         connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
1788                     } else {
1789                         // initiator
1790                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
1791                     }
1792                 } else {
1793                     if (connection->sm_role){
1794                         // responder
1795                         connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1796                         if (setup->sm_stk_generation_method == NK_BOTH_INPUT){
1797                             // calc Vb if numeric comparison
1798                             // TODO: use AES Engine to calculate g2
1799                             uint8_t value[32];
1800                             mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1801                             uint32_t vb = g2(setup->sm_peer_qx, value, setup->sm_peer_nonce, setup->sm_local_nonce) % 1000000;
1802                             big_endian_store_32(setup->sm_tk, 12, vb);
1803                             sm_trigger_user_response(connection);
1804                         }
1805                     } else {
1806                         // initiator
1807                         connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
1808                     }
1809                 }
1810                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1811                 sm_timeout_reset(connection);
1812                 break;
1813             }
1814             case SM_SC_SEND_DHKEY_CHECK_COMMAND: {
1815 
1816                 uint8_t buffer[17];
1817                 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
1818 #ifdef USE_MBEDTLS_FOR_ECDH
1819                 // calculate DHKEY
1820                 mbedtls_ecp_group grp;
1821                 mbedtls_ecp_group_init( &grp );
1822                 mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
1823                 mbedtls_ecp_point Q;
1824                 mbedtls_ecp_point_init( &Q );
1825                 mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
1826                 mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
1827                 mbedtls_mpi_read_string(&Q.Z, 16, "1" );
1828 
1829                 // da * Pb
1830                 mbedtls_ecp_point DH;
1831                 mbedtls_ecp_point_init( &DH );
1832                 mbedtls_ecp_mul(&grp, &DH, &le_keypair.d, &Q, NULL, NULL);
1833                 sm_key256_t dhkey;
1834                 mbedtls_mpi_write_binary(&DH.X, dhkey, 32);
1835                 log_info("dhkey");
1836                 log_info_hexdump(dhkey, 32);
1837 
1838                 // calculate LTK + MacKey
1839                 sm_key256_t ltk_mackey;
1840                 sm_key56_t bd_addr_master, bd_addr_slave;
1841                 bd_addr_master[0] =  setup->sm_m_addr_type;
1842                 bd_addr_slave[0]  =  setup->sm_s_addr_type;
1843                 memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1844                 memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1845                 if (connection->sm_role){
1846                     // responder
1847                     f5(ltk_mackey, dhkey, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1848                 } else {
1849                     // initiator
1850                     f5(ltk_mackey, dhkey, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1851                 }
1852                 // store LTK
1853                 memcpy(setup->sm_ltk, &ltk_mackey[16], 16);
1854 
1855                 // calc DHKCheck
1856                 memcpy(setup->sm_mackey, &ltk_mackey[0], 16);
1857 
1858                 // TODO: checks
1859 
1860                 uint8_t iocap_a[3];
1861                 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1862                 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1863                 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1864                 uint8_t iocap_b[3];
1865                 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1866                 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1867                 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1868                 if (connection->sm_role){
1869                     // responder
1870                     f6(setup->sm_local_dhkey_check, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1871                 } else {
1872                     // initiator
1873                     f6(setup->sm_local_dhkey_check, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
1874                 }
1875 #endif
1876                 reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
1877                 if (connection->sm_role){
1878                     connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
1879                 } else {
1880                     connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
1881                 }
1882                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1883                 sm_timeout_reset(connection);
1884                 break;
1885             }
1886 
1887 #endif
1888             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
1889                 // echo initiator for now
1890                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
1891                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1892 
1893                 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
1894 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1895                 if (setup->sm_use_secure_connections){
1896                     connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
1897                     // skip LTK/EDIV for SC
1898                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
1899                 }
1900 #endif
1901                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1902                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1903 
1904                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
1905                 sm_timeout_reset(connection);
1906                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
1907                 if (setup->sm_stk_generation_method == JUST_WORKS){
1908                     sm_trigger_user_response(connection);
1909                 }
1910                 return;
1911 
1912             case SM_PH2_SEND_PAIRING_RANDOM: {
1913                 uint8_t buffer[17];
1914                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1915                 reverse_128(setup->sm_local_random, &buffer[1]);
1916                 if (connection->sm_role){
1917                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
1918                 } else {
1919                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
1920                 }
1921                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1922                 sm_timeout_reset(connection);
1923                 break;
1924             }
1925 
1926             case SM_PH2_GET_RANDOM_TK:
1927             case SM_PH2_C1_GET_RANDOM_A:
1928             case SM_PH2_C1_GET_RANDOM_B:
1929             case SM_PH3_GET_RANDOM:
1930             case SM_PH3_GET_DIV:
1931                 sm_next_responding_state(connection);
1932                 sm_random_start(connection);
1933                 return;
1934 
1935             case SM_PH2_C1_GET_ENC_B:
1936             case SM_PH2_C1_GET_ENC_D:
1937                 // already busy?
1938                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1939                 sm_next_responding_state(connection);
1940                 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection);
1941                 return;
1942 
1943             case SM_PH3_LTK_GET_ENC:
1944             case SM_RESPONDER_PH4_LTK_GET_ENC:
1945                 // already busy?
1946                 if (sm_aes128_state == SM_AES128_IDLE) {
1947                     sm_key_t d_prime;
1948                     sm_d1_d_prime(setup->sm_local_div, 0, d_prime);
1949                     sm_next_responding_state(connection);
1950                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1951                     return;
1952                 }
1953                 break;
1954 
1955             case SM_PH3_CSRK_GET_ENC:
1956                 // already busy?
1957                 if (sm_aes128_state == SM_AES128_IDLE) {
1958                     sm_key_t d_prime;
1959                     sm_d1_d_prime(setup->sm_local_div, 1, d_prime);
1960                     sm_next_responding_state(connection);
1961                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1962                     return;
1963                 }
1964                 break;
1965 
1966             case SM_PH2_C1_GET_ENC_C:
1967                 // already busy?
1968                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1969                 // calculate m_confirm using aes128 engine - step 1
1970                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1971                 sm_next_responding_state(connection);
1972                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1973                 break;
1974             case SM_PH2_C1_GET_ENC_A:
1975                 // already busy?
1976                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1977                 // calculate confirm using aes128 engine - step 1
1978                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1979                 sm_next_responding_state(connection);
1980                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1981                 break;
1982             case SM_PH2_CALC_STK:
1983                 // already busy?
1984                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1985                 // calculate STK
1986                 if (connection->sm_role){
1987                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext);
1988                 } else {
1989                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext);
1990                 }
1991                 sm_next_responding_state(connection);
1992                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1993                 break;
1994             case SM_PH3_Y_GET_ENC:
1995                 // already busy?
1996                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1997                 // PH3B2 - calculate Y from      - enc
1998                 // Y = dm(DHK, Rand)
1999                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
2000                 sm_next_responding_state(connection);
2001                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
2002                 return;
2003             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
2004                 uint8_t buffer[17];
2005                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
2006                 reverse_128(setup->sm_local_confirm, &buffer[1]);
2007                 if (connection->sm_role){
2008                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
2009                 } else {
2010                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
2011                 }
2012                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2013                 sm_timeout_reset(connection);
2014                 return;
2015             }
2016             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
2017                 sm_key_t stk_flipped;
2018                 reverse_128(setup->sm_ltk, stk_flipped);
2019                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
2020                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
2021                 return;
2022             }
2023             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
2024                 sm_key_t stk_flipped;
2025                 reverse_128(setup->sm_ltk, stk_flipped);
2026                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
2027                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
2028                 return;
2029             }
2030             case SM_RESPONDER_PH4_SEND_LTK: {
2031                 sm_key_t ltk_flipped;
2032                 reverse_128(setup->sm_ltk, ltk_flipped);
2033                 connection->sm_engine_state = SM_RESPONDER_IDLE;
2034                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
2035                 return;
2036             }
2037             case SM_RESPONDER_PH4_Y_GET_ENC:
2038                 // already busy?
2039                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
2040                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
2041                 // Y = dm(DHK, Rand)
2042                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
2043                 sm_next_responding_state(connection);
2044                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
2045                 return;
2046 
2047             case SM_PH3_DISTRIBUTE_KEYS:
2048                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
2049                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2050                     uint8_t buffer[17];
2051                     buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
2052                     reverse_128(setup->sm_ltk, &buffer[1]);
2053                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2054                     sm_timeout_reset(connection);
2055                     return;
2056                 }
2057                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
2058                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2059                     uint8_t buffer[11];
2060                     buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
2061                     little_endian_store_16(buffer, 1, setup->sm_local_ediv);
2062                     reverse_64(setup->sm_local_rand, &buffer[3]);
2063                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2064                     sm_timeout_reset(connection);
2065                     return;
2066                 }
2067                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
2068                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2069                     uint8_t buffer[17];
2070                     buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2071                     reverse_128(sm_persistent_irk, &buffer[1]);
2072                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2073                     sm_timeout_reset(connection);
2074                     return;
2075                 }
2076                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
2077                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2078                     bd_addr_t local_address;
2079                     uint8_t buffer[8];
2080                     buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2081                     gap_advertisements_get_address(&buffer[1], local_address);
2082                     reverse_bd_addr(local_address, &buffer[2]);
2083                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2084                     sm_timeout_reset(connection);
2085                     return;
2086                 }
2087                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
2088                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2089 
2090                     // hack to reproduce test runs
2091                     if (test_use_fixed_local_csrk){
2092                         memset(setup->sm_local_csrk, 0xcc, 16);
2093                     }
2094 
2095                     uint8_t buffer[17];
2096                     buffer[0] = SM_CODE_SIGNING_INFORMATION;
2097                     reverse_128(setup->sm_local_csrk, &buffer[1]);
2098                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2099                     sm_timeout_reset(connection);
2100                     return;
2101                 }
2102 
2103                 // keys are sent
2104                 if (connection->sm_role){
2105                     // slave -> receive master keys if any
2106                     if (sm_key_distribution_all_received(connection)){
2107                         sm_key_distribution_handle_all_received(connection);
2108                         connection->sm_engine_state = SM_RESPONDER_IDLE;
2109                         sm_done_for_handle(connection->sm_handle);
2110                     } else {
2111                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2112                     }
2113                 } else {
2114                     // master -> all done
2115                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2116                     sm_done_for_handle(connection->sm_handle);
2117                 }
2118                 break;
2119 
2120             default:
2121                 break;
2122         }
2123 
2124         // check again if active connection was released
2125         if (sm_active_connection) break;
2126     }
2127 }
2128 
2129 // note: aes engine is ready as we just got the aes result
2130 static void sm_handle_encryption_result(uint8_t * data){
2131 
2132     sm_aes128_state = SM_AES128_IDLE;
2133 
2134     if (sm_address_resolution_ah_calculation_active){
2135         sm_address_resolution_ah_calculation_active = 0;
2136         // compare calulated address against connecting device
2137         uint8_t hash[3];
2138         reverse_24(data, hash);
2139         if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
2140             log_info("LE Device Lookup: matched resolvable private address");
2141             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
2142             return;
2143         }
2144         // no match, try next
2145         sm_address_resolution_test++;
2146         return;
2147     }
2148 
2149     switch (dkg_state){
2150         case DKG_W4_IRK:
2151             reverse_128(data, sm_persistent_irk);
2152             log_info_key("irk", sm_persistent_irk);
2153             dkg_next_state();
2154             return;
2155         case DKG_W4_DHK:
2156             reverse_128(data, sm_persistent_dhk);
2157             log_info_key("dhk", sm_persistent_dhk);
2158             dkg_next_state();
2159             // SM Init Finished
2160             return;
2161         default:
2162             break;
2163     }
2164 
2165     switch (rau_state){
2166         case RAU_W4_ENC:
2167             reverse_24(data, &sm_random_address[3]);
2168             rau_next_state();
2169             return;
2170         default:
2171             break;
2172     }
2173 
2174     switch (sm_cmac_state){
2175         case CMAC_W4_SUBKEYS:
2176         case CMAC_W4_MI:
2177         case CMAC_W4_MLAST:
2178             {
2179             sm_key_t t;
2180             reverse_128(data, t);
2181             sm_cmac_handle_encryption_result(t);
2182             }
2183             return;
2184         default:
2185             break;
2186     }
2187 
2188     // retrieve sm_connection provided to sm_aes128_start_encryption
2189     sm_connection_t * connection = (sm_connection_t*) sm_aes128_context;
2190     if (!connection) return;
2191     switch (connection->sm_engine_state){
2192         case SM_PH2_C1_W4_ENC_A:
2193         case SM_PH2_C1_W4_ENC_C:
2194             {
2195             sm_key_t t2;
2196             reverse_128(data, t2);
2197             sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
2198             }
2199             sm_next_responding_state(connection);
2200             return;
2201         case SM_PH2_C1_W4_ENC_B:
2202             reverse_128(data, setup->sm_local_confirm);
2203             log_info_key("c1!", setup->sm_local_confirm);
2204             connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
2205             return;
2206         case SM_PH2_C1_W4_ENC_D:
2207             {
2208             sm_key_t peer_confirm_test;
2209             reverse_128(data, peer_confirm_test);
2210             log_info_key("c1!", peer_confirm_test);
2211             if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){
2212                 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
2213                 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2214                 return;
2215             }
2216             if (connection->sm_role){
2217                 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2218             } else {
2219                 connection->sm_engine_state = SM_PH2_CALC_STK;
2220             }
2221             }
2222             return;
2223         case SM_PH2_W4_STK:
2224             reverse_128(data, setup->sm_ltk);
2225             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2226             log_info_key("stk", setup->sm_ltk);
2227             if (connection->sm_role){
2228                 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2229             } else {
2230                 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2231             }
2232             return;
2233         case SM_PH3_Y_W4_ENC:{
2234             sm_key_t y128;
2235             reverse_128(data, y128);
2236             setup->sm_local_y = big_endian_read_16(y128, 14);
2237             log_info_hex16("y", setup->sm_local_y);
2238             // PH3B3 - calculate EDIV
2239             setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
2240             log_info_hex16("ediv", setup->sm_local_ediv);
2241             // PH3B4 - calculate LTK         - enc
2242             // LTK = d1(ER, DIV, 0))
2243             connection->sm_engine_state = SM_PH3_LTK_GET_ENC;
2244             return;
2245         }
2246         case SM_RESPONDER_PH4_Y_W4_ENC:{
2247             sm_key_t y128;
2248             reverse_128(data, y128);
2249             setup->sm_local_y = big_endian_read_16(y128, 14);
2250             log_info_hex16("y", setup->sm_local_y);
2251 
2252             // PH3B3 - calculate DIV
2253             setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
2254             log_info_hex16("ediv", setup->sm_local_ediv);
2255             // PH3B4 - calculate LTK         - enc
2256             // LTK = d1(ER, DIV, 0))
2257             connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC;
2258             return;
2259         }
2260         case SM_PH3_LTK_W4_ENC:
2261             reverse_128(data, setup->sm_ltk);
2262             log_info_key("ltk", setup->sm_ltk);
2263             // calc CSRK next
2264             connection->sm_engine_state = SM_PH3_CSRK_GET_ENC;
2265             return;
2266         case SM_PH3_CSRK_W4_ENC:
2267             reverse_128(data, setup->sm_local_csrk);
2268             log_info_key("csrk", setup->sm_local_csrk);
2269             if (setup->sm_key_distribution_send_set){
2270                 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
2271             } else {
2272                 // no keys to send, just continue
2273                 if (connection->sm_role){
2274                     // slave -> receive master keys
2275                     connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2276                 } else {
2277                     // master -> all done
2278                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2279                     sm_done_for_handle(connection->sm_handle);
2280                 }
2281             }
2282             return;
2283         case SM_RESPONDER_PH4_LTK_W4_ENC:
2284             reverse_128(data, setup->sm_ltk);
2285             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2286             log_info_key("ltk", setup->sm_ltk);
2287             connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK;
2288             return;
2289         default:
2290             break;
2291     }
2292 }
2293 
2294 // note: random generator is ready. this doesn NOT imply that aes engine is unused!
2295 static void sm_handle_random_result(uint8_t * data){
2296 
2297     switch (rau_state){
2298         case RAU_W4_RANDOM:
2299             // non-resolvable vs. resolvable
2300             switch (gap_random_adress_type){
2301                 case GAP_RANDOM_ADDRESS_RESOLVABLE:
2302                     // resolvable: use random as prand and calc address hash
2303                     // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
2304                     memcpy(sm_random_address, data, 3);
2305                     sm_random_address[0] &= 0x3f;
2306                     sm_random_address[0] |= 0x40;
2307                     rau_state = RAU_GET_ENC;
2308                     break;
2309                 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2310                 default:
2311                     // "The two most significant bits of the address shall be equal to ‘0’""
2312                     memcpy(sm_random_address, data, 6);
2313                     sm_random_address[0] &= 0x3f;
2314                     rau_state = RAU_SET_ADDRESS;
2315                     break;
2316             }
2317             return;
2318         default:
2319             break;
2320     }
2321 
2322     // retrieve sm_connection provided to sm_random_start
2323     sm_connection_t * connection = (sm_connection_t *) sm_random_context;
2324     if (!connection) return;
2325     switch (connection->sm_engine_state){
2326         case SM_PH2_W4_RANDOM_TK:
2327         {
2328             // map random to 0-999999 without speding much cycles on a modulus operation
2329             uint32_t tk = little_endian_read_32(data,0);
2330             tk = tk & 0xfffff;  // 1048575
2331             if (tk >= 999999){
2332                 tk = tk - 999999;
2333             }
2334             sm_reset_tk();
2335             big_endian_store_32(setup->sm_tk, 12, tk);
2336             if (connection->sm_role){
2337                 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
2338             } else {
2339                 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2340                 sm_trigger_user_response(connection);
2341                 // response_idle == nothing <--> sm_trigger_user_response() did not require response
2342                 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2343                     connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2344                 }
2345             }
2346             return;
2347         }
2348         case SM_PH2_C1_W4_RANDOM_A:
2349             memcpy(&setup->sm_local_random[0], data, 8); // random endinaness
2350             connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B;
2351             return;
2352         case SM_PH2_C1_W4_RANDOM_B:
2353             memcpy(&setup->sm_local_random[8], data, 8); // random endinaness
2354             connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
2355             return;
2356         case SM_PH3_W4_RANDOM:
2357             reverse_64(data, setup->sm_local_rand);
2358             // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2359             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1);
2360             // no db for authenticated flag hack: store flag in bit 4 of LSB
2361             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4);
2362             connection->sm_engine_state = SM_PH3_GET_DIV;
2363             return;
2364         case SM_PH3_W4_DIV:
2365             // use 16 bit from random value as div
2366             setup->sm_local_div = big_endian_read_16(data, 0);
2367             log_info_hex16("div", setup->sm_local_div);
2368             connection->sm_engine_state = SM_PH3_Y_GET_ENC;
2369             return;
2370         default:
2371             break;
2372     }
2373 }
2374 
2375 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
2376 
2377     sm_connection_t  * sm_conn;
2378     hci_con_handle_t con_handle;
2379 
2380     switch (packet_type) {
2381 
2382 		case HCI_EVENT_PACKET:
2383 			switch (hci_event_packet_get_type(packet)) {
2384 
2385                 case BTSTACK_EVENT_STATE:
2386 					// bt stack activated, get started
2387 					if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){
2388                         log_info("HCI Working!");
2389                         dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
2390                         rau_state = RAU_IDLE;
2391                         sm_run();
2392 					}
2393 					break;
2394 
2395                 case HCI_EVENT_LE_META:
2396                     switch (packet[2]) {
2397                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
2398 
2399                             log_info("sm: connected");
2400 
2401                             if (packet[3]) return; // connection failed
2402 
2403                             con_handle = little_endian_read_16(packet, 4);
2404                             sm_conn = sm_get_connection_for_handle(con_handle);
2405                             if (!sm_conn) break;
2406 
2407                             sm_conn->sm_handle = con_handle;
2408                             sm_conn->sm_role = packet[6];
2409                             sm_conn->sm_peer_addr_type = packet[7];
2410                             reverse_bd_addr(&packet[8],
2411                                             sm_conn->sm_peer_address);
2412 
2413                             log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
2414 
2415                             // reset security properties
2416                             sm_conn->sm_connection_encrypted = 0;
2417                             sm_conn->sm_connection_authenticated = 0;
2418                             sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
2419                             sm_conn->sm_le_db_index = -1;
2420 
2421                             // prepare CSRK lookup (does not involve setup)
2422                             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
2423 
2424                             // just connected -> everything else happens in sm_run()
2425                             if (sm_conn->sm_role){
2426                                 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead
2427                                 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
2428                                     if (sm_slave_request_security) {
2429                                         // request security if requested by app
2430                                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
2431                                     } else {
2432                                         // otherwise, wait for pairing request
2433                                         sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2434                                     }
2435                                 }
2436                                 break;
2437                             } else {
2438                                 // master
2439                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2440                             }
2441                             break;
2442 
2443                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
2444                             con_handle = little_endian_read_16(packet, 3);
2445                             sm_conn = sm_get_connection_for_handle(con_handle);
2446                             if (!sm_conn) break;
2447 
2448                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
2449                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
2450                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
2451                                 break;
2452                             }
2453                             if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
2454                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2455                                 break;
2456                             }
2457 
2458                             // assume that we don't have a LTK for ediv == 0 and random == null
2459                             if (little_endian_read_16(packet, 13) == 0 && sm_is_null_random(&packet[5])){
2460                                 log_info("LTK Request: ediv & random are empty");
2461                                 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
2462                                 break;
2463                             }
2464 
2465                             // store rand and ediv
2466                             reverse_64(&packet[5], sm_conn->sm_local_rand);
2467                             sm_conn->sm_local_ediv   = little_endian_read_16(packet, 13);
2468                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK;
2469                             break;
2470 
2471                         default:
2472                             break;
2473                     }
2474                     break;
2475 
2476                 case HCI_EVENT_ENCRYPTION_CHANGE:
2477                     con_handle = little_endian_read_16(packet, 3);
2478                     sm_conn = sm_get_connection_for_handle(con_handle);
2479                     if (!sm_conn) break;
2480 
2481                     sm_conn->sm_connection_encrypted = packet[5];
2482                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
2483                         sm_conn->sm_actual_encryption_key_size);
2484                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2485                     if (!sm_conn->sm_connection_encrypted) break;
2486                     // continue if part of initial pairing
2487                     switch (sm_conn->sm_engine_state){
2488                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2489                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2490                             sm_done_for_handle(sm_conn->sm_handle);
2491                             break;
2492                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2493                             if (sm_conn->sm_role){
2494                                 // slave
2495                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2496                             } else {
2497                                 // master
2498                                 if (sm_key_distribution_all_received(sm_conn)){
2499                                     // skip receiving keys as there are none
2500                                     sm_key_distribution_handle_all_received(sm_conn);
2501                                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2502                                 } else {
2503                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2504                                 }
2505                             }
2506                             break;
2507                         default:
2508                             break;
2509                     }
2510                     break;
2511 
2512                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
2513                     con_handle = little_endian_read_16(packet, 3);
2514                     sm_conn = sm_get_connection_for_handle(con_handle);
2515                     if (!sm_conn) break;
2516 
2517                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
2518                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2519                     // continue if part of initial pairing
2520                     switch (sm_conn->sm_engine_state){
2521                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2522                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2523                             sm_done_for_handle(sm_conn->sm_handle);
2524                             break;
2525                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2526                             if (sm_conn->sm_role){
2527                                 // slave
2528                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2529                             } else {
2530                                 // master
2531                                 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2532                             }
2533                             break;
2534                         default:
2535                             break;
2536                     }
2537                     break;
2538 
2539 
2540                 case HCI_EVENT_DISCONNECTION_COMPLETE:
2541                     con_handle = little_endian_read_16(packet, 3);
2542                     sm_done_for_handle(con_handle);
2543                     sm_conn = sm_get_connection_for_handle(con_handle);
2544                     if (!sm_conn) break;
2545 
2546                     // delete stored bonding on disconnect with authentication failure in ph0
2547                     if (sm_conn->sm_role == 0
2548                         && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED
2549                         && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){
2550                         le_device_db_remove(sm_conn->sm_le_db_index);
2551                     }
2552 
2553                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
2554                     sm_conn->sm_handle = 0;
2555                     break;
2556 
2557 				case HCI_EVENT_COMMAND_COMPLETE:
2558                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
2559                         sm_handle_encryption_result(&packet[6]);
2560                         break;
2561                     }
2562                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
2563                         sm_handle_random_result(&packet[6]);
2564                         break;
2565                     }
2566                     break;
2567                 default:
2568                     break;
2569 			}
2570             break;
2571         default:
2572             break;
2573 	}
2574 
2575     sm_run();
2576 }
2577 
2578 static inline int sm_calc_actual_encryption_key_size(int other){
2579     if (other < sm_min_encryption_key_size) return 0;
2580     if (other < sm_max_encryption_key_size) return other;
2581     return sm_max_encryption_key_size;
2582 }
2583 
2584 /**
2585  * @return ok
2586  */
2587 static int sm_validate_stk_generation_method(void){
2588     // check if STK generation method is acceptable by client
2589     switch (setup->sm_stk_generation_method){
2590         case JUST_WORKS:
2591             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
2592         case PK_RESP_INPUT:
2593         case PK_INIT_INPUT:
2594         case OK_BOTH_INPUT:
2595             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
2596         case OOB:
2597             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
2598         case NK_BOTH_INPUT:
2599             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0;
2600             return 1;
2601         default:
2602             return 0;
2603     }
2604 }
2605 
2606 // helper for sm_pdu_handler, calls sm_run on exit
2607 static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
2608     setup->sm_pairing_failed_reason = reason;
2609     sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2610 }
2611 
2612 static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
2613     sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
2614 }
2615 
2616 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
2617 
2618     if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){
2619         sm_run();
2620     }
2621 
2622     if (packet_type != SM_DATA_PACKET) return;
2623 
2624     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
2625     if (!sm_conn) return;
2626 
2627     if (packet[0] == SM_CODE_PAIRING_FAILED){
2628         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2629         return;
2630     }
2631 
2632     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]);
2633 
2634     int err;
2635 
2636     switch (sm_conn->sm_engine_state){
2637 
2638         // a sm timeout requries a new physical connection
2639         case SM_GENERAL_TIMEOUT:
2640             return;
2641 
2642         // Initiator
2643         case SM_INITIATOR_CONNECTED:
2644             if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
2645                 sm_pdu_received_in_wrong_state(sm_conn);
2646                 break;
2647             }
2648             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){
2649                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2650                 break;
2651             }
2652             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){
2653                 uint16_t ediv;
2654                 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
2655                 if (ediv){
2656                     log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
2657                     sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
2658                 } else {
2659                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2660                 }
2661                 break;
2662             }
2663             // otherwise, store security request
2664             sm_conn->sm_security_request_received = 1;
2665             break;
2666 
2667         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
2668             if (packet[0] != SM_CODE_PAIRING_RESPONSE){
2669                 sm_pdu_received_in_wrong_state(sm_conn);
2670                 break;
2671             }
2672             // store pairing request
2673             memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
2674             err = sm_stk_generation_init(sm_conn);
2675             if (err){
2676                 setup->sm_pairing_failed_reason = err;
2677                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2678                 break;
2679             }
2680 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2681             if (setup->sm_use_secure_connections){
2682                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
2683                 if (setup->sm_stk_generation_method == JUST_WORKS){
2684                     sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2685                     sm_trigger_user_response(sm_conn);
2686                     if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2687                         sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2688                     }
2689                 } else {
2690                     sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2691                 }
2692                 break;
2693             }
2694 #endif
2695             // generate random number first, if we need to show passkey
2696             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
2697                 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK;
2698                 break;
2699             }
2700             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2701             sm_trigger_user_response(sm_conn);
2702             // response_idle == nothing <--> sm_trigger_user_response() did not require response
2703             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2704                 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2705             }
2706             break;
2707 
2708         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
2709             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2710                 sm_pdu_received_in_wrong_state(sm_conn);
2711                 break;
2712             }
2713 
2714             // store s_confirm
2715             reverse_128(&packet[1], setup->sm_peer_confirm);
2716             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2717             break;
2718 
2719         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
2720             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2721                 sm_pdu_received_in_wrong_state(sm_conn);
2722                 break;;
2723             }
2724 
2725             // received random value
2726             reverse_128(&packet[1], setup->sm_peer_random);
2727             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2728             break;
2729 
2730         // Responder
2731         case SM_RESPONDER_IDLE:
2732         case SM_RESPONDER_SEND_SECURITY_REQUEST:
2733         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
2734             if (packet[0] != SM_CODE_PAIRING_REQUEST){
2735                 sm_pdu_received_in_wrong_state(sm_conn);
2736                 break;;
2737             }
2738 
2739             // store pairing request
2740             memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
2741             sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
2742             break;
2743 
2744 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2745         case SM_SC_W4_PUBLIC_KEY_COMMAND:
2746             if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){
2747                 sm_pdu_received_in_wrong_state(sm_conn);
2748                 break;
2749             }
2750 
2751             // store public key for DH Key calculation
2752             reverse_256(&packet[01], setup->sm_peer_qx);
2753             reverse_256(&packet[33], setup->sm_peer_qy);
2754 
2755 #ifdef USE_MBEDTLS_FOR_ECDH
2756             // validate public key
2757             mbedtls_ecp_group grp;
2758             mbedtls_ecp_group_init( &grp );
2759             mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
2760 
2761             mbedtls_ecp_point Q;
2762             mbedtls_ecp_point_init( &Q );
2763             mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
2764             mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
2765             mbedtls_mpi_read_string(&Q.Z, 16, "1" );
2766             err = mbedtls_ecp_check_pubkey(&grp, &Q);
2767             if (err){
2768                 log_error("sm: peer public key invalid %x", err);
2769                 // uses "unspecified reason", there is no "public key invalid" error code
2770                 sm_pdu_received_in_wrong_state(sm_conn);
2771                 break;
2772             }
2773 #endif
2774             if (sm_conn->sm_role){
2775                 // responder
2776                 sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
2777             } else {
2778                 // initiator
2779                 // stk generation method
2780                 // passkey entry: notify app to show passkey or to request passkey
2781                 switch (setup->sm_stk_generation_method){
2782                     case JUST_WORKS:
2783                     case NK_BOTH_INPUT:
2784                         sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
2785                         break;
2786                     case PK_INIT_INPUT:
2787                     case PK_RESP_INPUT:
2788                     case OK_BOTH_INPUT:
2789                         sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
2790                         break;
2791                     case OOB:
2792                         // TODO: implement SC OOB
2793                         break;
2794                 }
2795             }
2796             break;
2797 
2798         case SM_SC_W4_CONFIRMATION:
2799             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2800                 sm_pdu_received_in_wrong_state(sm_conn);
2801                 break;
2802             }
2803             // received confirm value
2804             reverse_128(&packet[1], setup->sm_peer_confirm);
2805 
2806             if (sm_conn->sm_role){
2807                 // responder
2808                 sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
2809             } else {
2810                 // initiator
2811                 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
2812             }
2813             break;
2814 
2815         case SM_SC_W4_PAIRING_RANDOM:
2816             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2817                 sm_pdu_received_in_wrong_state(sm_conn);
2818                 break;
2819             }
2820 
2821             // received random value
2822             reverse_128(&packet[1], setup->sm_peer_nonce);
2823 
2824             // validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
2825             uint8_t z = 0;
2826             int passkey_entry = 0;
2827             if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
2828                 // some form of passkey
2829                 passkey_entry = 1;
2830                 uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
2831                 // sm_passkey_bit was increased before sending confirm value
2832                 z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1);
2833             }
2834             // only check for JUST WORK/NC in initiator role AND passkey entry
2835             if (sm_conn->sm_role || passkey_entry) {
2836                 sm_key_t confirm_value;
2837 
2838 #ifdef USE_MBEDTLS_FOR_ECDH
2839                 uint8_t local_qx[32];
2840                 mbedtls_mpi_write_binary(&le_keypair.Q.X, local_qx, sizeof(local_qx));
2841                 f4(confirm_value, setup->sm_peer_qx, local_qx, setup->sm_peer_nonce, z);
2842 #endif
2843                 if (0 != memcmp(confirm_value, setup->sm_peer_confirm, 16)){
2844                     sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
2845                     break;
2846                 }
2847             }
2848 
2849             if (sm_conn->sm_role){
2850                 // Responder
2851                 sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
2852             } else {
2853                 // Initiator role
2854                 switch (setup->sm_stk_generation_method){
2855                     case JUST_WORKS:
2856                         sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
2857                         break;
2858 
2859                     case NK_BOTH_INPUT: {
2860                         // calc Va if numeric comparison
2861                         // TODO: use AES Engine to calculate g2
2862                         uint8_t value[32];
2863                         mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
2864                         uint32_t va = g2(value, setup->sm_peer_qx, setup->sm_local_nonce, setup->sm_peer_nonce) % 1000000;
2865                         big_endian_store_32(setup->sm_tk, 12, va);
2866                         sm_trigger_user_response(sm_conn);
2867                         break;
2868                     }
2869                     case PK_INIT_INPUT:
2870                     case PK_RESP_INPUT:
2871                     case OK_BOTH_INPUT:
2872                         if (setup->sm_passkey_bit < 20) {
2873                             sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
2874                         } else {
2875                             sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
2876                         }
2877                         break;
2878                     case OOB:
2879                         // TODO: implement SC OOB
2880                         break;
2881                 }
2882             }
2883             break;
2884 
2885         case SM_SC_W4_DHKEY_CHECK_COMMAND:
2886             if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){
2887                 sm_pdu_received_in_wrong_state(sm_conn);
2888                 break;
2889             }
2890             // store DHKey Check
2891             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
2892 
2893             // validate E = f6()
2894             sm_key56_t bd_addr_master, bd_addr_slave;
2895             bd_addr_master[0] =  setup->sm_m_addr_type;
2896             bd_addr_slave[0]  =  setup->sm_s_addr_type;
2897             memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
2898             memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
2899 
2900             uint8_t iocap_a[3];
2901             iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
2902             iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
2903             iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
2904             uint8_t iocap_b[3];
2905             iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
2906             iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
2907             iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
2908             sm_key_t peer_dhkey_check;
2909             if (sm_conn->sm_role){
2910                 // responder
2911                 f6(peer_dhkey_check, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
2912             } else {
2913                 // initiator
2914                 f6(peer_dhkey_check, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
2915             }
2916 
2917             if (0 != memcmp(setup->sm_peer_dhkey_check, peer_dhkey_check, 16) ){
2918                 sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
2919                 break;
2920             }
2921 
2922             if (sm_conn->sm_role){
2923                 // responder
2924                 // for numeric comparison, we need to wait for user confirm
2925                 if (setup->sm_stk_generation_method == NK_BOTH_INPUT && setup->sm_user_response != SM_USER_RESPONSE_CONFIRM){
2926                     sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
2927                 } else {
2928                     sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
2929                 }
2930             } else {
2931                 // initiator
2932                 sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2933             }
2934             break;
2935 #endif
2936 
2937         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
2938             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2939                 sm_pdu_received_in_wrong_state(sm_conn);
2940                 break;
2941             }
2942 
2943             // received confirm value
2944             reverse_128(&packet[1], setup->sm_peer_confirm);
2945 
2946             // notify client to hide shown passkey
2947             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
2948                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
2949             }
2950 
2951             // handle user cancel pairing?
2952             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
2953                 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
2954                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2955                 break;
2956             }
2957 
2958             // wait for user action?
2959             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
2960                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2961                 break;
2962             }
2963 
2964             // calculate and send local_confirm
2965             sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2966             break;
2967 
2968         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
2969             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2970                 sm_pdu_received_in_wrong_state(sm_conn);
2971                 break;;
2972             }
2973 
2974             // received random value
2975             reverse_128(&packet[1], setup->sm_peer_random);
2976             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2977             break;
2978 
2979         case SM_PH3_RECEIVE_KEYS:
2980             switch(packet[0]){
2981                 case SM_CODE_ENCRYPTION_INFORMATION:
2982                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2983                     reverse_128(&packet[1], setup->sm_peer_ltk);
2984                     break;
2985 
2986                 case SM_CODE_MASTER_IDENTIFICATION:
2987                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2988                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
2989                     reverse_64(&packet[3], setup->sm_peer_rand);
2990                     break;
2991 
2992                 case SM_CODE_IDENTITY_INFORMATION:
2993                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2994                     reverse_128(&packet[1], setup->sm_peer_irk);
2995                     break;
2996 
2997                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
2998                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2999                     setup->sm_peer_addr_type = packet[1];
3000                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
3001                     break;
3002 
3003                 case SM_CODE_SIGNING_INFORMATION:
3004                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
3005                     reverse_128(&packet[1], setup->sm_peer_csrk);
3006                     break;
3007                 default:
3008                     // Unexpected PDU
3009                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
3010                     break;
3011             }
3012             // done with key distribution?
3013             if (sm_key_distribution_all_received(sm_conn)){
3014 
3015                 sm_key_distribution_handle_all_received(sm_conn);
3016 
3017                 if (sm_conn->sm_role){
3018                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
3019                     sm_done_for_handle(sm_conn->sm_handle);
3020                 } else {
3021                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
3022 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3023                     if (setup->sm_use_secure_connections){
3024                         sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
3025                     }
3026 #endif
3027                 }
3028             }
3029             break;
3030         default:
3031             // Unexpected PDU
3032             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
3033             break;
3034     }
3035 
3036     // try to send preparared packet
3037     sm_run();
3038 }
3039 
3040 // Security Manager Client API
3041 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){
3042     sm_get_oob_data = get_oob_data_callback;
3043 }
3044 
3045 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
3046     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
3047 }
3048 
3049 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
3050     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
3051 }
3052 
3053 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
3054 	sm_min_encryption_key_size = min_size;
3055 	sm_max_encryption_key_size = max_size;
3056 }
3057 
3058 void sm_set_authentication_requirements(uint8_t auth_req){
3059     sm_auth_req = auth_req;
3060 }
3061 
3062 void sm_set_io_capabilities(io_capability_t io_capability){
3063     sm_io_capabilities = io_capability;
3064 }
3065 
3066 void sm_set_request_security(int enable){
3067     sm_slave_request_security = enable;
3068 }
3069 
3070 void sm_set_er(sm_key_t er){
3071     memcpy(sm_persistent_er, er, 16);
3072 }
3073 
3074 void sm_set_ir(sm_key_t ir){
3075     memcpy(sm_persistent_ir, ir, 16);
3076 }
3077 
3078 // Testing support only
3079 void sm_test_set_irk(sm_key_t irk){
3080     memcpy(sm_persistent_irk, irk, 16);
3081     sm_persistent_irk_ready = 1;
3082 }
3083 
3084 void sm_test_use_fixed_local_csrk(void){
3085     test_use_fixed_local_csrk = 1;
3086 }
3087 
3088 void sm_init(void){
3089     // set some (BTstack default) ER and IR
3090     int i;
3091     sm_key_t er;
3092     sm_key_t ir;
3093     for (i=0;i<16;i++){
3094         er[i] = 0x30 + i;
3095         ir[i] = 0x90 + i;
3096     }
3097     sm_set_er(er);
3098     sm_set_ir(ir);
3099     // defaults
3100     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
3101                                        | SM_STK_GENERATION_METHOD_OOB
3102                                        | SM_STK_GENERATION_METHOD_PASSKEY
3103                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
3104 
3105     sm_max_encryption_key_size = 16;
3106     sm_min_encryption_key_size = 7;
3107 
3108     sm_cmac_state  = CMAC_IDLE;
3109     dkg_state = DKG_W4_WORKING;
3110     rau_state = RAU_W4_WORKING;
3111     sm_aes128_state = SM_AES128_IDLE;
3112     sm_address_resolution_test = -1;    // no private address to resolve yet
3113     sm_address_resolution_ah_calculation_active = 0;
3114     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
3115     sm_address_resolution_general_queue = NULL;
3116 
3117     gap_random_adress_update_period = 15 * 60 * 1000L;
3118 
3119     sm_active_connection = 0;
3120 
3121     test_use_fixed_local_csrk = 0;
3122 
3123     // register for HCI Events from HCI
3124     hci_event_callback_registration.callback = &sm_event_packet_handler;
3125     hci_add_event_handler(&hci_event_callback_registration);
3126 
3127     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
3128     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
3129 
3130 #ifdef USE_MBEDTLS_FOR_ECDH
3131     // TODO: calculate keypair using LE Random Number Generator
3132     // use test keypair from spec initially
3133     mbedtls_ecp_keypair_init(&le_keypair);
3134     mbedtls_ecp_group_load(&le_keypair.grp, MBEDTLS_ECP_DP_SECP256R1);
3135     mbedtls_mpi_read_string( &le_keypair.d,   16, "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd");
3136     mbedtls_mpi_read_string( &le_keypair.Q.X, 16, "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6");
3137     mbedtls_mpi_read_string( &le_keypair.Q.Y, 16, "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b");
3138     mbedtls_mpi_read_string( &le_keypair.Q.Z, 16, "1");
3139     // print keypair
3140     char buffer[100];
3141     size_t len;
3142     mbedtls_mpi_write_string( &le_keypair.d, 16, buffer, sizeof(buffer), &len);
3143     log_info("d: %s", buffer);
3144     mbedtls_mpi_write_string( &le_keypair.Q.X, 16, buffer, sizeof(buffer), &len);
3145     log_info("X: %s", buffer);
3146     mbedtls_mpi_write_string( &le_keypair.Q.Y, 16, buffer, sizeof(buffer), &len);
3147     log_info("Y: %s", buffer);
3148 #endif
3149 }
3150 
3151 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
3152     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
3153     if (!hci_con) return NULL;
3154     return &hci_con->sm_connection;
3155 }
3156 
3157 // @returns 0 if not encrypted, 7-16 otherwise
3158 int sm_encryption_key_size(hci_con_handle_t con_handle){
3159     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3160     if (!sm_conn) return 0;     // wrong connection
3161     if (!sm_conn->sm_connection_encrypted) return 0;
3162     return sm_conn->sm_actual_encryption_key_size;
3163 }
3164 
3165 int sm_authenticated(hci_con_handle_t con_handle){
3166     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3167     if (!sm_conn) return 0;     // wrong connection
3168     if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
3169     return sm_conn->sm_connection_authenticated;
3170 }
3171 
3172 authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){
3173     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3174     if (!sm_conn) return AUTHORIZATION_UNKNOWN;     // wrong connection
3175     if (!sm_conn->sm_connection_encrypted)               return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
3176     if (!sm_conn->sm_connection_authenticated)           return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
3177     return sm_conn->sm_connection_authorization_state;
3178 }
3179 
3180 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){
3181     switch (sm_conn->sm_engine_state){
3182         case SM_GENERAL_IDLE:
3183         case SM_RESPONDER_IDLE:
3184             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
3185             sm_run();
3186             break;
3187         default:
3188             break;
3189     }
3190 }
3191 
3192 /**
3193  * @brief Trigger Security Request
3194  */
3195 void sm_send_security_request(hci_con_handle_t con_handle){
3196     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3197     if (!sm_conn) return;
3198     sm_send_security_request_for_connection(sm_conn);
3199 }
3200 
3201 // request pairing
3202 void sm_request_pairing(hci_con_handle_t con_handle){
3203     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3204     if (!sm_conn) return;     // wrong connection
3205 
3206     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
3207     if (sm_conn->sm_role){
3208         sm_send_security_request_for_connection(sm_conn);
3209     } else {
3210         // used as a trigger to start central/master/initiator security procedures
3211         uint16_t ediv;
3212         if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){
3213             switch (sm_conn->sm_irk_lookup_state){
3214                 case IRK_LOOKUP_FAILED:
3215                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3216                     break;
3217                 case IRK_LOOKUP_SUCCEEDED:
3218                         le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
3219                         if (ediv){
3220                             log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
3221                             sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
3222                         } else {
3223                             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3224                         }
3225                         break;
3226                 default:
3227                     sm_conn->sm_bonding_requested = 1;
3228                     break;
3229             }
3230         } else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
3231             sm_conn->sm_bonding_requested = 1;
3232         }
3233     }
3234     sm_run();
3235 }
3236 
3237 // called by client app on authorization request
3238 void sm_authorization_decline(hci_con_handle_t con_handle){
3239     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3240     if (!sm_conn) return;     // wrong connection
3241     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
3242     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
3243 }
3244 
3245 void sm_authorization_grant(hci_con_handle_t con_handle){
3246     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3247     if (!sm_conn) return;     // wrong connection
3248     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
3249     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
3250 }
3251 
3252 // GAP Bonding API
3253 
3254 void sm_bonding_decline(hci_con_handle_t con_handle){
3255     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3256     if (!sm_conn) return;     // wrong connection
3257     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
3258 
3259     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3260         switch (setup->sm_stk_generation_method){
3261             case PK_RESP_INPUT:
3262             case PK_INIT_INPUT:
3263             case OK_BOTH_INPUT:
3264                 sm_pairing_error(sm_conn, SM_GENERAL_SEND_PAIRING_FAILED);
3265                 break;
3266             case NK_BOTH_INPUT:
3267                 sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
3268                 break;
3269             case JUST_WORKS:
3270             case OOB:
3271                 sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
3272                 break;
3273         }
3274     }
3275     sm_run();
3276 }
3277 
3278 void sm_just_works_confirm(hci_con_handle_t con_handle){
3279     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3280     if (!sm_conn) return;     // wrong connection
3281     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
3282     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3283         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3284 
3285 #ifdef ENABLE_LE_SECURE_CONNECTIONS
3286         if (setup->sm_use_secure_connections){
3287             sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
3288         }
3289 #endif
3290     }
3291     if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
3292         if (sm_conn->sm_role){
3293             // responder
3294             sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
3295         } else {
3296             // initiator
3297             // TODO handle intiator role
3298         }
3299     }
3300     sm_run();
3301 }
3302 
3303 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
3304     // for now, it's the same
3305     sm_just_works_confirm(con_handle);
3306 }
3307 
3308 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
3309     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3310     if (!sm_conn) return;     // wrong connection
3311     sm_reset_tk();
3312     big_endian_store_32(setup->sm_tk, 12, passkey);
3313     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
3314     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3315         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3316     }
3317     sm_run();
3318 }
3319 
3320 /**
3321  * @brief Identify device in LE Device DB
3322  * @param handle
3323  * @returns index from le_device_db or -1 if not found/identified
3324  */
3325 int sm_le_device_index(hci_con_handle_t con_handle ){
3326     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3327     if (!sm_conn) return -1;
3328     return sm_conn->sm_le_db_index;
3329 }
3330 
3331 // GAP LE API
3332 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
3333     gap_random_address_update_stop();
3334     gap_random_adress_type = random_address_type;
3335     if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3336     gap_random_address_update_start();
3337     gap_random_address_trigger();
3338 }
3339 
3340 gap_random_address_type_t gap_random_address_get_mode(void){
3341     return gap_random_adress_type;
3342 }
3343 
3344 void gap_random_address_set_update_period(int period_ms){
3345     gap_random_adress_update_period = period_ms;
3346     if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3347     gap_random_address_update_stop();
3348     gap_random_address_update_start();
3349 }
3350 
3351 void gap_random_address_set(bd_addr_t addr){
3352     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_OFF);
3353     memcpy(sm_random_address, addr, 6);
3354     rau_state = RAU_SET_ADDRESS;
3355     sm_run();
3356 }
3357 
3358 /*
3359  * @brief Set Advertisement Paramters
3360  * @param adv_int_min
3361  * @param adv_int_max
3362  * @param adv_type
3363  * @param direct_address_type
3364  * @param direct_address
3365  * @param channel_map
3366  * @param filter_policy
3367  *
3368  * @note own_address_type is used from gap_random_address_set_mode
3369  */
3370 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
3371     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
3372     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, gap_random_adress_type,
3373         direct_address_typ, direct_address, channel_map, filter_policy);
3374 }
3375 
3376