xref: /btstack/src/ble/sm.c (revision bccf5e67f571d664671de5440f05d0df897c01a6)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #include <stdio.h>
39 #include <string.h>
40 #include <inttypes.h>
41 
42 #include "ble/le_device_db.h"
43 #include "ble/core.h"
44 #include "ble/sm.h"
45 #include "btstack_debug.h"
46 #include "btstack_event.h"
47 #include "btstack_linked_list.h"
48 #include "btstack_memory.h"
49 #include "gap.h"
50 #include "hci.h"
51 #include "l2cap.h"
52 
53 #ifdef ENABLE_LE_SECURE_CONNECTIONS
54 // TODO: remove software AES
55 #include "rijndael.h"
56 #endif
57 
58 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(HAVE_HCI_CONTROLLER_DHKEY_SUPPORT)
59 #define USE_MBEDTLS_FOR_ECDH
60 #endif
61 
62 // Software ECDH implementation provided by mbedtls
63 #ifdef USE_MBEDTLS_FOR_ECDH
64 #if !defined(MBEDTLS_CONFIG_FILE)
65 #include "mbedtls/config.h"
66 #else
67 #include MBEDTLS_CONFIG_FILE
68 #endif
69 #if defined(MBEDTLS_PLATFORM_C)
70 #include "mbedtls/platform.h"
71 #else
72 #include <stdio.h>
73 #define mbedtls_printf     printf
74 #endif
75 #include "mbedtls/ecp.h"
76 #endif
77 
78 //
79 // SM internal types and globals
80 //
81 
82 typedef enum {
83     DKG_W4_WORKING,
84     DKG_CALC_IRK,
85     DKG_W4_IRK,
86     DKG_CALC_DHK,
87     DKG_W4_DHK,
88     DKG_READY
89 } derived_key_generation_t;
90 
91 typedef enum {
92     RAU_W4_WORKING,
93     RAU_IDLE,
94     RAU_GET_RANDOM,
95     RAU_W4_RANDOM,
96     RAU_GET_ENC,
97     RAU_W4_ENC,
98     RAU_SET_ADDRESS,
99 } random_address_update_t;
100 
101 typedef enum {
102     CMAC_IDLE,
103     CMAC_CALC_SUBKEYS,
104     CMAC_W4_SUBKEYS,
105     CMAC_CALC_MI,
106     CMAC_W4_MI,
107     CMAC_CALC_MLAST,
108     CMAC_W4_MLAST
109 } cmac_state_t;
110 
111 typedef enum {
112     JUST_WORKS,
113     PK_RESP_INPUT,  // Initiator displays PK, responder inputs PK
114     PK_INIT_INPUT,  // Responder displays PK, initiator inputs PK
115     OK_BOTH_INPUT,  // Only input on both, both input PK
116     NK_BOTH_INPUT,  // Only numerical compparison (yes/no) on on both sides
117     OOB             // OOB available on both sides
118 } stk_generation_method_t;
119 
120 typedef enum {
121     SM_USER_RESPONSE_IDLE,
122     SM_USER_RESPONSE_PENDING,
123     SM_USER_RESPONSE_CONFIRM,
124     SM_USER_RESPONSE_PASSKEY,
125     SM_USER_RESPONSE_DECLINE
126 } sm_user_response_t;
127 
128 typedef enum {
129     SM_AES128_IDLE,
130     SM_AES128_ACTIVE
131 } sm_aes128_state_t;
132 
133 typedef enum {
134     ADDRESS_RESOLUTION_IDLE,
135     ADDRESS_RESOLUTION_GENERAL,
136     ADDRESS_RESOLUTION_FOR_CONNECTION,
137 } address_resolution_mode_t;
138 
139 typedef enum {
140     ADDRESS_RESOLUTION_SUCEEDED,
141     ADDRESS_RESOLUTION_FAILED,
142 } address_resolution_event_t;
143 //
144 // GLOBAL DATA
145 //
146 
147 static uint8_t test_use_fixed_local_csrk;
148 
149 // configuration
150 static uint8_t sm_accepted_stk_generation_methods;
151 static uint8_t sm_max_encryption_key_size;
152 static uint8_t sm_min_encryption_key_size;
153 static uint8_t sm_auth_req = 0;
154 static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
155 static uint8_t sm_slave_request_security;
156 
157 // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
158 static sm_key_t sm_persistent_er;
159 static sm_key_t sm_persistent_ir;
160 
161 // derived from sm_persistent_ir
162 static sm_key_t sm_persistent_dhk;
163 static sm_key_t sm_persistent_irk;
164 static uint8_t  sm_persistent_irk_ready = 0;    // used for testing
165 static derived_key_generation_t dkg_state;
166 
167 // derived from sm_persistent_er
168 // ..
169 
170 // random address update
171 static random_address_update_t rau_state;
172 static bd_addr_t sm_random_address;
173 
174 // CMAC calculation
175 static cmac_state_t sm_cmac_state;
176 static sm_key_t     sm_cmac_k;
177 static uint8_t      sm_cmac_header[3];
178 static uint16_t     sm_cmac_message_len;
179 static uint8_t *    sm_cmac_message;
180 static uint8_t      sm_cmac_sign_counter[4];
181 static sm_key_t     sm_cmac_m_last;
182 static sm_key_t     sm_cmac_x;
183 static uint8_t      sm_cmac_block_current;
184 static uint8_t      sm_cmac_block_count;
185 static void (*sm_cmac_done_handler)(uint8_t hash[8]);
186 
187 // resolvable private address lookup / CSRK calculation
188 static int       sm_address_resolution_test;
189 static int       sm_address_resolution_ah_calculation_active;
190 static uint8_t   sm_address_resolution_addr_type;
191 static bd_addr_t sm_address_resolution_address;
192 static void *    sm_address_resolution_context;
193 static address_resolution_mode_t sm_address_resolution_mode;
194 static btstack_linked_list_t sm_address_resolution_general_queue;
195 
196 // aes128 crypto engine. store current sm_connection_t in sm_aes128_context
197 static sm_aes128_state_t  sm_aes128_state;
198 static void *             sm_aes128_context;
199 
200 // random engine. store context (ususally sm_connection_t)
201 static void * sm_random_context;
202 
203 // to receive hci events
204 static btstack_packet_callback_registration_t hci_event_callback_registration;
205 
206 /* to dispatch sm event */
207 static btstack_linked_list_t sm_event_handlers;
208 
209 // Software ECDH implementation provided by mbedtls
210 #ifdef USE_MBEDTLS_FOR_ECDH
211 mbedtls_ecp_keypair le_keypair;
212 #endif
213 
214 //
215 // Volume 3, Part H, Chapter 24
216 // "Security shall be initiated by the Security Manager in the device in the master role.
217 // The device in the slave role shall be the responding device."
218 // -> master := initiator, slave := responder
219 //
220 
221 // data needed for security setup
222 typedef struct sm_setup_context {
223 
224     btstack_timer_source_t sm_timeout;
225 
226     // used in all phases
227     uint8_t   sm_pairing_failed_reason;
228 
229     // user response, (Phase 1 and/or 2)
230     uint8_t   sm_user_response;
231 
232     // defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
233     int       sm_key_distribution_send_set;
234     int       sm_key_distribution_received_set;
235 
236     // Phase 2 (Pairing over SMP)
237     stk_generation_method_t sm_stk_generation_method;
238     sm_key_t  sm_tk;
239     uint8_t   sm_use_secure_connections;
240 
241     sm_key_t  sm_c1_t3_value;   // c1 calculation
242     sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
243     sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
244     sm_key_t  sm_local_random;
245     sm_key_t  sm_local_confirm;
246     sm_key_t  sm_peer_random;
247     sm_key_t  sm_peer_confirm;
248     uint8_t   sm_m_addr_type;   // address and type can be removed
249     uint8_t   sm_s_addr_type;   //  ''
250     bd_addr_t sm_m_address;     //  ''
251     bd_addr_t sm_s_address;     //  ''
252     sm_key_t  sm_ltk;
253 
254 #ifdef ENABLE_LE_SECURE_CONNECTIONS
255     uint8_t   sm_peer_qx[32];
256     uint8_t   sm_peer_qy[32];
257     sm_key_t  sm_peer_nonce;    // might be combined with sm_peer_random
258     sm_key_t  sm_local_nonce;   // might be combined with sm_local_random
259     sm_key_t  sm_peer_dhkey_check;
260     sm_key_t  sm_local_dhkey_check;
261     sm_key_t  sm_ra;
262     sm_key_t  sm_rb;
263     uint8_t   sm_passkey_bit;
264 #endif
265 
266     // Phase 3
267 
268     // key distribution, we generate
269     uint16_t  sm_local_y;
270     uint16_t  sm_local_div;
271     uint16_t  sm_local_ediv;
272     uint8_t   sm_local_rand[8];
273     sm_key_t  sm_local_ltk;
274     sm_key_t  sm_local_csrk;
275     sm_key_t  sm_local_irk;
276     // sm_local_address/addr_type not needed
277 
278     // key distribution, received from peer
279     uint16_t  sm_peer_y;
280     uint16_t  sm_peer_div;
281     uint16_t  sm_peer_ediv;
282     uint8_t   sm_peer_rand[8];
283     sm_key_t  sm_peer_ltk;
284     sm_key_t  sm_peer_irk;
285     sm_key_t  sm_peer_csrk;
286     uint8_t   sm_peer_addr_type;
287     bd_addr_t sm_peer_address;
288 
289 } sm_setup_context_t;
290 
291 //
292 static sm_setup_context_t the_setup;
293 static sm_setup_context_t * setup = &the_setup;
294 
295 // active connection - the one for which the_setup is used for
296 static uint16_t sm_active_connection = 0;
297 
298 // @returns 1 if oob data is available
299 // stores oob data in provided 16 byte buffer if not null
300 static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
301 
302 // used to notify applicationss that user interaction is neccessary, see sm_notify_t below
303 static btstack_packet_handler_t sm_client_packet_handler = NULL;
304 
305 // horizontal: initiator capabilities
306 // vertial:    responder capabilities
307 static const stk_generation_method_t stk_generation_method [5] [5] = {
308     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
309     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
310     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
311     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
312     { PK_RESP_INPUT,   PK_RESP_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
313 };
314 
315 // uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
316 #ifdef ENABLE_LE_SECURE_CONNECTIONS
317 static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
318     { JUST_WORKS,      JUST_WORKS,       PK_INIT_INPUT,   JUST_WORKS,    PK_INIT_INPUT },
319     { JUST_WORKS,      NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
320     { PK_RESP_INPUT,   PK_RESP_INPUT,    OK_BOTH_INPUT,   JUST_WORKS,    PK_RESP_INPUT },
321     { JUST_WORKS,      JUST_WORKS,       JUST_WORKS,      JUST_WORKS,    JUST_WORKS    },
322     { PK_RESP_INPUT,   NK_BOTH_INPUT,    PK_INIT_INPUT,   JUST_WORKS,    NK_BOTH_INPUT },
323 };
324 #endif
325 
326 static void sm_run(void);
327 static void sm_done_for_handle(hci_con_handle_t con_handle);
328 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
329 static inline int sm_calc_actual_encryption_key_size(int other);
330 static int sm_validate_stk_generation_method(void);
331 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data);
332 
333 static void log_info_hex16(const char * name, uint16_t value){
334     log_info("%-6s 0x%04x", name, value);
335 }
336 
337 // @returns 1 if all bytes are 0
338 static int sm_is_null_random(uint8_t random[8]){
339     int i;
340     for (i=0; i < 8 ; i++){
341         if (random[i]) return 0;
342     }
343     return 1;
344 }
345 
346 // Key utils
347 static void sm_reset_tk(void){
348     int i;
349     for (i=0;i<16;i++){
350         setup->sm_tk[i] = 0;
351     }
352 }
353 
354 // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
355 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
356 static void sm_truncate_key(sm_key_t key, int max_encryption_size){
357     int i;
358     for (i = max_encryption_size ; i < 16 ; i++){
359         key[15-i] = 0;
360     }
361 }
362 
363 // SMP Timeout implementation
364 
365 // Upon transmission of the Pairing Request command or reception of the Pairing Request command,
366 // the Security Manager Timer shall be reset and started.
367 //
368 // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
369 //
370 // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
371 // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
372 // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
373 // established.
374 
375 static void sm_timeout_handler(btstack_timer_source_t * timer){
376     log_info("SM timeout");
377     sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
378     sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
379     sm_done_for_handle(sm_conn->sm_handle);
380 
381     // trigger handling of next ready connection
382     sm_run();
383 }
384 static void sm_timeout_start(sm_connection_t * sm_conn){
385     btstack_run_loop_remove_timer(&setup->sm_timeout);
386     btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
387     btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
388     btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
389     btstack_run_loop_add_timer(&setup->sm_timeout);
390 }
391 static void sm_timeout_stop(void){
392     btstack_run_loop_remove_timer(&setup->sm_timeout);
393 }
394 static void sm_timeout_reset(sm_connection_t * sm_conn){
395     sm_timeout_stop();
396     sm_timeout_start(sm_conn);
397 }
398 
399 // end of sm timeout
400 
401 // GAP Random Address updates
402 static gap_random_address_type_t gap_random_adress_type;
403 static btstack_timer_source_t gap_random_address_update_timer;
404 static uint32_t gap_random_adress_update_period;
405 
406 static void gap_random_address_trigger(void){
407     if (rau_state != RAU_IDLE) return;
408     log_info("gap_random_address_trigger");
409     rau_state = RAU_GET_RANDOM;
410     sm_run();
411 }
412 
413 static void gap_random_address_update_handler(btstack_timer_source_t * timer){
414     log_info("GAP Random Address Update due");
415     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
416     btstack_run_loop_add_timer(&gap_random_address_update_timer);
417     gap_random_address_trigger();
418 }
419 
420 static void gap_random_address_update_start(void){
421     btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
422     btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
423     btstack_run_loop_add_timer(&gap_random_address_update_timer);
424 }
425 
426 static void gap_random_address_update_stop(void){
427     btstack_run_loop_remove_timer(&gap_random_address_update_timer);
428 }
429 
430 
431 static void sm_random_start(void * context){
432     sm_random_context = context;
433     hci_send_cmd(&hci_le_rand);
434 }
435 
436 // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1
437 // context is made availabe to aes128 result handler by this
438 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){
439     sm_aes128_state = SM_AES128_ACTIVE;
440     sm_key_t key_flipped, plaintext_flipped;
441     reverse_128(key, key_flipped);
442     reverse_128(plaintext, plaintext_flipped);
443     sm_aes128_context = context;
444     hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
445 }
446 
447 // ah(k,r) helper
448 // r = padding || r
449 // r - 24 bit value
450 static void sm_ah_r_prime(uint8_t r[3], sm_key_t r_prime){
451     // r'= padding || r
452     memset(r_prime, 0, 16);
453     memcpy(&r_prime[13], r, 3);
454 }
455 
456 // d1 helper
457 // d' = padding || r || d
458 // d,r - 16 bit values
459 static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){
460     // d'= padding || r || d
461     memset(d1_prime, 0, 16);
462     big_endian_store_16(d1_prime, 12, r);
463     big_endian_store_16(d1_prime, 14, d);
464 }
465 
466 // dm helper
467 // r’ = padding || r
468 // r - 64 bit value
469 static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){
470     memset(r_prime, 0, 16);
471     memcpy(&r_prime[8], r, 8);
472 }
473 
474 // calculate arguments for first AES128 operation in C1 function
475 static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){
476 
477     // p1 = pres || preq || rat’ || iat’
478     // "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
479     // cant octet of pres becomes the most significant octet of p1.
480     // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
481     // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
482     // p1 is 0x05000800000302070710000001010001."
483 
484     sm_key_t p1;
485     reverse_56(pres, &p1[0]);
486     reverse_56(preq, &p1[7]);
487     p1[14] = rat;
488     p1[15] = iat;
489     log_info_key("p1", p1);
490     log_info_key("r", r);
491 
492     // t1 = r xor p1
493     int i;
494     for (i=0;i<16;i++){
495         t1[i] = r[i] ^ p1[i];
496     }
497     log_info_key("t1", t1);
498 }
499 
500 // calculate arguments for second AES128 operation in C1 function
501 static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){
502      // p2 = padding || ia || ra
503     // "The least significant octet of ra becomes the least significant octet of p2 and
504     // the most significant octet of padding becomes the most significant octet of p2.
505     // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
506     // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
507 
508     sm_key_t p2;
509     memset(p2, 0, 16);
510     memcpy(&p2[4],  ia, 6);
511     memcpy(&p2[10], ra, 6);
512     log_info_key("p2", p2);
513 
514     // c1 = e(k, t2_xor_p2)
515     int i;
516     for (i=0;i<16;i++){
517         t3[i] = t2[i] ^ p2[i];
518     }
519     log_info_key("t3", t3);
520 }
521 
522 static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){
523     log_info_key("r1", r1);
524     log_info_key("r2", r2);
525     memcpy(&r_prime[8], &r2[8], 8);
526     memcpy(&r_prime[0], &r1[8], 8);
527 }
528 
529 #ifdef ENABLE_LE_SECURE_CONNECTIONS
530 // Software implementations of crypto toolbox for LE Secure Connection
531 // TODO: replace with code to use AES Engine of HCI Controller
532 typedef uint8_t sm_key24_t[3];
533 typedef uint8_t sm_key56_t[7];
534 typedef uint8_t sm_key256_t[32];
535 
536 static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){
537     uint32_t rk[RKLENGTH(KEYBITS)];
538     int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
539     rijndaelEncrypt(rk, nrounds, plaintext, cyphertext);
540 }
541 
542 static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
543     memcpy(k1, k0, 16);
544     sm_shift_left_by_one_bit_inplace(16, k1);
545     if (k0[0] & 0x80){
546         k1[15] ^= 0x87;
547     }
548     memcpy(k2, k1, 16);
549     sm_shift_left_by_one_bit_inplace(16, k2);
550     if (k1[0] & 0x80){
551         k2[15] ^= 0x87;
552     }
553 }
554 
555 static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){
556     sm_key_t k0, k1, k2, zero;
557     memset(zero, 0, 16);
558 
559     aes128_calc_cyphertext(key, zero, k0);
560     calc_subkeys(k0, k1, k2);
561 
562     int cmac_block_count = (cmac_message_len + 15) / 16;
563 
564     // step 3: ..
565     if (cmac_block_count==0){
566         cmac_block_count = 1;
567     }
568 
569     // step 4: set m_last
570     sm_key_t cmac_m_last;
571     int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0;
572     int i;
573     if (sm_cmac_last_block_complete){
574         for (i=0;i<16;i++){
575             cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i];
576         }
577     } else {
578         int valid_octets_in_last_block = cmac_message_len & 0x0f;
579         for (i=0;i<16;i++){
580             if (i < valid_octets_in_last_block){
581                 cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i];
582                 continue;
583             }
584             if (i == valid_octets_in_last_block){
585                 cmac_m_last[i] = 0x80 ^ k2[i];
586                 continue;
587             }
588             cmac_m_last[i] = k2[i];
589         }
590     }
591 
592     // printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count);
593     // LOG_KEY(cmac_m_last);
594 
595     // Step 5
596     sm_key_t cmac_x;
597     memset(cmac_x, 0, 16);
598 
599     // Step 6
600     sm_key_t sm_cmac_y;
601     for (int block = 0 ; block < cmac_block_count-1 ; block++){
602         for (i=0;i<16;i++){
603             sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i];
604         }
605         aes128_calc_cyphertext(key, sm_cmac_y, cmac_x);
606     }
607     for (i=0;i<16;i++){
608         sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
609     }
610 
611     // Step 7
612     aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac);
613 }
614 
615 static void f4(sm_key_t res, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
616     uint8_t buffer[65];
617     memcpy(buffer, u, 32);
618     memcpy(buffer+32, v, 32);
619     buffer[64] = z;
620     log_info("f4 key");
621     log_info_hexdump(x, 16);
622     log_info("f4 message");
623     log_info_hexdump(buffer, sizeof(buffer));
624     aes_cmac(res, x, buffer, sizeof(buffer));
625 }
626 
627 const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
628 const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
629 const uint8_t f5_length[] = { 0x01, 0x00};
630 static void f5(sm_key256_t res, const sm_key256_t w, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
631     // T = AES-CMACSAL_T(W)
632     sm_key_t t;
633     aes_cmac(t, f5_salt, w, 32);
634     // f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
635     uint8_t buffer[53];
636     buffer[0] = 0;
637     memcpy(buffer+01, f5_key_id, 4);
638     memcpy(buffer+05, n1, 16);
639     memcpy(buffer+21, n2, 16);
640     memcpy(buffer+37, a1, 7);
641     memcpy(buffer+44, a2, 7);
642     memcpy(buffer+51, f5_length, 2);
643     log_info("f5 DHKEY");
644     log_info_hexdump(w, 32);
645     log_info("f5 key");
646     log_info_hexdump(t, 16);
647     log_info("f5 message for MacKey");
648     log_info_hexdump(buffer, sizeof(buffer));
649     aes_cmac(res, t, buffer, sizeof(buffer));
650     // hexdump2(res, 16);
651     //                      || AES-CMACT (Counter = 1 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the LTK
652     buffer[0] = 1;
653     // hexdump2(buffer, sizeof(buffer));
654     log_info("f5 message for LTK");
655     log_info_hexdump(buffer, sizeof(buffer));
656     aes_cmac(res+16, t, buffer, sizeof(buffer));
657     // hexdump2(res+16, 16);
658 }
659 
660 // f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMACW (N1 || N2 || R || IOcap || A1 || A2
661 // - W is 128 bits
662 // - N1 is 128 bits
663 // - N2 is 128 bits
664 // - R is 128 bits
665 // - IOcap is 24 bits
666 // - A1 is 56 bits
667 // - A2 is 56 bits
668 static void f6(sm_key_t res, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
669     uint8_t buffer[65];
670     memcpy(buffer, n1, 16);
671     memcpy(buffer+16, n2, 16);
672     memcpy(buffer+32, r, 16);
673     memcpy(buffer+48, io_cap, 3);
674     memcpy(buffer+51, a1, 7);
675     memcpy(buffer+58, a2, 7);
676     log_info("f6 key");
677     log_info_hexdump(w, 16);
678     log_info("f6 message");
679     log_info_hexdump(buffer, sizeof(buffer));
680     aes_cmac(res, w, buffer,sizeof(buffer));
681 }
682 
683 // g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
684 // - U is 256 bits
685 // - V is 256 bits
686 // - X is 128 bits
687 // - Y is 128 bits
688 static uint32_t g2(const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
689     uint8_t buffer[80];
690     memcpy(buffer, u, 32);
691     memcpy(buffer+32, v, 32);
692     memcpy(buffer+64, y, 16);
693     sm_key_t cmac;
694     log_info("g2 key");
695     log_info_hexdump(x, 16);
696     log_info("g2 message");
697     log_info_hexdump(buffer, sizeof(buffer));
698     aes_cmac(cmac, x, buffer, sizeof(buffer));
699     log_info("g2 result");
700     log_info_hexdump(x, 16);
701     return big_endian_read_32(cmac, 12);
702 }
703 
704 #if 0
705 // h6(W, keyID) = AES-CMACW(keyID)
706 // - W is 128 bits
707 // - keyID is 32 bits
708 static void h6(sm_key_t res, const sm_key_t w, const uint32_t key_id){
709     uint8_t key_id_buffer[4];
710     big_endian_store_32(key_id_buffer, 0, key_id);
711     aes_cmac(res, w, key_id_buffer, 4);
712 }
713 #endif
714 #endif
715 
716 static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
717     event[0] = type;
718     event[1] = event_size - 2;
719     little_endian_store_16(event, 2, con_handle);
720     event[4] = addr_type;
721     reverse_bd_addr(address, &event[5]);
722 }
723 
724 static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
725     if (sm_client_packet_handler) {
726         sm_client_packet_handler(HCI_EVENT_PACKET, 0, packet, size);
727     }
728     // dispatch to all event handlers
729     btstack_linked_list_iterator_t it;
730     btstack_linked_list_iterator_init(&it, &sm_event_handlers);
731     while (btstack_linked_list_iterator_has_next(&it)){
732         btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
733         entry->callback(packet_type, 0, packet, size);
734     }
735 }
736 
737 static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
738     uint8_t event[11];
739     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
740     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
741 }
742 
743 static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
744     uint8_t event[15];
745     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
746     little_endian_store_32(event, 11, passkey);
747     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
748 }
749 
750 static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
751     uint8_t event[13];
752     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
753     little_endian_store_16(event, 11, index);
754     sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
755 }
756 
757 static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){
758 
759     uint8_t event[18];
760     sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
761     event[11] = result;
762     sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
763 }
764 
765 // decide on stk generation based on
766 // - pairing request
767 // - io capabilities
768 // - OOB data availability
769 static void sm_setup_tk(void){
770 
771     // default: just works
772     setup->sm_stk_generation_method = JUST_WORKS;
773 
774 #ifdef ENABLE_LE_SECURE_CONNECTIONS
775     setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
776                                        & sm_pairing_packet_get_auth_req(setup->sm_s_pres)
777                                        & SM_AUTHREQ_SECURE_CONNECTION ) != 0;
778     memset(setup->sm_ra, 0, 16);
779     memset(setup->sm_rb, 0, 16);
780 #else
781     setup->sm_use_secure_connections = 0;
782 #endif
783 
784     // If both devices have not set the MITM option in the Authentication Requirements
785     // Flags, then the IO capabilities shall be ignored and the Just Works association
786     // model shall be used.
787     if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0)
788     &&  ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){
789         log_info("SM: MITM not required by both -> JUST WORKS");
790         return;
791     }
792 
793     // TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient
794 
795     // If both devices have out of band authentication data, then the Authentication
796     // Requirements Flags shall be ignored when selecting the pairing method and the
797     // Out of Band pairing method shall be used.
798     if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq)
799     &&  sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){
800         log_info("SM: have OOB data");
801         log_info_key("OOB", setup->sm_tk);
802         setup->sm_stk_generation_method = OOB;
803         return;
804     }
805 
806     // Reset TK as it has been setup in sm_init_setup
807     sm_reset_tk();
808 
809     // Also use just works if unknown io capabilites
810     if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
811         return;
812     }
813 
814     // Otherwise the IO capabilities of the devices shall be used to determine the
815     // pairing method as defined in Table 2.4.
816     // see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
817     const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
818 
819 #ifdef ENABLE_LE_SECURE_CONNECTIONS
820     if (setup->sm_use_secure_connections){
821         generation_method = stk_generation_method_with_secure_connection;
822     }
823 #endif
824     setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
825 
826     log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
827         sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
828 }
829 
830 static int sm_key_distribution_flags_for_set(uint8_t key_set){
831     int flags = 0;
832     if (key_set & SM_KEYDIST_ENC_KEY){
833         flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
834         flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
835     }
836     if (key_set & SM_KEYDIST_ID_KEY){
837         flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
838         flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
839     }
840     if (key_set & SM_KEYDIST_SIGN){
841         flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
842     }
843     return flags;
844 }
845 
846 static void sm_setup_key_distribution(uint8_t key_set){
847     setup->sm_key_distribution_received_set = 0;
848     setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
849 }
850 
851 // CSRK Key Lookup
852 
853 
854 static int sm_address_resolution_idle(void){
855     return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
856 }
857 
858 static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
859     memcpy(sm_address_resolution_address, addr, 6);
860     sm_address_resolution_addr_type = addr_type;
861     sm_address_resolution_test = 0;
862     sm_address_resolution_mode = mode;
863     sm_address_resolution_context = context;
864     sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
865 }
866 
867 int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
868     // check if already in list
869     btstack_linked_list_iterator_t it;
870     sm_lookup_entry_t * entry;
871     btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
872     while(btstack_linked_list_iterator_has_next(&it)){
873         entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
874         if (entry->address_type != address_type) continue;
875         if (memcmp(entry->address, address, 6))  continue;
876         // already in list
877         return BTSTACK_BUSY;
878     }
879     entry = btstack_memory_sm_lookup_entry_get();
880     if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
881     entry->address_type = (bd_addr_type_t) address_type;
882     memcpy(entry->address, address, 6);
883     btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
884     sm_run();
885     return 0;
886 }
887 
888 // CMAC Implementation using AES128 engine
889 static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
890     int i;
891     int carry = 0;
892     for (i=len-1; i >= 0 ; i--){
893         int new_carry = data[i] >> 7;
894         data[i] = data[i] << 1 | carry;
895         carry = new_carry;
896     }
897 }
898 
899 // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now
900 static inline void sm_next_responding_state(sm_connection_t * sm_conn){
901     sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1);
902 }
903 static inline void dkg_next_state(void){
904     dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1);
905 }
906 static inline void rau_next_state(void){
907     rau_state = (random_address_update_t) (((int)rau_state) + 1);
908 }
909 static inline void sm_cmac_next_state(void){
910     sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1);
911 }
912 static int sm_cmac_last_block_complete(void){
913     if (sm_cmac_message_len == 0) return 0;
914     return (sm_cmac_message_len & 0x0f) == 0;
915 }
916 static inline uint8_t sm_cmac_message_get_byte(int offset){
917     if (offset >= sm_cmac_message_len) {
918         log_error("sm_cmac_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len);
919         return 0;
920     }
921 
922     offset = sm_cmac_message_len - 1 - offset;
923 
924     // sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4]
925     if (offset < 3){
926         return sm_cmac_header[offset];
927     }
928     int actual_message_len_incl_header = sm_cmac_message_len - 4;
929     if (offset <  actual_message_len_incl_header){
930         return sm_cmac_message[offset - 3];
931     }
932     return sm_cmac_sign_counter[offset - actual_message_len_incl_header];
933 }
934 
935 void sm_cmac_start(sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t hash[8])){
936     memcpy(sm_cmac_k, k, 16);
937     sm_cmac_header[0] = opcode;
938     little_endian_store_16(sm_cmac_header, 1, con_handle);
939     little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter);
940     sm_cmac_message_len = 3 + message_len + 4;  // incl. virtually prepended att opcode, handle and appended sign_counter in LE
941     sm_cmac_message = message;
942     sm_cmac_done_handler = done_handler;
943     sm_cmac_block_current = 0;
944     memset(sm_cmac_x, 0, 16);
945 
946     // step 2: n := ceil(len/const_Bsize);
947     sm_cmac_block_count = (sm_cmac_message_len + 15) / 16;
948 
949     // step 3: ..
950     if (sm_cmac_block_count==0){
951         sm_cmac_block_count = 1;
952     }
953 
954     log_info("sm_cmac_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count);
955 
956     // first, we need to compute l for k1, k2, and m_last
957     sm_cmac_state = CMAC_CALC_SUBKEYS;
958 
959     // let's go
960     sm_run();
961 }
962 
963 int sm_cmac_ready(void){
964     return sm_cmac_state == CMAC_IDLE;
965 }
966 
967 static void sm_cmac_handle_aes_engine_ready(void){
968     switch (sm_cmac_state){
969         case CMAC_CALC_SUBKEYS: {
970             sm_key_t const_zero;
971             memset(const_zero, 0, 16);
972             sm_cmac_next_state();
973             sm_aes128_start(sm_cmac_k, const_zero, NULL);
974             break;
975         }
976         case CMAC_CALC_MI: {
977             int j;
978             sm_key_t y;
979             for (j=0;j<16;j++){
980                 y[j] = sm_cmac_x[j] ^ sm_cmac_message_get_byte(sm_cmac_block_current*16 + j);
981             }
982             sm_cmac_block_current++;
983             sm_cmac_next_state();
984             sm_aes128_start(sm_cmac_k, y, NULL);
985             break;
986         }
987         case CMAC_CALC_MLAST: {
988             int i;
989             sm_key_t y;
990             for (i=0;i<16;i++){
991                 y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
992             }
993             log_info_key("Y", y);
994             sm_cmac_block_current++;
995             sm_cmac_next_state();
996             sm_aes128_start(sm_cmac_k, y, NULL);
997             break;
998         }
999         default:
1000             log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state);
1001             break;
1002     }
1003 }
1004 
1005 static void sm_cmac_handle_encryption_result(sm_key_t data){
1006     switch (sm_cmac_state){
1007         case CMAC_W4_SUBKEYS: {
1008             sm_key_t k1;
1009             memcpy(k1, data, 16);
1010             sm_shift_left_by_one_bit_inplace(16, k1);
1011             if (data[0] & 0x80){
1012                 k1[15] ^= 0x87;
1013             }
1014             sm_key_t k2;
1015             memcpy(k2, k1, 16);
1016             sm_shift_left_by_one_bit_inplace(16, k2);
1017             if (k1[0] & 0x80){
1018                 k2[15] ^= 0x87;
1019             }
1020 
1021             log_info_key("k", sm_cmac_k);
1022             log_info_key("k1", k1);
1023             log_info_key("k2", k2);
1024 
1025             // step 4: set m_last
1026             int i;
1027             if (sm_cmac_last_block_complete()){
1028                 for (i=0;i<16;i++){
1029                     sm_cmac_m_last[i] = sm_cmac_message_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i];
1030                 }
1031             } else {
1032                 int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
1033                 for (i=0;i<16;i++){
1034                     if (i < valid_octets_in_last_block){
1035                         sm_cmac_m_last[i] = sm_cmac_message_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i];
1036                         continue;
1037                     }
1038                     if (i == valid_octets_in_last_block){
1039                         sm_cmac_m_last[i] = 0x80 ^ k2[i];
1040                         continue;
1041                     }
1042                     sm_cmac_m_last[i] = k2[i];
1043                 }
1044             }
1045 
1046             // next
1047             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1048             break;
1049         }
1050         case CMAC_W4_MI:
1051             memcpy(sm_cmac_x, data, 16);
1052             sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
1053             break;
1054         case CMAC_W4_MLAST:
1055             // done
1056             log_info_key("CMAC", data);
1057             sm_cmac_done_handler(data);
1058             sm_cmac_state = CMAC_IDLE;
1059             break;
1060         default:
1061             log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state);
1062             break;
1063     }
1064 }
1065 
1066 static void sm_trigger_user_response(sm_connection_t * sm_conn){
1067     // notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
1068     setup->sm_user_response = SM_USER_RESPONSE_IDLE;
1069     switch (setup->sm_stk_generation_method){
1070         case PK_RESP_INPUT:
1071             if (sm_conn->sm_role){
1072                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1073                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1074             } else {
1075                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1076             }
1077             break;
1078         case PK_INIT_INPUT:
1079             if (sm_conn->sm_role){
1080                 sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1081             } else {
1082                 setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1083                 sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1084             }
1085             break;
1086         case OK_BOTH_INPUT:
1087             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1088             sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1089             break;
1090         case NK_BOTH_INPUT:
1091             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1092             sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
1093             break;
1094         case JUST_WORKS:
1095             setup->sm_user_response = SM_USER_RESPONSE_PENDING;
1096             sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
1097             break;
1098         case OOB:
1099             // client already provided OOB data, let's skip notification.
1100             break;
1101     }
1102 }
1103 
1104 static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
1105     int recv_flags;
1106     if (sm_conn->sm_role){
1107         // slave / responder
1108         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
1109     } else {
1110         // master / initiator
1111         recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
1112     }
1113     log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
1114     return recv_flags == setup->sm_key_distribution_received_set;
1115 }
1116 
1117 static void sm_done_for_handle(hci_con_handle_t con_handle){
1118     if (sm_active_connection == con_handle){
1119         sm_timeout_stop();
1120         sm_active_connection = 0;
1121         log_info("sm: connection 0x%x released setup context", con_handle);
1122     }
1123 }
1124 
1125 static int sm_key_distribution_flags_for_auth_req(void){
1126     int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN;
1127     if (sm_auth_req & SM_AUTHREQ_BONDING){
1128         // encryption information only if bonding requested
1129         flags |= SM_KEYDIST_ENC_KEY;
1130     }
1131     return flags;
1132 }
1133 
1134 static void sm_init_setup(sm_connection_t * sm_conn){
1135 
1136     // fill in sm setup
1137     sm_reset_tk();
1138     setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
1139     memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
1140 
1141     // query client for OOB data
1142     int have_oob_data = 0;
1143     if (sm_get_oob_data) {
1144         have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
1145     }
1146 
1147     sm_pairing_packet_t * local_packet;
1148     if (sm_conn->sm_role){
1149         // slave
1150         local_packet = &setup->sm_s_pres;
1151         gap_advertisements_get_address(&setup->sm_s_addr_type, setup->sm_s_address);
1152         setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
1153         memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
1154     } else {
1155         // master
1156         local_packet = &setup->sm_m_preq;
1157         gap_advertisements_get_address(&setup->sm_m_addr_type, setup->sm_m_address);
1158         setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
1159         memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
1160 
1161         int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1162         sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
1163         sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
1164     }
1165 
1166     sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
1167     sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data);
1168     sm_pairing_packet_set_auth_req(*local_packet, sm_auth_req);
1169     sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size);
1170 }
1171 
1172 static int sm_stk_generation_init(sm_connection_t * sm_conn){
1173 
1174     sm_pairing_packet_t * remote_packet;
1175     int                   remote_key_request;
1176     if (sm_conn->sm_role){
1177         // slave / responder
1178         remote_packet      = &setup->sm_m_preq;
1179         remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
1180     } else {
1181         // master / initiator
1182         remote_packet      = &setup->sm_s_pres;
1183         remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
1184     }
1185 
1186     // check key size
1187     sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
1188     if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE;
1189 
1190     // decide on STK generation method
1191     sm_setup_tk();
1192     log_info("SMP: generation method %u", setup->sm_stk_generation_method);
1193 
1194     // check if STK generation method is acceptable by client
1195     if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
1196 
1197     // identical to responder
1198     sm_setup_key_distribution(remote_key_request);
1199 
1200     // JUST WORKS doens't provide authentication
1201     sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1;
1202 
1203     return 0;
1204 }
1205 
1206 static void sm_address_resolution_handle_event(address_resolution_event_t event){
1207 
1208     // cache and reset context
1209     int matched_device_id = sm_address_resolution_test;
1210     address_resolution_mode_t mode = sm_address_resolution_mode;
1211     void * context = sm_address_resolution_context;
1212 
1213     // reset context
1214     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
1215     sm_address_resolution_context = NULL;
1216     sm_address_resolution_test = -1;
1217     hci_con_handle_t con_handle = 0;
1218 
1219     sm_connection_t * sm_connection;
1220     uint16_t ediv;
1221     switch (mode){
1222         case ADDRESS_RESOLUTION_GENERAL:
1223             break;
1224         case ADDRESS_RESOLUTION_FOR_CONNECTION:
1225             sm_connection = (sm_connection_t *) context;
1226             con_handle = sm_connection->sm_handle;
1227             switch (event){
1228                 case ADDRESS_RESOLUTION_SUCEEDED:
1229                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
1230                     sm_connection->sm_le_db_index = matched_device_id;
1231                     log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index);
1232                     if (sm_connection->sm_role) break;
1233                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1234                     sm_connection->sm_security_request_received = 0;
1235                     sm_connection->sm_bonding_requested = 0;
1236                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
1237                     if (ediv){
1238                         sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
1239                     } else {
1240                         sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1241                     }
1242                     break;
1243                 case ADDRESS_RESOLUTION_FAILED:
1244                     sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
1245                     if (sm_connection->sm_role) break;
1246                     if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
1247                     sm_connection->sm_security_request_received = 0;
1248                     sm_connection->sm_bonding_requested = 0;
1249                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
1250                     break;
1251             }
1252             break;
1253         default:
1254             break;
1255     }
1256 
1257     switch (event){
1258         case ADDRESS_RESOLUTION_SUCEEDED:
1259             sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
1260             break;
1261         case ADDRESS_RESOLUTION_FAILED:
1262             sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
1263             break;
1264     }
1265 }
1266 
1267 static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
1268 
1269     int le_db_index = -1;
1270 
1271     // lookup device based on IRK
1272     if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
1273         int i;
1274         for (i=0; i < le_device_db_count(); i++){
1275             sm_key_t irk;
1276             bd_addr_t address;
1277             int address_type;
1278             le_device_db_info(i, &address_type, address, irk);
1279             if (memcmp(irk, setup->sm_peer_irk, 16) == 0){
1280                 log_info("sm: device found for IRK, updating");
1281                 le_db_index = i;
1282                 break;
1283             }
1284         }
1285     }
1286 
1287     // if not found, lookup via public address if possible
1288     log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
1289     if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
1290         int i;
1291         for (i=0; i < le_device_db_count(); i++){
1292             bd_addr_t address;
1293             int address_type;
1294             le_device_db_info(i, &address_type, address, NULL);
1295             log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
1296             if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){
1297                 log_info("sm: device found for public address, updating");
1298                 le_db_index = i;
1299                 break;
1300             }
1301         }
1302     }
1303 
1304     // if not found, add to db
1305     if (le_db_index < 0) {
1306         le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
1307     }
1308 
1309     if (le_db_index >= 0){
1310         le_device_db_local_counter_set(le_db_index, 0);
1311 
1312         // store local CSRK
1313         if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1314             log_info("sm: store local CSRK");
1315             le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
1316             le_device_db_local_counter_set(le_db_index, 0);
1317         }
1318 
1319         // store remote CSRK
1320         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
1321             log_info("sm: store remote CSRK");
1322             le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
1323             le_device_db_remote_counter_set(le_db_index, 0);
1324         }
1325 
1326         // store encryption information
1327         if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION
1328             && setup->sm_key_distribution_received_set &  SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1329             log_info("sm: set encryption information (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
1330             le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1331                 sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
1332         }
1333     }
1334 
1335     // keep le_db_index
1336     sm_conn->sm_le_db_index = le_db_index;
1337 }
1338 
1339 static void sm_run(void){
1340 
1341     btstack_linked_list_iterator_t it;
1342 
1343     // assert that we can send at least commands
1344     if (!hci_can_send_command_packet_now()) return;
1345 
1346     //
1347     // non-connection related behaviour
1348     //
1349 
1350     // distributed key generation
1351     switch (dkg_state){
1352         case DKG_CALC_IRK:
1353             // already busy?
1354             if (sm_aes128_state == SM_AES128_IDLE) {
1355                 // IRK = d1(IR, 1, 0)
1356                 sm_key_t d1_prime;
1357                 sm_d1_d_prime(1, 0, d1_prime);  // plaintext
1358                 dkg_next_state();
1359                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1360                 return;
1361             }
1362             break;
1363         case DKG_CALC_DHK:
1364             // already busy?
1365             if (sm_aes128_state == SM_AES128_IDLE) {
1366                 // DHK = d1(IR, 3, 0)
1367                 sm_key_t d1_prime;
1368                 sm_d1_d_prime(3, 0, d1_prime);  // plaintext
1369                 dkg_next_state();
1370                 sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
1371                 return;
1372             }
1373             break;
1374         default:
1375             break;
1376     }
1377 
1378     // random address updates
1379     switch (rau_state){
1380         case RAU_GET_RANDOM:
1381             rau_next_state();
1382             sm_random_start(NULL);
1383             return;
1384         case RAU_GET_ENC:
1385             // already busy?
1386             if (sm_aes128_state == SM_AES128_IDLE) {
1387                 sm_key_t r_prime;
1388                 sm_ah_r_prime(sm_random_address, r_prime);
1389                 rau_next_state();
1390                 sm_aes128_start(sm_persistent_irk, r_prime, NULL);
1391                 return;
1392             }
1393             break;
1394         case RAU_SET_ADDRESS:
1395             log_info("New random address: %s", bd_addr_to_str(sm_random_address));
1396             rau_state = RAU_IDLE;
1397             hci_send_cmd(&hci_le_set_random_address, sm_random_address);
1398             return;
1399         default:
1400             break;
1401     }
1402 
1403     // CMAC
1404     switch (sm_cmac_state){
1405         case CMAC_CALC_SUBKEYS:
1406         case CMAC_CALC_MI:
1407         case CMAC_CALC_MLAST:
1408             // already busy?
1409             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1410             sm_cmac_handle_aes_engine_ready();
1411             return;
1412         default:
1413             break;
1414     }
1415 
1416     // CSRK Lookup
1417     // -- if csrk lookup ready, find connection that require csrk lookup
1418     if (sm_address_resolution_idle()){
1419         hci_connections_get_iterator(&it);
1420         while(btstack_linked_list_iterator_has_next(&it)){
1421             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1422             sm_connection_t  * sm_connection  = &hci_connection->sm_connection;
1423             if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
1424                 // and start lookup
1425                 sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
1426                 sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
1427                 break;
1428             }
1429         }
1430     }
1431 
1432     // -- if csrk lookup ready, resolved addresses for received addresses
1433     if (sm_address_resolution_idle()) {
1434         if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
1435             sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
1436             btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
1437             sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
1438             btstack_memory_sm_lookup_entry_free(entry);
1439         }
1440     }
1441 
1442     // -- Continue with CSRK device lookup by public or resolvable private address
1443     if (!sm_address_resolution_idle()){
1444         log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count());
1445         while (sm_address_resolution_test < le_device_db_count()){
1446             int addr_type;
1447             bd_addr_t addr;
1448             sm_key_t irk;
1449             le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
1450             log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
1451 
1452             if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){
1453                 log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
1454                 sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
1455                 break;
1456             }
1457 
1458             if (sm_address_resolution_addr_type == 0){
1459                 sm_address_resolution_test++;
1460                 continue;
1461             }
1462 
1463             if (sm_aes128_state == SM_AES128_ACTIVE) break;
1464 
1465             log_info("LE Device Lookup: calculate AH");
1466             log_info_key("IRK", irk);
1467 
1468             sm_key_t r_prime;
1469             sm_ah_r_prime(sm_address_resolution_address, r_prime);
1470             sm_address_resolution_ah_calculation_active = 1;
1471             sm_aes128_start(irk, r_prime, sm_address_resolution_context);   // keep context
1472             return;
1473         }
1474 
1475         if (sm_address_resolution_test >= le_device_db_count()){
1476             log_info("LE Device Lookup: not found");
1477             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
1478         }
1479     }
1480 
1481 
1482     //
1483     // active connection handling
1484     // -- use loop to handle next connection if lock on setup context is released
1485 
1486     while (1) {
1487 
1488         // Find connections that requires setup context and make active if no other is locked
1489         hci_connections_get_iterator(&it);
1490         while(!sm_active_connection && btstack_linked_list_iterator_has_next(&it)){
1491             hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
1492             sm_connection_t  * sm_connection = &hci_connection->sm_connection;
1493             // - if no connection locked and we're ready/waiting for setup context, fetch it and start
1494             int done = 1;
1495             int err;
1496             int encryption_key_size;
1497             int authenticated;
1498             int authorized;
1499             switch (sm_connection->sm_engine_state) {
1500                 case SM_RESPONDER_SEND_SECURITY_REQUEST:
1501                     // send packet if possible,
1502                     if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){
1503                         const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING};
1504                         sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
1505                         l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1506                     } else {
1507                         l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1508                     }
1509                     // don't lock setup context yet
1510                     done = 0;
1511                     break;
1512                 case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
1513                     sm_init_setup(sm_connection);
1514                     // recover pairing request
1515                     memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t));
1516                     err = sm_stk_generation_init(sm_connection);
1517                     if (err){
1518                         setup->sm_pairing_failed_reason = err;
1519                         sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
1520                         break;
1521                     }
1522                     sm_timeout_start(sm_connection);
1523                     // generate random number first, if we need to show passkey
1524                     if (setup->sm_stk_generation_method == PK_INIT_INPUT){
1525                         sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK;
1526                         break;
1527                     }
1528                     sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
1529                     break;
1530                 case SM_INITIATOR_PH0_HAS_LTK:
1531                     // fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
1532                     le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
1533                                                 &encryption_key_size, &authenticated, &authorized);
1534                     log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized);
1535                     sm_connection->sm_actual_encryption_key_size = encryption_key_size;
1536                     sm_connection->sm_connection_authenticated = authenticated;
1537                     sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
1538                     sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION;
1539                     break;
1540                 case SM_RESPONDER_PH0_RECEIVED_LTK:
1541                     // re-establish previously used LTK using Rand and EDIV
1542                     memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
1543                     setup->sm_local_ediv = sm_connection->sm_local_ediv;
1544                     // re-establish used key encryption size
1545                     // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
1546                     sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1;
1547                     // no db for authenticated flag hack: flag is stored in bit 4 of LSB
1548                     sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4;
1549                     log_info("sm: received ltk request with key size %u, authenticated %u",
1550                             sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
1551                     sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC;
1552                     break;
1553                 case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
1554                     sm_init_setup(sm_connection);
1555                     sm_timeout_start(sm_connection);
1556                     sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST;
1557                     break;
1558                 default:
1559                     done = 0;
1560                     break;
1561             }
1562             if (done){
1563                 sm_active_connection = sm_connection->sm_handle;
1564                 log_info("sm: connection 0x%04x locked setup context as %s", sm_active_connection, sm_connection->sm_role ? "responder" : "initiator");
1565             }
1566         }
1567 
1568         //
1569         // active connection handling
1570         //
1571 
1572         if (sm_active_connection == 0) return;
1573 
1574         // assert that we could send a SM PDU - not needed for all of the following
1575         if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
1576             l2cap_request_can_send_fix_channel_now_event(sm_active_connection, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
1577             return;
1578         }
1579 
1580         sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection);
1581         if (!connection) return;
1582 
1583         sm_key_t plaintext;
1584         int key_distribution_flags;
1585 
1586         log_info("sm_run: state %u", connection->sm_engine_state);
1587 
1588         // responding state
1589         switch (connection->sm_engine_state){
1590 
1591             // general
1592             case SM_GENERAL_SEND_PAIRING_FAILED: {
1593                 uint8_t buffer[2];
1594                 buffer[0] = SM_CODE_PAIRING_FAILED;
1595                 buffer[1] = setup->sm_pairing_failed_reason;
1596                 connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
1597                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1598                 sm_done_for_handle(connection->sm_handle);
1599                 break;
1600             }
1601 
1602             // initiator side
1603             case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: {
1604                 sm_key_t peer_ltk_flipped;
1605                 reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
1606                 connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED;
1607                 log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
1608                 uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
1609                 uint32_t rand_low  = big_endian_read_32(setup->sm_peer_rand, 4);
1610                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
1611                 return;
1612             }
1613 
1614             case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST:
1615                 sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
1616                 connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
1617                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
1618                 sm_timeout_reset(connection);
1619                 break;
1620 
1621             // responder side
1622             case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
1623                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1624                 hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
1625                 return;
1626 
1627 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1628             case SM_PH2_SEND_PUBLIC_KEY_COMMAND: {
1629                 uint8_t buffer[65];
1630                 buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
1631                 //
1632 #ifdef USE_MBEDTLS_FOR_ECDH
1633                 uint8_t value[32];
1634                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1635                 reverse_256(value, &buffer[1]);
1636                 mbedtls_mpi_write_binary(&le_keypair.Q.Y, value, sizeof(value));
1637                 reverse_256(value, &buffer[33]);
1638 #endif
1639                 // TODO: use random generator to generate nonce
1640 
1641                 // generate 128-bit nonce
1642                 int i;
1643                 for (i=0;i<16;i++){
1644                     setup->sm_local_nonce[i] = rand() & 0xff;
1645                 }
1646 
1647                 // stk generation method
1648                 // passkey entry: notify app to show passkey or to request passkey
1649                 switch (setup->sm_stk_generation_method){
1650                     case JUST_WORKS:
1651                     case NK_BOTH_INPUT:
1652                         if (connection->sm_role){
1653                             connection->sm_engine_state = SM_PH2_SEND_CONFIRMATION;
1654                         } else {
1655                             // TODO:
1656                             log_error("SC, next state initiator, send local nonce");
1657                         }
1658                         break;
1659                     case PK_INIT_INPUT:
1660                     case PK_RESP_INPUT:
1661                     case OK_BOTH_INPUT:
1662                         // hack for testing: assume user entered '000000'
1663                         // memset(setup->sm_tk, 0, 16);
1664                         memcpy(setup->sm_ra, setup->sm_tk, 16);
1665                         memcpy(setup->sm_rb, setup->sm_tk, 16);
1666                         setup->sm_passkey_bit = 0;
1667                         if (connection->sm_role){
1668                             // responder
1669                             connection->sm_engine_state = SM_PH2_W4_CONFIRMATION;
1670                         } else {
1671                             // initiator
1672                             connection->sm_engine_state = SM_PH2_SEND_CONFIRMATION;
1673                         }
1674                         sm_trigger_user_response(connection);
1675                         break;
1676                     case OOB:
1677                         // TODO: implement SC OOB
1678                         break;
1679                 }
1680 
1681                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1682                 sm_timeout_reset(connection);
1683                 break;
1684             }
1685             case SM_PH2_SEND_CONFIRMATION: {
1686                 uint8_t buffer[17];
1687                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
1688 #ifdef USE_MBEDTLS_FOR_ECDH
1689                 uint8_t z = 0;
1690                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
1691                     // some form of passkey
1692                     uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
1693                     z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1);
1694                     setup->sm_passkey_bit++;
1695                 }
1696 
1697                 // TODO: use AES Engine to calculate commitment value using f4
1698                 uint8_t value[32];
1699                 mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1700                 sm_key_t confirm_value;
1701                 f4(confirm_value, value, setup->sm_peer_qx, setup->sm_local_nonce, z);
1702                 reverse_128(confirm_value, &buffer[1]);
1703 #endif
1704                 if (connection->sm_role){
1705                     connection->sm_engine_state = SM_PH2_W4_PAIRING_RANDOM;
1706                 } else {
1707                     // TODO: set next state for initiator depending on stk generation method
1708                     log_error("SC, next state initiator, only for passkey entry needed");
1709                 }
1710                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1711                 sm_timeout_reset(connection);
1712                 break;
1713             }
1714             case SM_PH2_SEND_PAIRING_RANDOM_SC: {
1715                 uint8_t buffer[17];
1716                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1717                 reverse_128(setup->sm_local_nonce, &buffer[1]);
1718 
1719                 if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){
1720                     if (connection->sm_role){
1721                         // responder
1722                         connection->sm_engine_state = SM_PH2_W4_CONFIRMATION;
1723                     } else {
1724                         // initiator
1725                         // TODO: next initiator state
1726                     }
1727                 } else {
1728                     if (connection->sm_role){
1729                         // responder
1730                         connection->sm_engine_state = SM_PH2_W4_DHKEY_CHECK_COMMAND;
1731                         if (setup->sm_stk_generation_method == NK_BOTH_INPUT){
1732                             // calc Vb if numeric comparison
1733                             // TODO: use AES Engine to calculate g2
1734                             uint8_t value[32];
1735                             mbedtls_mpi_write_binary(&le_keypair.Q.X, value, sizeof(value));
1736                             uint32_t vb = g2(setup->sm_peer_qx, value, setup->sm_peer_nonce, setup->sm_local_nonce) % 1000000;
1737                             big_endian_store_32(setup->sm_tk, 12, vb);
1738                             sm_trigger_user_response(connection);
1739                         }
1740                     } else {
1741                         // TODO: next initiator state
1742                         // connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
1743                     }
1744                 }
1745                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1746                 sm_timeout_reset(connection);
1747                 break;
1748             }
1749             case SM_PH2_SEND_DHKEY_CHECK_COMMAND: {
1750 
1751                 uint8_t buffer[17];
1752                 buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
1753 #ifdef USE_MBEDTLS_FOR_ECDH
1754                 // calculate DHKEY
1755                 mbedtls_ecp_group grp;
1756                 mbedtls_ecp_group_init( &grp );
1757                 mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
1758                 mbedtls_ecp_point Q;
1759                 mbedtls_ecp_point_init( &Q );
1760                 mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
1761                 mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
1762                 mbedtls_mpi_read_string(&Q.Z, 16, "1" );
1763 
1764                 // da * Pb
1765                 mbedtls_ecp_point DH;
1766                 mbedtls_ecp_point_init( &DH );
1767                 mbedtls_ecp_mul(&grp, &DH, &le_keypair.d, &Q, NULL, NULL);
1768                 sm_key256_t dhkey;
1769                 mbedtls_mpi_write_binary(&DH.X, dhkey, 32);
1770                 log_info("dhkey");
1771                 log_info_hexdump(dhkey, 32);
1772 
1773                 // calculate LTK + MacKey
1774                 sm_key256_t ltk_mackey;
1775                 sm_key56_t bd_addr_master, bd_addr_slave;
1776                 bd_addr_master[0] =  setup->sm_m_addr_type;
1777                 bd_addr_slave[0]  =  setup->sm_s_addr_type;
1778                 memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
1779                 memcpy(&bd_addr_slave[1],  setup->sm_s_address, 6);
1780                 if (connection->sm_role){
1781                     // responder
1782                     f5(ltk_mackey, dhkey, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
1783                 } else {
1784                     // initiator
1785                     f5(ltk_mackey, dhkey, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
1786                 }
1787                 // store LTK
1788                 memcpy(setup->sm_ltk, &ltk_mackey[16], 16);
1789 
1790                 // calc DHKCheck
1791                 sm_key_t mackey;
1792                 memcpy(mackey, &ltk_mackey[0], 16);
1793 
1794                 // TODO: checks
1795 
1796                 uint8_t iocap_a[3];
1797                 iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
1798                 iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
1799                 iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
1800                 uint8_t iocap_b[3];
1801                 iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
1802                 iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
1803                 iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
1804                 if (connection->sm_role){
1805                     // responder
1806                     f6(setup->sm_local_dhkey_check, mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
1807                 } else {
1808                     // initiator
1809                     //
1810                 }
1811 #endif
1812                 reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
1813                 if (connection->sm_role){
1814                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST_SC;
1815                 } else {
1816                     // TODO: next initiator state
1817                     // connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
1818                 }
1819                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1820                 sm_timeout_reset(connection);
1821                 break;
1822             }
1823 
1824 #endif
1825             case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
1826                 // echo initiator for now
1827                 sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
1828                 key_distribution_flags = sm_key_distribution_flags_for_auth_req();
1829 
1830                 connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
1831 #ifdef ENABLE_LE_SECURE_CONNECTIONS
1832                 if (setup->sm_use_secure_connections){
1833                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PUBLIC_KEY_COMMAND;
1834                     // skip LTK/EDIV for SC
1835                     key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
1836                 }
1837 #endif
1838                 sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1839                 sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
1840 
1841                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
1842                 sm_timeout_reset(connection);
1843                 // SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
1844                 if (setup->sm_stk_generation_method == JUST_WORKS){
1845                     sm_trigger_user_response(connection);
1846                 }
1847                 return;
1848 
1849             case SM_PH2_SEND_PAIRING_RANDOM: {
1850                 uint8_t buffer[17];
1851                 buffer[0] = SM_CODE_PAIRING_RANDOM;
1852                 reverse_128(setup->sm_local_random, &buffer[1]);
1853                 if (connection->sm_role){
1854                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
1855                 } else {
1856                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
1857                 }
1858                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1859                 sm_timeout_reset(connection);
1860                 break;
1861             }
1862 
1863             case SM_PH2_GET_RANDOM_TK:
1864             case SM_PH2_C1_GET_RANDOM_A:
1865             case SM_PH2_C1_GET_RANDOM_B:
1866             case SM_PH3_GET_RANDOM:
1867             case SM_PH3_GET_DIV:
1868                 sm_next_responding_state(connection);
1869                 sm_random_start(connection);
1870                 return;
1871 
1872             case SM_PH2_C1_GET_ENC_B:
1873             case SM_PH2_C1_GET_ENC_D:
1874                 // already busy?
1875                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1876                 sm_next_responding_state(connection);
1877                 sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection);
1878                 return;
1879 
1880             case SM_PH3_LTK_GET_ENC:
1881             case SM_RESPONDER_PH4_LTK_GET_ENC:
1882                 // already busy?
1883                 if (sm_aes128_state == SM_AES128_IDLE) {
1884                     sm_key_t d_prime;
1885                     sm_d1_d_prime(setup->sm_local_div, 0, d_prime);
1886                     sm_next_responding_state(connection);
1887                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1888                     return;
1889                 }
1890                 break;
1891 
1892             case SM_PH3_CSRK_GET_ENC:
1893                 // already busy?
1894                 if (sm_aes128_state == SM_AES128_IDLE) {
1895                     sm_key_t d_prime;
1896                     sm_d1_d_prime(setup->sm_local_div, 1, d_prime);
1897                     sm_next_responding_state(connection);
1898                     sm_aes128_start(sm_persistent_er, d_prime, connection);
1899                     return;
1900                 }
1901                 break;
1902 
1903             case SM_PH2_C1_GET_ENC_C:
1904                 // already busy?
1905                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1906                 // calculate m_confirm using aes128 engine - step 1
1907                 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1908                 sm_next_responding_state(connection);
1909                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1910                 break;
1911             case SM_PH2_C1_GET_ENC_A:
1912                 // already busy?
1913                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1914                 // calculate confirm using aes128 engine - step 1
1915                 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
1916                 sm_next_responding_state(connection);
1917                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1918                 break;
1919             case SM_PH2_CALC_STK:
1920                 // already busy?
1921                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1922                 // calculate STK
1923                 if (connection->sm_role){
1924                     sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext);
1925                 } else {
1926                     sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext);
1927                 }
1928                 sm_next_responding_state(connection);
1929                 sm_aes128_start(setup->sm_tk, plaintext, connection);
1930                 break;
1931             case SM_PH3_Y_GET_ENC:
1932                 // already busy?
1933                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1934                 // PH3B2 - calculate Y from      - enc
1935                 // Y = dm(DHK, Rand)
1936                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
1937                 sm_next_responding_state(connection);
1938                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
1939                 return;
1940             case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
1941                 uint8_t buffer[17];
1942                 buffer[0] = SM_CODE_PAIRING_CONFIRM;
1943                 reverse_128(setup->sm_local_confirm, &buffer[1]);
1944                 if (connection->sm_role){
1945                     connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
1946                 } else {
1947                     connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
1948                 }
1949                 l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1950                 sm_timeout_reset(connection);
1951                 return;
1952             }
1953             case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
1954                 sm_key_t stk_flipped;
1955                 reverse_128(setup->sm_ltk, stk_flipped);
1956                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
1957                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
1958                 return;
1959             }
1960             case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
1961                 sm_key_t stk_flipped;
1962                 reverse_128(setup->sm_ltk, stk_flipped);
1963                 connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
1964                 hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
1965                 return;
1966             }
1967             case SM_RESPONDER_PH4_SEND_LTK: {
1968                 sm_key_t ltk_flipped;
1969                 reverse_128(setup->sm_ltk, ltk_flipped);
1970                 connection->sm_engine_state = SM_RESPONDER_IDLE;
1971                 hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
1972                 return;
1973             }
1974             case SM_RESPONDER_PH4_Y_GET_ENC:
1975                 // already busy?
1976                 if (sm_aes128_state == SM_AES128_ACTIVE) break;
1977                 log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
1978                 // Y = dm(DHK, Rand)
1979                 sm_dm_r_prime(setup->sm_local_rand, plaintext);
1980                 sm_next_responding_state(connection);
1981                 sm_aes128_start(sm_persistent_dhk, plaintext, connection);
1982                 return;
1983 
1984             case SM_PH3_DISTRIBUTE_KEYS:
1985                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
1986                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
1987                     uint8_t buffer[17];
1988                     buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
1989                     reverse_128(setup->sm_ltk, &buffer[1]);
1990                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
1991                     sm_timeout_reset(connection);
1992                     return;
1993                 }
1994                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
1995                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
1996                     uint8_t buffer[11];
1997                     buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
1998                     little_endian_store_16(buffer, 1, setup->sm_local_ediv);
1999                     reverse_64(setup->sm_local_rand, &buffer[3]);
2000                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2001                     sm_timeout_reset(connection);
2002                     return;
2003                 }
2004                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
2005                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2006                     uint8_t buffer[17];
2007                     buffer[0] = SM_CODE_IDENTITY_INFORMATION;
2008                     reverse_128(sm_persistent_irk, &buffer[1]);
2009                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2010                     sm_timeout_reset(connection);
2011                     return;
2012                 }
2013                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
2014                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2015                     bd_addr_t local_address;
2016                     uint8_t buffer[8];
2017                     buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
2018                     gap_advertisements_get_address(&buffer[1], local_address);
2019                     reverse_bd_addr(local_address, &buffer[2]);
2020                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2021                     sm_timeout_reset(connection);
2022                     return;
2023                 }
2024                 if (setup->sm_key_distribution_send_set &   SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
2025                     setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2026 
2027                     // hack to reproduce test runs
2028                     if (test_use_fixed_local_csrk){
2029                         memset(setup->sm_local_csrk, 0xcc, 16);
2030                     }
2031 
2032                     uint8_t buffer[17];
2033                     buffer[0] = SM_CODE_SIGNING_INFORMATION;
2034                     reverse_128(setup->sm_local_csrk, &buffer[1]);
2035                     l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
2036                     sm_timeout_reset(connection);
2037                     return;
2038                 }
2039 
2040                 // keys are sent
2041                 if (connection->sm_role){
2042                     // slave -> receive master keys if any
2043                     if (sm_key_distribution_all_received(connection)){
2044                         sm_key_distribution_handle_all_received(connection);
2045                         connection->sm_engine_state = SM_RESPONDER_IDLE;
2046                         sm_done_for_handle(connection->sm_handle);
2047                     } else {
2048                         connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2049                     }
2050                 } else {
2051                     // master -> all done
2052                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2053                     sm_done_for_handle(connection->sm_handle);
2054                 }
2055                 break;
2056 
2057             default:
2058                 break;
2059         }
2060 
2061         // check again if active connection was released
2062         if (sm_active_connection) break;
2063     }
2064 }
2065 
2066 // note: aes engine is ready as we just got the aes result
2067 static void sm_handle_encryption_result(uint8_t * data){
2068 
2069     sm_aes128_state = SM_AES128_IDLE;
2070 
2071     if (sm_address_resolution_ah_calculation_active){
2072         sm_address_resolution_ah_calculation_active = 0;
2073         // compare calulated address against connecting device
2074         uint8_t hash[3];
2075         reverse_24(data, hash);
2076         if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
2077             log_info("LE Device Lookup: matched resolvable private address");
2078             sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
2079             return;
2080         }
2081         // no match, try next
2082         sm_address_resolution_test++;
2083         return;
2084     }
2085 
2086     switch (dkg_state){
2087         case DKG_W4_IRK:
2088             reverse_128(data, sm_persistent_irk);
2089             log_info_key("irk", sm_persistent_irk);
2090             dkg_next_state();
2091             return;
2092         case DKG_W4_DHK:
2093             reverse_128(data, sm_persistent_dhk);
2094             log_info_key("dhk", sm_persistent_dhk);
2095             dkg_next_state();
2096             // SM Init Finished
2097             return;
2098         default:
2099             break;
2100     }
2101 
2102     switch (rau_state){
2103         case RAU_W4_ENC:
2104             reverse_24(data, &sm_random_address[3]);
2105             rau_next_state();
2106             return;
2107         default:
2108             break;
2109     }
2110 
2111     switch (sm_cmac_state){
2112         case CMAC_W4_SUBKEYS:
2113         case CMAC_W4_MI:
2114         case CMAC_W4_MLAST:
2115             {
2116             sm_key_t t;
2117             reverse_128(data, t);
2118             sm_cmac_handle_encryption_result(t);
2119             }
2120             return;
2121         default:
2122             break;
2123     }
2124 
2125     // retrieve sm_connection provided to sm_aes128_start_encryption
2126     sm_connection_t * connection = (sm_connection_t*) sm_aes128_context;
2127     if (!connection) return;
2128     switch (connection->sm_engine_state){
2129         case SM_PH2_C1_W4_ENC_A:
2130         case SM_PH2_C1_W4_ENC_C:
2131             {
2132             sm_key_t t2;
2133             reverse_128(data, t2);
2134             sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
2135             }
2136             sm_next_responding_state(connection);
2137             return;
2138         case SM_PH2_C1_W4_ENC_B:
2139             reverse_128(data, setup->sm_local_confirm);
2140             log_info_key("c1!", setup->sm_local_confirm);
2141             connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
2142             return;
2143         case SM_PH2_C1_W4_ENC_D:
2144             {
2145             sm_key_t peer_confirm_test;
2146             reverse_128(data, peer_confirm_test);
2147             log_info_key("c1!", peer_confirm_test);
2148             if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){
2149                 setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
2150                 connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2151                 return;
2152             }
2153             if (connection->sm_role){
2154                 connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2155             } else {
2156                 connection->sm_engine_state = SM_PH2_CALC_STK;
2157             }
2158             }
2159             return;
2160         case SM_PH2_W4_STK:
2161             reverse_128(data, setup->sm_ltk);
2162             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2163             log_info_key("stk", setup->sm_ltk);
2164             if (connection->sm_role){
2165                 connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2166             } else {
2167                 connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
2168             }
2169             return;
2170         case SM_PH3_Y_W4_ENC:{
2171             sm_key_t y128;
2172             reverse_128(data, y128);
2173             setup->sm_local_y = big_endian_read_16(y128, 14);
2174             log_info_hex16("y", setup->sm_local_y);
2175             // PH3B3 - calculate EDIV
2176             setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
2177             log_info_hex16("ediv", setup->sm_local_ediv);
2178             // PH3B4 - calculate LTK         - enc
2179             // LTK = d1(ER, DIV, 0))
2180             connection->sm_engine_state = SM_PH3_LTK_GET_ENC;
2181             return;
2182         }
2183         case SM_RESPONDER_PH4_Y_W4_ENC:{
2184             sm_key_t y128;
2185             reverse_128(data, y128);
2186             setup->sm_local_y = big_endian_read_16(y128, 14);
2187             log_info_hex16("y", setup->sm_local_y);
2188 
2189             // PH3B3 - calculate DIV
2190             setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
2191             log_info_hex16("ediv", setup->sm_local_ediv);
2192             // PH3B4 - calculate LTK         - enc
2193             // LTK = d1(ER, DIV, 0))
2194             connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC;
2195             return;
2196         }
2197         case SM_PH3_LTK_W4_ENC:
2198             reverse_128(data, setup->sm_ltk);
2199             log_info_key("ltk", setup->sm_ltk);
2200             // calc CSRK next
2201             connection->sm_engine_state = SM_PH3_CSRK_GET_ENC;
2202             return;
2203         case SM_PH3_CSRK_W4_ENC:
2204             reverse_128(data, setup->sm_local_csrk);
2205             log_info_key("csrk", setup->sm_local_csrk);
2206             if (setup->sm_key_distribution_send_set){
2207                 connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
2208             } else {
2209                 // no keys to send, just continue
2210                 if (connection->sm_role){
2211                     // slave -> receive master keys
2212                     connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2213                 } else {
2214                     // master -> all done
2215                     connection->sm_engine_state = SM_INITIATOR_CONNECTED;
2216                     sm_done_for_handle(connection->sm_handle);
2217                 }
2218             }
2219             return;
2220         case SM_RESPONDER_PH4_LTK_W4_ENC:
2221             reverse_128(data, setup->sm_ltk);
2222             sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
2223             log_info_key("ltk", setup->sm_ltk);
2224             connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK;
2225             return;
2226         default:
2227             break;
2228     }
2229 }
2230 
2231 // note: random generator is ready. this doesn NOT imply that aes engine is unused!
2232 static void sm_handle_random_result(uint8_t * data){
2233 
2234     switch (rau_state){
2235         case RAU_W4_RANDOM:
2236             // non-resolvable vs. resolvable
2237             switch (gap_random_adress_type){
2238                 case GAP_RANDOM_ADDRESS_RESOLVABLE:
2239                     // resolvable: use random as prand and calc address hash
2240                     // "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
2241                     memcpy(sm_random_address, data, 3);
2242                     sm_random_address[0] &= 0x3f;
2243                     sm_random_address[0] |= 0x40;
2244                     rau_state = RAU_GET_ENC;
2245                     break;
2246                 case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
2247                 default:
2248                     // "The two most significant bits of the address shall be equal to ‘0’""
2249                     memcpy(sm_random_address, data, 6);
2250                     sm_random_address[0] &= 0x3f;
2251                     rau_state = RAU_SET_ADDRESS;
2252                     break;
2253             }
2254             return;
2255         default:
2256             break;
2257     }
2258 
2259     // retrieve sm_connection provided to sm_random_start
2260     sm_connection_t * connection = (sm_connection_t *) sm_random_context;
2261     if (!connection) return;
2262     switch (connection->sm_engine_state){
2263         case SM_PH2_W4_RANDOM_TK:
2264         {
2265             // map random to 0-999999 without speding much cycles on a modulus operation
2266             uint32_t tk = little_endian_read_32(data,0);
2267             tk = tk & 0xfffff;  // 1048575
2268             if (tk >= 999999){
2269                 tk = tk - 999999;
2270             }
2271             sm_reset_tk();
2272             big_endian_store_32(setup->sm_tk, 12, tk);
2273             if (connection->sm_role){
2274                 connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
2275             } else {
2276                 connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2277                 sm_trigger_user_response(connection);
2278                 // response_idle == nothing <--> sm_trigger_user_response() did not require response
2279                 if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2280                     connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2281                 }
2282             }
2283             return;
2284         }
2285         case SM_PH2_C1_W4_RANDOM_A:
2286             memcpy(&setup->sm_local_random[0], data, 8); // random endinaness
2287             connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B;
2288             return;
2289         case SM_PH2_C1_W4_RANDOM_B:
2290             memcpy(&setup->sm_local_random[8], data, 8); // random endinaness
2291             connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
2292             return;
2293         case SM_PH3_W4_RANDOM:
2294             reverse_64(data, setup->sm_local_rand);
2295             // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
2296             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1);
2297             // no db for authenticated flag hack: store flag in bit 4 of LSB
2298             setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4);
2299             connection->sm_engine_state = SM_PH3_GET_DIV;
2300             return;
2301         case SM_PH3_W4_DIV:
2302             // use 16 bit from random value as div
2303             setup->sm_local_div = big_endian_read_16(data, 0);
2304             log_info_hex16("div", setup->sm_local_div);
2305             connection->sm_engine_state = SM_PH3_Y_GET_ENC;
2306             return;
2307         default:
2308             break;
2309     }
2310 }
2311 
2312 static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
2313 
2314     sm_connection_t  * sm_conn;
2315     hci_con_handle_t con_handle;
2316 
2317     switch (packet_type) {
2318 
2319 		case HCI_EVENT_PACKET:
2320 			switch (hci_event_packet_get_type(packet)) {
2321 
2322                 case BTSTACK_EVENT_STATE:
2323 					// bt stack activated, get started
2324 					if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){
2325                         log_info("HCI Working!");
2326                         dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
2327                         rau_state = RAU_IDLE;
2328                         sm_run();
2329 					}
2330 					break;
2331 
2332                 case HCI_EVENT_LE_META:
2333                     switch (packet[2]) {
2334                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
2335 
2336                             log_info("sm: connected");
2337 
2338                             if (packet[3]) return; // connection failed
2339 
2340                             con_handle = little_endian_read_16(packet, 4);
2341                             sm_conn = sm_get_connection_for_handle(con_handle);
2342                             if (!sm_conn) break;
2343 
2344                             sm_conn->sm_handle = con_handle;
2345                             sm_conn->sm_role = packet[6];
2346                             sm_conn->sm_peer_addr_type = packet[7];
2347                             reverse_bd_addr(&packet[8],
2348                                             sm_conn->sm_peer_address);
2349 
2350                             log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
2351 
2352                             // reset security properties
2353                             sm_conn->sm_connection_encrypted = 0;
2354                             sm_conn->sm_connection_authenticated = 0;
2355                             sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
2356                             sm_conn->sm_le_db_index = -1;
2357 
2358                             // prepare CSRK lookup (does not involve setup)
2359                             sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
2360 
2361                             // just connected -> everything else happens in sm_run()
2362                             if (sm_conn->sm_role){
2363                                 // slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead
2364                                 if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
2365                                     if (sm_slave_request_security) {
2366                                         // request security if requested by app
2367                                         sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
2368                                     } else {
2369                                         // otherwise, wait for pairing request
2370                                         sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2371                                     }
2372                                 }
2373                                 break;
2374                             } else {
2375                                 // master
2376                                 sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2377                             }
2378                             break;
2379 
2380                         case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
2381                             con_handle = little_endian_read_16(packet, 3);
2382                             sm_conn = sm_get_connection_for_handle(con_handle);
2383                             if (!sm_conn) break;
2384 
2385                             log_info("LTK Request: state %u", sm_conn->sm_engine_state);
2386                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
2387                                 sm_conn->sm_engine_state = SM_PH2_CALC_STK;
2388                                 break;
2389                             }
2390                             if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST_SC){
2391                                 sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
2392                                 break;
2393                             }
2394 
2395                             // assume that we don't have a LTK for ediv == 0 and random == null
2396                             if (little_endian_read_16(packet, 13) == 0 && sm_is_null_random(&packet[5])){
2397                                 log_info("LTK Request: ediv & random are empty");
2398                                 sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
2399                                 break;
2400                             }
2401 
2402                             // store rand and ediv
2403                             reverse_64(&packet[5], sm_conn->sm_local_rand);
2404                             sm_conn->sm_local_ediv   = little_endian_read_16(packet, 13);
2405                             sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK;
2406                             break;
2407 
2408                         default:
2409                             break;
2410                     }
2411                     break;
2412 
2413                 case HCI_EVENT_ENCRYPTION_CHANGE:
2414                     con_handle = little_endian_read_16(packet, 3);
2415                     sm_conn = sm_get_connection_for_handle(con_handle);
2416                     if (!sm_conn) break;
2417 
2418                     sm_conn->sm_connection_encrypted = packet[5];
2419                     log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
2420                         sm_conn->sm_actual_encryption_key_size);
2421                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2422                     if (!sm_conn->sm_connection_encrypted) break;
2423                     // continue if part of initial pairing
2424                     switch (sm_conn->sm_engine_state){
2425                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2426                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2427                             sm_done_for_handle(sm_conn->sm_handle);
2428                             break;
2429                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2430                             if (sm_conn->sm_role){
2431                                 // slave
2432                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2433                             } else {
2434                                 // master
2435                                 if (sm_key_distribution_all_received(sm_conn)){
2436                                     // skip receiving keys as there are none
2437                                     sm_key_distribution_handle_all_received(sm_conn);
2438                                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2439                                 } else {
2440                                     sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2441                                 }
2442                             }
2443                             break;
2444                         default:
2445                             break;
2446                     }
2447                     break;
2448 
2449                 case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
2450                     con_handle = little_endian_read_16(packet, 3);
2451                     sm_conn = sm_get_connection_for_handle(con_handle);
2452                     if (!sm_conn) break;
2453 
2454                     log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
2455                     log_info("event handler, state %u", sm_conn->sm_engine_state);
2456                     // continue if part of initial pairing
2457                     switch (sm_conn->sm_engine_state){
2458                         case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
2459                             sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
2460                             sm_done_for_handle(sm_conn->sm_handle);
2461                             break;
2462                         case SM_PH2_W4_CONNECTION_ENCRYPTED:
2463                             if (sm_conn->sm_role){
2464                                 // slave
2465                                 sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2466                             } else {
2467                                 // master
2468                                 sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
2469                             }
2470                             break;
2471                         default:
2472                             break;
2473                     }
2474                     break;
2475 
2476 
2477                 case HCI_EVENT_DISCONNECTION_COMPLETE:
2478                     con_handle = little_endian_read_16(packet, 3);
2479                     sm_done_for_handle(con_handle);
2480                     sm_conn = sm_get_connection_for_handle(con_handle);
2481                     if (!sm_conn) break;
2482 
2483                     // delete stored bonding on disconnect with authentication failure in ph0
2484                     if (sm_conn->sm_role == 0
2485                         && sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED
2486                         && packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){
2487                         le_device_db_remove(sm_conn->sm_le_db_index);
2488                     }
2489 
2490                     sm_conn->sm_engine_state = SM_GENERAL_IDLE;
2491                     sm_conn->sm_handle = 0;
2492                     break;
2493 
2494 				case HCI_EVENT_COMMAND_COMPLETE:
2495                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
2496                         sm_handle_encryption_result(&packet[6]);
2497                         break;
2498                     }
2499                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
2500                         sm_handle_random_result(&packet[6]);
2501                         break;
2502                     }
2503                     break;
2504                 default:
2505                     break;
2506 			}
2507             break;
2508         default:
2509             break;
2510 	}
2511 
2512     sm_run();
2513 }
2514 
2515 static inline int sm_calc_actual_encryption_key_size(int other){
2516     if (other < sm_min_encryption_key_size) return 0;
2517     if (other < sm_max_encryption_key_size) return other;
2518     return sm_max_encryption_key_size;
2519 }
2520 
2521 /**
2522  * @return ok
2523  */
2524 static int sm_validate_stk_generation_method(void){
2525     // check if STK generation method is acceptable by client
2526     switch (setup->sm_stk_generation_method){
2527         case JUST_WORKS:
2528             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
2529         case PK_RESP_INPUT:
2530         case PK_INIT_INPUT:
2531         case OK_BOTH_INPUT:
2532             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
2533         case OOB:
2534             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
2535         case NK_BOTH_INPUT:
2536             return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0;
2537             return 1;
2538         default:
2539             return 0;
2540     }
2541 }
2542 
2543 // helper for sm_pdu_handler, calls sm_run on exit
2544 static void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
2545     setup->sm_pairing_failed_reason = SM_REASON_UNSPECIFIED_REASON;
2546     sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2547     sm_done_for_handle(sm_conn->sm_handle);
2548 }
2549 
2550 static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
2551 
2552     if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){
2553         sm_run();
2554     }
2555 
2556     if (packet_type != SM_DATA_PACKET) return;
2557 
2558     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
2559     if (!sm_conn) return;
2560 
2561     if (packet[0] == SM_CODE_PAIRING_FAILED){
2562         sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
2563         return;
2564     }
2565 
2566     log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]);
2567 
2568     int err;
2569 
2570     switch (sm_conn->sm_engine_state){
2571 
2572         // a sm timeout requries a new physical connection
2573         case SM_GENERAL_TIMEOUT:
2574             return;
2575 
2576         // Initiator
2577         case SM_INITIATOR_CONNECTED:
2578             if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
2579                 sm_pdu_received_in_wrong_state(sm_conn);
2580                 break;
2581             }
2582             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){
2583                 sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2584                 break;
2585             }
2586             if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){
2587                 uint16_t ediv;
2588                 le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
2589                 if (ediv){
2590                     log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
2591                     sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
2592                 } else {
2593                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
2594                 }
2595                 break;
2596             }
2597             // otherwise, store security request
2598             sm_conn->sm_security_request_received = 1;
2599             break;
2600 
2601         case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
2602             if (packet[0] != SM_CODE_PAIRING_RESPONSE){
2603                 sm_pdu_received_in_wrong_state(sm_conn);
2604                 break;
2605             }
2606             // store pairing request
2607             memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
2608             err = sm_stk_generation_init(sm_conn);
2609             if (err){
2610                 setup->sm_pairing_failed_reason = err;
2611                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2612                 break;
2613             }
2614             // generate random number first, if we need to show passkey
2615             if (setup->sm_stk_generation_method == PK_RESP_INPUT){
2616                 sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK;
2617                 break;
2618             }
2619             sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2620             sm_trigger_user_response(sm_conn);
2621             // response_idle == nothing <--> sm_trigger_user_response() did not require response
2622             if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
2623                 sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2624             }
2625             break;
2626 
2627         case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
2628             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2629                 sm_pdu_received_in_wrong_state(sm_conn);
2630                 break;
2631             }
2632 
2633             // store s_confirm
2634             reverse_128(&packet[1], setup->sm_peer_confirm);
2635             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
2636             break;
2637 
2638         case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
2639             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2640                 sm_pdu_received_in_wrong_state(sm_conn);
2641                 break;;
2642             }
2643 
2644             // received random value
2645             reverse_128(&packet[1], setup->sm_peer_random);
2646             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2647             break;
2648 
2649         // Responder
2650         case SM_RESPONDER_IDLE:
2651         case SM_RESPONDER_SEND_SECURITY_REQUEST:
2652         case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
2653             if (packet[0] != SM_CODE_PAIRING_REQUEST){
2654                 sm_pdu_received_in_wrong_state(sm_conn);
2655                 break;;
2656             }
2657 
2658             // store pairing request
2659             memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
2660             sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
2661             break;
2662 
2663 #ifdef ENABLE_LE_SECURE_CONNECTIONS
2664         case SM_RESPONDER_PH2_W4_PUBLIC_KEY_COMMAND:
2665             if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){
2666                 sm_pdu_received_in_wrong_state(sm_conn);
2667                 break;
2668             }
2669 
2670             // store public key for DH Key calculation
2671             reverse_256(&packet[01], setup->sm_peer_qx);
2672             reverse_256(&packet[33], setup->sm_peer_qy);
2673 
2674 #ifdef USE_MBEDTLS_FOR_ECDH
2675             // validate public key
2676             mbedtls_ecp_group grp;
2677             mbedtls_ecp_group_init( &grp );
2678             mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
2679 
2680             mbedtls_ecp_point Q;
2681             mbedtls_ecp_point_init( &Q );
2682             mbedtls_mpi_read_binary(&Q.X, setup->sm_peer_qx, 32);
2683             mbedtls_mpi_read_binary(&Q.Y, setup->sm_peer_qy, 32);
2684             mbedtls_mpi_read_string(&Q.Z, 16, "1" );
2685             err = mbedtls_ecp_check_pubkey(&grp, &Q);
2686             if (err){
2687                 log_error("sm: peer public key invalid %x", err);
2688                 // uses "unspecified reason", there is no "public key invalid" error code
2689                 sm_pdu_received_in_wrong_state(sm_conn);
2690                 break;
2691             }
2692 #endif
2693             sm_conn->sm_engine_state = SM_PH2_SEND_PUBLIC_KEY_COMMAND;
2694             break;
2695 
2696         case SM_PH2_W4_CONFIRMATION:
2697             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2698                 sm_pdu_received_in_wrong_state(sm_conn);
2699                 break;
2700             }
2701             // received confirm value
2702             reverse_128(&packet[1], setup->sm_peer_confirm);
2703 
2704             if (sm_conn->sm_role){
2705                 // responder
2706                 sm_conn->sm_engine_state = SM_PH2_SEND_CONFIRMATION;
2707             } else {
2708                 // initiator
2709                 // TODO: implement initiator role
2710             }
2711             break;
2712 
2713         case SM_PH2_W4_PAIRING_RANDOM:
2714             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2715                 sm_pdu_received_in_wrong_state(sm_conn);
2716                 break;;
2717             }
2718 
2719             // received random value
2720             reverse_128(&packet[1], setup->sm_peer_nonce);
2721 
2722             // TODO: handle Initiator role
2723 
2724             // Responder
2725             sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM_SC;
2726             break;
2727 
2728         case SM_PH2_W4_DHKEY_CHECK_COMMAND:
2729             if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){
2730                 sm_pdu_received_in_wrong_state(sm_conn);
2731                 break;
2732             }
2733             // store DHKey Check
2734             reverse_128(&packet[01], setup->sm_peer_dhkey_check);
2735 
2736             // for numeric comparison, we need to wait for user confirm
2737             if (setup->sm_stk_generation_method == NK_BOTH_INPUT && setup->sm_user_response != SM_USER_RESPONSE_CONFIRM){
2738                 sm_conn->sm_engine_state = SM_PH2_W4_USER_RESPONSE;
2739             } else {
2740                 sm_conn->sm_engine_state = SM_PH2_SEND_DHKEY_CHECK_COMMAND;
2741             }
2742             break;
2743 #endif
2744 
2745         case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
2746             if (packet[0] != SM_CODE_PAIRING_CONFIRM){
2747                 sm_pdu_received_in_wrong_state(sm_conn);
2748                 break;
2749             }
2750 
2751             // received confirm value
2752             reverse_128(&packet[1], setup->sm_peer_confirm);
2753 
2754             // notify client to hide shown passkey
2755             if (setup->sm_stk_generation_method == PK_INIT_INPUT){
2756                 sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
2757             }
2758 
2759             // handle user cancel pairing?
2760             if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
2761                 setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
2762                 sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
2763                 break;
2764             }
2765 
2766             // wait for user action?
2767             if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
2768                 sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
2769                 break;
2770             }
2771 
2772             // calculate and send local_confirm
2773             sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
2774             break;
2775 
2776         case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
2777             if (packet[0] != SM_CODE_PAIRING_RANDOM){
2778                 sm_pdu_received_in_wrong_state(sm_conn);
2779                 break;;
2780             }
2781 
2782             // received random value
2783             reverse_128(&packet[1], setup->sm_peer_random);
2784             sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
2785             break;
2786 
2787         case SM_PH3_RECEIVE_KEYS:
2788             switch(packet[0]){
2789                 case SM_CODE_ENCRYPTION_INFORMATION:
2790                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
2791                     reverse_128(&packet[1], setup->sm_peer_ltk);
2792                     break;
2793 
2794                 case SM_CODE_MASTER_IDENTIFICATION:
2795                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
2796                     setup->sm_peer_ediv = little_endian_read_16(packet, 1);
2797                     reverse_64(&packet[3], setup->sm_peer_rand);
2798                     break;
2799 
2800                 case SM_CODE_IDENTITY_INFORMATION:
2801                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
2802                     reverse_128(&packet[1], setup->sm_peer_irk);
2803                     break;
2804 
2805                 case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
2806                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
2807                     setup->sm_peer_addr_type = packet[1];
2808                     reverse_bd_addr(&packet[2], setup->sm_peer_address);
2809                     break;
2810 
2811                 case SM_CODE_SIGNING_INFORMATION:
2812                     setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
2813                     reverse_128(&packet[1], setup->sm_peer_csrk);
2814                     break;
2815                 default:
2816                     // Unexpected PDU
2817                     log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
2818                     break;
2819             }
2820             // done with key distribution?
2821             if (sm_key_distribution_all_received(sm_conn)){
2822 
2823                 sm_key_distribution_handle_all_received(sm_conn);
2824 
2825                 if (sm_conn->sm_role){
2826                     sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
2827                     sm_done_for_handle(sm_conn->sm_handle);
2828                 } else {
2829                     sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
2830                 }
2831             }
2832             break;
2833         default:
2834             // Unexpected PDU
2835             log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
2836             break;
2837     }
2838 
2839     // try to send preparared packet
2840     sm_run();
2841 }
2842 
2843 // Security Manager Client API
2844 void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){
2845     sm_get_oob_data = get_oob_data_callback;
2846 }
2847 
2848 void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
2849     btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
2850 }
2851 
2852 void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
2853     sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
2854 }
2855 
2856 void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
2857 	sm_min_encryption_key_size = min_size;
2858 	sm_max_encryption_key_size = max_size;
2859 }
2860 
2861 void sm_set_authentication_requirements(uint8_t auth_req){
2862     sm_auth_req = auth_req;
2863 }
2864 
2865 void sm_set_io_capabilities(io_capability_t io_capability){
2866     sm_io_capabilities = io_capability;
2867 }
2868 
2869 void sm_set_request_security(int enable){
2870     sm_slave_request_security = enable;
2871 }
2872 
2873 void sm_set_er(sm_key_t er){
2874     memcpy(sm_persistent_er, er, 16);
2875 }
2876 
2877 void sm_set_ir(sm_key_t ir){
2878     memcpy(sm_persistent_ir, ir, 16);
2879 }
2880 
2881 // Testing support only
2882 void sm_test_set_irk(sm_key_t irk){
2883     memcpy(sm_persistent_irk, irk, 16);
2884     sm_persistent_irk_ready = 1;
2885 }
2886 
2887 void sm_test_use_fixed_local_csrk(void){
2888     test_use_fixed_local_csrk = 1;
2889 }
2890 
2891 void sm_init(void){
2892     // set some (BTstack default) ER and IR
2893     int i;
2894     sm_key_t er;
2895     sm_key_t ir;
2896     for (i=0;i<16;i++){
2897         er[i] = 0x30 + i;
2898         ir[i] = 0x90 + i;
2899     }
2900     sm_set_er(er);
2901     sm_set_ir(ir);
2902     // defaults
2903     sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
2904                                        | SM_STK_GENERATION_METHOD_OOB
2905                                        | SM_STK_GENERATION_METHOD_PASSKEY
2906                                        | SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
2907 
2908     sm_max_encryption_key_size = 16;
2909     sm_min_encryption_key_size = 7;
2910 
2911     sm_cmac_state  = CMAC_IDLE;
2912     dkg_state = DKG_W4_WORKING;
2913     rau_state = RAU_W4_WORKING;
2914     sm_aes128_state = SM_AES128_IDLE;
2915     sm_address_resolution_test = -1;    // no private address to resolve yet
2916     sm_address_resolution_ah_calculation_active = 0;
2917     sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
2918     sm_address_resolution_general_queue = NULL;
2919 
2920     gap_random_adress_update_period = 15 * 60 * 1000L;
2921 
2922     sm_active_connection = 0;
2923 
2924     test_use_fixed_local_csrk = 0;
2925 
2926     // register for HCI Events from HCI
2927     hci_event_callback_registration.callback = &sm_event_packet_handler;
2928     hci_add_event_handler(&hci_event_callback_registration);
2929 
2930     // and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
2931     l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
2932 
2933 #ifdef USE_MBEDTLS_FOR_ECDH
2934     // TODO: calculate keypair using LE Random Number Generator
2935     // use test keypair from spec initially
2936     mbedtls_ecp_keypair_init(&le_keypair);
2937     mbedtls_ecp_group_load(&le_keypair.grp, MBEDTLS_ECP_DP_SECP256R1);
2938     mbedtls_mpi_read_string( &le_keypair.d,   16, "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd");
2939     mbedtls_mpi_read_string( &le_keypair.Q.X, 16, "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6");
2940     mbedtls_mpi_read_string( &le_keypair.Q.Y, 16, "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b");
2941     mbedtls_mpi_read_string( &le_keypair.Q.Z, 16, "1");
2942     // print keypair
2943     char buffer[100];
2944     size_t len;
2945     mbedtls_mpi_write_string( &le_keypair.d, 16, buffer, sizeof(buffer), &len);
2946     log_info("d: %s", buffer);
2947     mbedtls_mpi_write_string( &le_keypair.Q.X, 16, buffer, sizeof(buffer), &len);
2948     log_info("X: %s", buffer);
2949     mbedtls_mpi_write_string( &le_keypair.Q.Y, 16, buffer, sizeof(buffer), &len);
2950     log_info("Y: %s", buffer);
2951 #endif
2952 }
2953 
2954 static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
2955     hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
2956     if (!hci_con) return NULL;
2957     return &hci_con->sm_connection;
2958 }
2959 
2960 // @returns 0 if not encrypted, 7-16 otherwise
2961 int sm_encryption_key_size(hci_con_handle_t con_handle){
2962     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
2963     if (!sm_conn) return 0;     // wrong connection
2964     if (!sm_conn->sm_connection_encrypted) return 0;
2965     return sm_conn->sm_actual_encryption_key_size;
2966 }
2967 
2968 int sm_authenticated(hci_con_handle_t con_handle){
2969     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
2970     if (!sm_conn) return 0;     // wrong connection
2971     if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
2972     return sm_conn->sm_connection_authenticated;
2973 }
2974 
2975 authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){
2976     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
2977     if (!sm_conn) return AUTHORIZATION_UNKNOWN;     // wrong connection
2978     if (!sm_conn->sm_connection_encrypted)               return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
2979     if (!sm_conn->sm_connection_authenticated)           return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
2980     return sm_conn->sm_connection_authorization_state;
2981 }
2982 
2983 static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){
2984     switch (sm_conn->sm_engine_state){
2985         case SM_GENERAL_IDLE:
2986         case SM_RESPONDER_IDLE:
2987             sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
2988             sm_run();
2989             break;
2990         default:
2991             break;
2992     }
2993 }
2994 
2995 /**
2996  * @brief Trigger Security Request
2997  */
2998 void sm_send_security_request(hci_con_handle_t con_handle){
2999     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3000     if (!sm_conn) return;
3001     sm_send_security_request_for_connection(sm_conn);
3002 }
3003 
3004 // request pairing
3005 void sm_request_pairing(hci_con_handle_t con_handle){
3006     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3007     if (!sm_conn) return;     // wrong connection
3008 
3009     log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
3010     if (sm_conn->sm_role){
3011         sm_send_security_request_for_connection(sm_conn);
3012     } else {
3013         // used as a trigger to start central/master/initiator security procedures
3014             uint16_t ediv;
3015             if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){
3016             switch (sm_conn->sm_irk_lookup_state){
3017                 case IRK_LOOKUP_FAILED:
3018                     sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3019                     break;
3020                 case IRK_LOOKUP_SUCCEEDED:
3021                         le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, NULL, NULL, NULL, NULL);
3022                         if (ediv){
3023                             log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
3024                             sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
3025                         } else {
3026                             sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
3027                         }
3028                         break;
3029                 default:
3030                     sm_conn->sm_bonding_requested = 1;
3031                     break;
3032             }
3033         }
3034     }
3035     sm_run();
3036 }
3037 
3038 // called by client app on authorization request
3039 void sm_authorization_decline(hci_con_handle_t con_handle){
3040     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3041     if (!sm_conn) return;     // wrong connection
3042     sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
3043     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
3044 }
3045 
3046 void sm_authorization_grant(hci_con_handle_t con_handle){
3047     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3048     if (!sm_conn) return;     // wrong connection
3049     sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
3050     sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
3051 }
3052 
3053 // GAP Bonding API
3054 
3055 void sm_bonding_decline(hci_con_handle_t con_handle){
3056     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3057     if (!sm_conn) return;     // wrong connection
3058     setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
3059 
3060     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3061         sm_done_for_handle(sm_conn->sm_handle);
3062         setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
3063         sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
3064     }
3065     sm_run();
3066 }
3067 
3068 void sm_just_works_confirm(hci_con_handle_t con_handle){
3069     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3070     if (!sm_conn) return;     // wrong connection
3071     setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
3072     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3073         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3074     }
3075     if (sm_conn->sm_engine_state == SM_PH2_W4_USER_RESPONSE){
3076         if (sm_conn->sm_role){
3077             // responder
3078             sm_conn->sm_engine_state = SM_PH2_SEND_DHKEY_CHECK_COMMAND;
3079         } else {
3080             // initiator
3081             // TODO handle intiator role
3082         }
3083     }
3084     sm_run();
3085 }
3086 
3087 void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
3088     // for now, it's the same
3089     sm_just_works_confirm(con_handle);
3090 }
3091 
3092 void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
3093     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3094     if (!sm_conn) return;     // wrong connection
3095     sm_reset_tk();
3096     big_endian_store_32(setup->sm_tk, 12, passkey);
3097     setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
3098     if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
3099         sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
3100     }
3101     sm_run();
3102 }
3103 
3104 /**
3105  * @brief Identify device in LE Device DB
3106  * @param handle
3107  * @returns index from le_device_db or -1 if not found/identified
3108  */
3109 int sm_le_device_index(hci_con_handle_t con_handle ){
3110     sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
3111     if (!sm_conn) return -1;
3112     return sm_conn->sm_le_db_index;
3113 }
3114 
3115 // GAP LE API
3116 void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
3117     gap_random_address_update_stop();
3118     gap_random_adress_type = random_address_type;
3119     if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3120     gap_random_address_update_start();
3121     gap_random_address_trigger();
3122 }
3123 
3124 gap_random_address_type_t gap_random_address_get_mode(void){
3125     return gap_random_adress_type;
3126 }
3127 
3128 void gap_random_address_set_update_period(int period_ms){
3129     gap_random_adress_update_period = period_ms;
3130     if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
3131     gap_random_address_update_stop();
3132     gap_random_address_update_start();
3133 }
3134 
3135 void gap_random_address_set(bd_addr_t addr){
3136     gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_OFF);
3137     memcpy(sm_random_address, addr, 6);
3138     rau_state = RAU_SET_ADDRESS;
3139     sm_run();
3140 }
3141 
3142 /*
3143  * @brief Set Advertisement Paramters
3144  * @param adv_int_min
3145  * @param adv_int_max
3146  * @param adv_type
3147  * @param direct_address_type
3148  * @param direct_address
3149  * @param channel_map
3150  * @param filter_policy
3151  *
3152  * @note own_address_type is used from gap_random_address_set_mode
3153  */
3154 void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
3155     uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
3156     hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type, gap_random_adress_type,
3157         direct_address_typ, direct_address, channel_map, filter_policy);
3158 }
3159 
3160