1 /* 2 * Copyright (C) 2017 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 20 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 21 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 27 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 */ 31 32 #define __BTSTACK_FILE__ "btstack_crypto.c" 33 34 /* 35 * btstack_crypto.h 36 * 37 * Central place for all crypto-related functions with completion callbacks to allow 38 * using of MCU crypto peripherals or the Bluetooth controller 39 */ 40 41 #include "btstack_crypto.h" 42 43 #include "btstack_debug.h" 44 #include "btstack_event.h" 45 #include "btstack_linked_list.h" 46 #include "btstack_util.h" 47 #include "hci.h" 48 49 // backwards-compatitility ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS -> ENABLE_MICRO_ECC_P256 50 #if defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) && !defined(ENABLE_MICRO_ECC_P256) 51 #define ENABLE_MICRO_ECC_P256 52 #endif 53 54 // configure ECC implementations 55 #if defined(ENABLE_MICRO_ECC_P256) && defined(HAVE_MBEDTLS_ECC_P256) 56 #error "If you have mbedTLS (HAVE_MBEDTLS_ECC_P256), please disable uECC (ENABLE_MICRO_ECC_P256) in bstack_config.h" 57 #endif 58 59 // Software ECC-P256 implementation provided by micro-ecc 60 #ifdef ENABLE_MICRO_ECC_P256 61 #define ENABLE_ECC_P256 62 #define USE_MICRO_ECC_P256 63 #define USE_SOFTWARE_ECC_P256_IMPLEMENTATION 64 #include "uECC.h" 65 #endif 66 67 // Software ECC-P256 implementation provided by mbedTLS 68 #ifdef HAVE_MBEDTLS_ECC_P256 69 #define ENABLE_ECC_P256 70 #define USE_MBEDTLS_ECC_P256 71 #define USE_SOFTWARE_ECC_P256_IMPLEMENTATION 72 #include "mbedtls/config.h" 73 #include "mbedtls/platform.h" 74 #include "mbedtls/ecp.h" 75 #endif 76 77 #if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(ENABLE_ECC_P256) 78 #define ENABLE_ECC_P256 79 #endif 80 81 // Software AES128 82 #ifdef HAVE_AES128 83 #define USE_BTSTACK_AES128 84 void btstack_aes128_calc(const uint8_t * key, const uint8_t * plaintext, uint8_t * result); 85 #endif 86 87 // degbugging 88 // #define DEBUG_CCM 89 90 typedef enum { 91 CMAC_IDLE, 92 CMAC_CALC_SUBKEYS, 93 CMAC_W4_SUBKEYS, 94 CMAC_CALC_MI, 95 CMAC_W4_MI, 96 CMAC_CALC_MLAST, 97 CMAC_W4_MLAST 98 } btstack_crypto_cmac_state_t; 99 100 typedef enum { 101 ECC_P256_KEY_GENERATION_IDLE, 102 ECC_P256_KEY_GENERATION_GENERATING_RANDOM, 103 ECC_P256_KEY_GENERATION_ACTIVE, 104 ECC_P256_KEY_GENERATION_W4_KEY, 105 ECC_P256_KEY_GENERATION_DONE, 106 } btstack_crypto_ecc_p256_key_generation_state_t; 107 108 static void btstack_crypto_run(void); 109 110 const static uint8_t zero[16] = { 0 }; 111 112 static uint8_t btstack_crypto_initialized; 113 static btstack_linked_list_t btstack_crypto_operations; 114 static btstack_packet_callback_registration_t hci_event_callback_registration; 115 static uint8_t btstack_crypto_wait_for_hci_result; 116 117 // state for AES-CMAC 118 static btstack_crypto_cmac_state_t btstack_crypto_cmac_state; 119 static sm_key_t btstack_crypto_cmac_k; 120 static sm_key_t btstack_crypto_cmac_x; 121 static sm_key_t btstack_crypto_cmac_m_last; 122 static uint8_t btstack_crypto_cmac_block_current; 123 static uint8_t btstack_crypto_cmac_block_count; 124 125 // state for AES-CCM 126 #ifndef USE_BTSTACK_AES128 127 static uint8_t btstack_crypto_ccm_s[16]; 128 #endif 129 130 #ifdef ENABLE_ECC_P256 131 132 static uint8_t btstack_crypto_ecc_p256_public_key[64]; 133 static uint8_t btstack_crypto_ecc_p256_random[64]; 134 static uint8_t btstack_crypto_ecc_p256_random_len; 135 static uint8_t btstack_crypto_ecc_p256_random_offset; 136 static btstack_crypto_ecc_p256_key_generation_state_t btstack_crypto_ecc_p256_key_generation_state; 137 138 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION 139 static uint8_t btstack_crypto_ecc_p256_d[32]; 140 #endif 141 142 // Software ECDH implementation provided by mbedtls 143 #ifdef USE_MBEDTLS_ECC_P256 144 static mbedtls_ecp_group mbedtls_ec_group; 145 #endif 146 147 #endif /* ENABLE_ECC_P256 */ 148 149 static void btstack_crypto_done(btstack_crypto_t * btstack_crypto){ 150 btstack_linked_list_pop(&btstack_crypto_operations); 151 (*btstack_crypto->context_callback.callback)(btstack_crypto->context_callback.context); 152 } 153 154 static inline void btstack_crypto_cmac_next_state(void){ 155 btstack_crypto_cmac_state = (btstack_crypto_cmac_state_t) (((int)btstack_crypto_cmac_state) + 1); 156 } 157 158 static int btstack_crypto_cmac_last_block_complete(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){ 159 uint16_t len = btstack_crypto_cmac->size; 160 if (len == 0) return 0; 161 return (len & 0x0f) == 0; 162 } 163 164 static void btstack_crypto_aes128_start(const sm_key_t key, const sm_key_t plaintext){ 165 uint8_t key_flipped[16]; 166 uint8_t plaintext_flipped[16]; 167 reverse_128(key, key_flipped); 168 reverse_128(plaintext, plaintext_flipped); 169 btstack_crypto_wait_for_hci_result = 1; 170 hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped); 171 } 172 173 static uint8_t btstack_crypto_cmac_get_byte(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, uint16_t pos){ 174 if (btstack_crypto_cmac->btstack_crypto.operation == BTSTACK_CRYPTO_CMAC_GENERATOR){ 175 return (*btstack_crypto_cmac->data.get_byte_callback)(pos); 176 } else { 177 return btstack_crypto_cmac->data.message[pos]; 178 } 179 } 180 181 static void btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){ 182 switch (btstack_crypto_cmac_state){ 183 case CMAC_CALC_SUBKEYS: { 184 sm_key_t const_zero; 185 memset(const_zero, 0, 16); 186 btstack_crypto_cmac_next_state(); 187 btstack_crypto_aes128_start(btstack_crypto_cmac_k, const_zero); 188 break; 189 } 190 case CMAC_CALC_MI: { 191 int j; 192 sm_key_t y; 193 for (j=0;j<16;j++){ 194 y[j] = btstack_crypto_cmac_x[j] ^ btstack_crypto_cmac_get_byte(btstack_crypto_cmac, btstack_crypto_cmac_block_current*16 + j); 195 } 196 btstack_crypto_cmac_block_current++; 197 btstack_crypto_cmac_next_state(); 198 btstack_crypto_aes128_start(btstack_crypto_cmac_k, y); 199 break; 200 } 201 case CMAC_CALC_MLAST: { 202 int i; 203 sm_key_t y; 204 for (i=0;i<16;i++){ 205 y[i] = btstack_crypto_cmac_x[i] ^ btstack_crypto_cmac_m_last[i]; 206 } 207 btstack_crypto_cmac_block_current++; 208 btstack_crypto_cmac_next_state(); 209 btstack_crypto_aes128_start(btstack_crypto_cmac_k, y); 210 break; 211 } 212 default: 213 log_info("btstack_crypto_cmac_handle_aes_engine_ready called in state %u", btstack_crypto_cmac_state); 214 break; 215 } 216 } 217 218 static void btstack_crypto_cmac_shift_left_by_one_bit_inplace(int len, uint8_t * data){ 219 int i; 220 int carry = 0; 221 for (i=len-1; i >= 0 ; i--){ 222 int new_carry = data[i] >> 7; 223 data[i] = data[i] << 1 | carry; 224 carry = new_carry; 225 } 226 } 227 228 static void btstack_crypto_cmac_handle_encryption_result(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, sm_key_t data){ 229 switch (btstack_crypto_cmac_state){ 230 case CMAC_W4_SUBKEYS: { 231 sm_key_t k1; 232 memcpy(k1, data, 16); 233 btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k1); 234 if (data[0] & 0x80){ 235 k1[15] ^= 0x87; 236 } 237 sm_key_t k2; 238 memcpy(k2, k1, 16); 239 btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k2); 240 if (k1[0] & 0x80){ 241 k2[15] ^= 0x87; 242 } 243 244 log_info_key("k", btstack_crypto_cmac_k); 245 log_info_key("k1", k1); 246 log_info_key("k2", k2); 247 248 // step 4: set m_last 249 int i; 250 if (btstack_crypto_cmac_last_block_complete(btstack_crypto_cmac)){ 251 for (i=0;i<16;i++){ 252 btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, btstack_crypto_cmac->size - 16 + i) ^ k1[i]; 253 } 254 } else { 255 int valid_octets_in_last_block = btstack_crypto_cmac->size & 0x0f; 256 for (i=0;i<16;i++){ 257 if (i < valid_octets_in_last_block){ 258 btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac->size & 0xfff0) + i) ^ k2[i]; 259 continue; 260 } 261 if (i == valid_octets_in_last_block){ 262 btstack_crypto_cmac_m_last[i] = 0x80 ^ k2[i]; 263 continue; 264 } 265 btstack_crypto_cmac_m_last[i] = k2[i]; 266 } 267 } 268 269 // next 270 btstack_crypto_cmac_state = btstack_crypto_cmac_block_current < btstack_crypto_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; 271 break; 272 } 273 case CMAC_W4_MI: 274 memcpy(btstack_crypto_cmac_x, data, 16); 275 btstack_crypto_cmac_state = btstack_crypto_cmac_block_current < btstack_crypto_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; 276 break; 277 case CMAC_W4_MLAST: 278 // done 279 log_info("Setting CMAC Engine to IDLE"); 280 btstack_crypto_cmac_state = CMAC_IDLE; 281 log_info_key("CMAC", data); 282 memcpy(btstack_crypto_cmac->hash, data, 16); 283 btstack_linked_list_pop(&btstack_crypto_operations); 284 (*btstack_crypto_cmac->btstack_crypto.context_callback.callback)(btstack_crypto_cmac->btstack_crypto.context_callback.context); 285 break; 286 default: 287 log_info("btstack_crypto_cmac_handle_encryption_result called in state %u", btstack_crypto_cmac_state); 288 break; 289 } 290 } 291 292 static void btstack_crypto_cmac_start(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){ 293 294 memcpy(btstack_crypto_cmac_k, btstack_crypto_cmac->key, 16); 295 memset(btstack_crypto_cmac_x, 0, 16); 296 btstack_crypto_cmac_block_current = 0; 297 298 // step 2: n := ceil(len/const_Bsize); 299 btstack_crypto_cmac_block_count = (btstack_crypto_cmac->size + 15) / 16; 300 301 // step 3: .. 302 if (btstack_crypto_cmac_block_count==0){ 303 btstack_crypto_cmac_block_count = 1; 304 } 305 log_info("btstack_crypto_cmac_start: len %u, block count %u", btstack_crypto_cmac->size, btstack_crypto_cmac_block_count); 306 307 // first, we need to compute l for k1, k2, and m_last 308 btstack_crypto_cmac_state = CMAC_CALC_SUBKEYS; 309 310 // let's go 311 btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac); 312 } 313 314 #ifndef USE_BTSTACK_AES128 315 316 /* 317 To encrypt the message data we use Counter (CTR) mode. We first 318 define the key stream blocks by: 319 320 S_i := E( K, A_i ) for i=0, 1, 2, ... 321 322 The values A_i are formatted as follows, where the Counter field i is 323 encoded in most-significant-byte first order: 324 325 Octet Number Contents 326 ------------ --------- 327 0 Flags 328 1 ... 15-L Nonce N 329 16-L ... 15 Counter i 330 331 Bit Number Contents 332 ---------- ---------------------- 333 7 Reserved (always zero) 334 6 Reserved (always zero) 335 5 ... 3 Zero 336 2 ... 0 L' 337 */ 338 339 static void btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm_t * btstack_crypto_ccm, uint16_t counter){ 340 btstack_crypto_ccm_s[0] = 1; // L' = L - 1 341 memcpy(&btstack_crypto_ccm_s[1], btstack_crypto_ccm->nonce, 13); 342 big_endian_store_16(btstack_crypto_ccm_s, 14, counter); 343 #ifdef DEBUG_CCM 344 printf("ststack_crypto_ccm_setup_a_%u\n", counter); 345 printf("%16s: ", "ai"); 346 printf_hexdump(btstack_crypto_ccm_s, 16); 347 #endif 348 } 349 350 /* 351 The first step is to compute the authentication field T. This is 352 done using CBC-MAC [MAC]. We first define a sequence of blocks B_0, 353 B_1, ..., B_n and then apply CBC-MAC to these blocks. 354 355 The first block B_0 is formatted as follows, where l(m) is encoded in 356 most-significant-byte first order: 357 358 Octet Number Contents 359 ------------ --------- 360 0 Flags 361 1 ... 15-L Nonce N 362 16-L ... 15 l(m) 363 364 Within the first block B_0, the Flags field is formatted as follows: 365 366 Bit Number Contents 367 ---------- ---------------------- 368 7 Reserved (always zero) 369 6 Adata 370 5 ... 3 M' 371 2 ... 0 L' 372 */ 373 374 static void btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm_t * btstack_crypto_ccm, uint8_t * b0){ 375 uint8_t m_prime = (btstack_crypto_ccm->auth_len - 2) / 2; 376 uint8_t Adata = btstack_crypto_ccm->aad_len ? 1 : 0; 377 b0[0] = (Adata << 6) | (m_prime << 3) | 1 ; // Adata, M', L' = L - 1 378 memcpy(&b0[1], btstack_crypto_ccm->nonce, 13); 379 big_endian_store_16(b0, 14, btstack_crypto_ccm->message_len); 380 #ifdef DEBUG_CCM 381 printf("%16s: ", "B0"); 382 printf_hexdump(b0, 16); 383 #endif 384 } 385 #endif 386 387 #ifdef ENABLE_ECC_P256 388 389 static void btstack_crypto_log_ec_publickey(const uint8_t * ec_q){ 390 log_info("Elliptic curve: X"); 391 log_info_hexdump(&ec_q[0],32); 392 log_info("Elliptic curve: Y"); 393 log_info_hexdump(&ec_q[32],32); 394 } 395 396 #if (defined(USE_MICRO_ECC_P256) && !defined(WICED_VERSION)) || defined(USE_MBEDTLS_ECC_P256) 397 // @return OK 398 static int sm_generate_f_rng(unsigned char * buffer, unsigned size){ 399 if (btstack_crypto_ecc_p256_key_generation_state != ECC_P256_KEY_GENERATION_ACTIVE) return 0; 400 log_info("sm_generate_f_rng: size %u - offset %u", (int) size, btstack_crypto_ecc_p256_random_offset); 401 while (size) { 402 *buffer++ = btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_offset++]; 403 size--; 404 } 405 return 1; 406 } 407 #endif 408 #ifdef USE_MBEDTLS_ECC_P256 409 // @return error - just wrap sm_generate_f_rng 410 static int sm_generate_f_rng_mbedtls(void * context, unsigned char * buffer, size_t size){ 411 UNUSED(context); 412 return sm_generate_f_rng(buffer, size) == 0; 413 } 414 #endif /* USE_MBEDTLS_ECC_P256 */ 415 416 static void btstack_crypto_ecc_p256_generate_key_software(void){ 417 418 btstack_crypto_ecc_p256_random_offset = 0; 419 420 // generate EC key 421 #ifdef USE_MICRO_ECC_P256 422 423 #ifndef WICED_VERSION 424 log_info("set uECC RNG for initial key generation with 64 random bytes"); 425 // micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it 426 uECC_set_rng(&sm_generate_f_rng); 427 #endif /* WICED_VERSION */ 428 429 #if uECC_SUPPORTS_secp256r1 430 // standard version 431 uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d, uECC_secp256r1()); 432 433 // disable RNG again, as returning no randmon data lets shared key generation fail 434 log_info("disable uECC RNG in standard version after key generation"); 435 uECC_set_rng(NULL); 436 #else 437 // static version 438 uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d); 439 #endif 440 #endif /* USE_MICRO_ECC_P256 */ 441 442 #ifdef USE_MBEDTLS_ECC_P256 443 mbedtls_mpi d; 444 mbedtls_ecp_point P; 445 mbedtls_mpi_init(&d); 446 mbedtls_ecp_point_init(&P); 447 int res = mbedtls_ecp_gen_keypair(&mbedtls_ec_group, &d, &P, &sm_generate_f_rng_mbedtls, NULL); 448 log_info("gen keypair %x", res); 449 mbedtls_mpi_write_binary(&P.X, &btstack_crypto_ecc_p256_public_key[0], 32); 450 mbedtls_mpi_write_binary(&P.Y, &btstack_crypto_ecc_p256_public_key[32], 32); 451 mbedtls_mpi_write_binary(&d, btstack_crypto_ecc_p256_d, 32); 452 mbedtls_ecp_point_free(&P); 453 mbedtls_mpi_free(&d); 454 #endif /* USE_MBEDTLS_ECC_P256 */ 455 } 456 457 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION 458 static void btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192){ 459 memset(btstack_crypto_ec_p192->dhkey, 0, 32); 460 461 #ifdef USE_MICRO_ECC_P256 462 #if uECC_SUPPORTS_secp256r1 463 // standard version 464 uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey, uECC_secp256r1()); 465 #else 466 // static version 467 uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey); 468 #endif 469 #endif 470 471 #ifdef USE_MBEDTLS_ECC_P256 472 // da * Pb 473 mbedtls_mpi d; 474 mbedtls_ecp_point Q; 475 mbedtls_ecp_point DH; 476 mbedtls_mpi_init(&d); 477 mbedtls_ecp_point_init(&Q); 478 mbedtls_ecp_point_init(&DH); 479 mbedtls_mpi_read_binary(&d, btstack_crypto_ecc_p256_d, 32); 480 mbedtls_mpi_read_binary(&Q.X, &btstack_crypto_ec_p192->public_key[0] , 32); 481 mbedtls_mpi_read_binary(&Q.Y, &btstack_crypto_ec_p192->public_key[32], 32); 482 mbedtls_mpi_lset(&Q.Z, 1); 483 mbedtls_ecp_mul(&mbedtls_ec_group, &DH, &d, &Q, NULL, NULL); 484 mbedtls_mpi_write_binary(&DH.X, btstack_crypto_ec_p192->dhkey, 32); 485 mbedtls_ecp_point_free(&DH); 486 mbedtls_mpi_free(&d); 487 mbedtls_ecp_point_free(&Q); 488 #endif 489 490 log_info("dhkey"); 491 log_info_hexdump(btstack_crypto_ec_p192->dhkey, 32); 492 } 493 #endif 494 495 #endif 496 497 #ifdef USE_BTSTACK_AES128 498 // CCM not implemented using software AES128 yet 499 #else 500 501 static void btstack_crypto_ccm_calc_s0(btstack_crypto_ccm_t * btstack_crypto_ccm){ 502 #ifdef DEBUG_CCM 503 printf("btstack_crypto_ccm_calc_s0\n"); 504 #endif 505 btstack_crypto_ccm->state = CCM_W4_S0; 506 btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, 0); 507 btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s); 508 } 509 510 static void btstack_crypto_ccm_calc_sn(btstack_crypto_ccm_t * btstack_crypto_ccm){ 511 #ifdef DEBUG_CCM 512 printf("btstack_crypto_ccm_calc_s%u\n", btstack_crypto_ccm->counter); 513 #endif 514 btstack_crypto_ccm->state = CCM_W4_SN; 515 btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, btstack_crypto_ccm->counter); 516 btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s); 517 } 518 519 static void btstack_crypto_ccm_calc_x1(btstack_crypto_ccm_t * btstack_crypto_ccm){ 520 uint8_t btstack_crypto_ccm_buffer[16]; 521 btstack_crypto_ccm->state = CCM_W4_X1; 522 btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm, btstack_crypto_ccm_buffer); 523 btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer); 524 } 525 526 static void btstack_crypto_ccm_calc_xn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * plaintext){ 527 int i; 528 int bytes_to_decrypt; 529 uint8_t btstack_crypto_ccm_buffer[16]; 530 btstack_crypto_ccm->state = CCM_W4_XN; 531 532 #ifdef DEBUG_CCM 533 printf("%16s: ", "bn"); 534 printf_hexdump(plaintext, 16); 535 #endif 536 bytes_to_decrypt = btstack_min(btstack_crypto_ccm->block_len, 16); 537 i = 0; 538 while (i < bytes_to_decrypt){ 539 btstack_crypto_ccm_buffer[i] = btstack_crypto_ccm->x_i[i] ^ plaintext[i]; 540 i++; 541 } 542 memcpy(&btstack_crypto_ccm_buffer[i], &btstack_crypto_ccm->x_i[i], 16 - bytes_to_decrypt); 543 #ifdef DEBUG_CCM 544 printf("%16s: ", "Xn XOR bn"); 545 printf_hexdump(btstack_crypto_ccm_buffer, 16); 546 #endif 547 548 btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer); 549 } 550 #endif 551 552 static void btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm_t * btstack_crypto_ccm){ 553 // store length 554 if (btstack_crypto_ccm->aad_offset == 0){ 555 uint8_t len_buffer[2]; 556 big_endian_store_16(len_buffer, 0, btstack_crypto_ccm->aad_len); 557 btstack_crypto_ccm->x_i[0] ^= len_buffer[0]; 558 btstack_crypto_ccm->x_i[1] ^= len_buffer[1]; 559 btstack_crypto_ccm->aad_remainder_len += 2; 560 btstack_crypto_ccm->aad_offset += 2; 561 } 562 563 // fill from input 564 uint16_t bytes_free = 16 - btstack_crypto_ccm->aad_remainder_len; 565 uint16_t bytes_to_copy = btstack_min(bytes_free, btstack_crypto_ccm->block_len); 566 printf("btstack_crypto_ccm_calc_aad_xn: bytes to copy %u\n", bytes_to_copy); 567 while (bytes_to_copy){ 568 btstack_crypto_ccm->x_i[btstack_crypto_ccm->aad_remainder_len++] ^= *btstack_crypto_ccm->input++; 569 btstack_crypto_ccm->aad_offset++; 570 btstack_crypto_ccm->block_len--; 571 bytes_to_copy--; 572 bytes_free--; 573 } 574 575 // if last block, fill with zeros 576 printf("btstack_crypto_ccm_calc_aad_xn: aad_len %u, aad_offset %u. aad_remainder_len %u, bytes_free %u\n", 577 btstack_crypto_ccm->aad_len, btstack_crypto_ccm->aad_offset, btstack_crypto_ccm->aad_remainder_len, bytes_free); 578 579 if (btstack_crypto_ccm->aad_offset == (btstack_crypto_ccm->aad_len + 2)){ 580 printf("btstack_crypto_ccm_calc_aad_xn: fill from %u, %u bytes\n", btstack_crypto_ccm->aad_remainder_len, bytes_free); 581 // memset(&btstack_crypto_ccm->b_i[btstack_crypto_ccm->aad_remainder_len], 0, bytes_free); 582 btstack_crypto_ccm->aad_remainder_len = 16; 583 } 584 // if not full, notify done 585 if (btstack_crypto_ccm->aad_remainder_len < 16){ 586 btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto); 587 return; 588 } 589 590 // encrypt block 591 #ifdef DEBUG_CCM 592 printf("%16s: ", "Xn XOR Bn (aad)"); 593 printf_hexdump(btstack_crypto_ccm->x_i, 16); 594 #endif 595 596 btstack_crypto_ccm->aad_remainder_len = 0; 597 btstack_crypto_ccm->state = CCM_W4_AAD_XN; 598 btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm->x_i); 599 } 600 601 static void btstack_crypto_ccm_handle_s0(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){ 602 // data is little-endian, flip on the fly 603 int i; 604 for (i=0;i<16;i++){ 605 btstack_crypto_ccm->x_i[i] = btstack_crypto_ccm->x_i[i] ^ data[15-i]; 606 } 607 btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto); 608 } 609 610 static void btstack_crypto_ccm_handle_sn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){ 611 // data is little-endian, flip on the fly 612 int i; 613 uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16); 614 for (i=0;i<bytes_to_process;i++){ 615 btstack_crypto_ccm->output[i] = btstack_crypto_ccm->input[i] ^ data[15-i]; 616 } 617 } 618 619 static void btstack_crypto_ccm_next_block(btstack_crypto_ccm_t * btstack_crypto_ccm, btstack_crypto_ccm_state_t state_when_done){ 620 uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16); 621 // next block 622 btstack_crypto_ccm->counter++; 623 btstack_crypto_ccm->input += bytes_to_process; 624 btstack_crypto_ccm->output += bytes_to_process; 625 btstack_crypto_ccm->block_len -= bytes_to_process; 626 btstack_crypto_ccm->message_len -= bytes_to_process; 627 #ifdef DEBUG_CCM 628 printf("btstack_crypto_ccm_next_block (message len %u, blockk_len %u)\n", btstack_crypto_ccm->message_len, btstack_crypto_ccm->block_len); 629 #endif 630 if (btstack_crypto_ccm->message_len == 0){ 631 btstack_crypto_ccm->state = CCM_CALCULATE_S0; 632 } else { 633 btstack_crypto_ccm->state = state_when_done; 634 if (btstack_crypto_ccm->block_len == 0){ 635 btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto); 636 } 637 } 638 } 639 640 static void btstack_crypto_run(void){ 641 642 btstack_crypto_aes128_t * btstack_crypto_aes128; 643 btstack_crypto_ccm_t * btstack_crypto_ccm; 644 btstack_crypto_aes128_cmac_t * btstack_crypto_cmac; 645 #ifdef ENABLE_ECC_P256 646 btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192; 647 #endif 648 649 // stack up and running? 650 if (hci_get_state() != HCI_STATE_WORKING) return; 651 652 // already active? 653 if (btstack_crypto_wait_for_hci_result) return; 654 655 // anything to do? 656 if (btstack_linked_list_empty(&btstack_crypto_operations)) return; 657 658 // can send a command? 659 if (!hci_can_send_command_packet_now()) return; 660 661 btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations); 662 switch (btstack_crypto->operation){ 663 case BTSTACK_CRYPTO_RANDOM: 664 btstack_crypto_wait_for_hci_result = 1; 665 hci_send_cmd(&hci_le_rand); 666 break; 667 case BTSTACK_CRYPTO_AES128: 668 btstack_crypto_aes128 = (btstack_crypto_aes128_t *) btstack_crypto; 669 #ifdef USE_BTSTACK_AES128 670 btstack_aes128_calc(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext, btstack_crypto_aes128->ciphertext); 671 btstack_crypto_done(btstack_crypto); 672 #else 673 btstack_crypto_aes128_start(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext); 674 #endif 675 break; 676 case BTSTACK_CRYPTO_CMAC_MESSAGE: 677 case BTSTACK_CRYPTO_CMAC_GENERATOR: 678 btstack_crypto_wait_for_hci_result = 1; 679 btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t *) btstack_crypto; 680 if (btstack_crypto_cmac_state == CMAC_IDLE){ 681 btstack_crypto_cmac_start(btstack_crypto_cmac); 682 } else { 683 btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac); 684 } 685 break; 686 687 case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK: 688 case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK: 689 case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK: 690 #ifdef USE_BTSTACK_AES128 691 UNUSED(btstack_crypto_ccm); 692 log_error("ccm not implemented for software aes128 yet"); 693 #else 694 btstack_crypto_ccm = (btstack_crypto_ccm_t *) btstack_crypto; 695 switch (btstack_crypto_ccm->state){ 696 case CCM_CALCULATE_AAD_XN: 697 btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm); 698 break; 699 case CCM_CALCULATE_X1: 700 btstack_crypto_ccm_calc_x1(btstack_crypto_ccm); 701 break; 702 case CCM_CALCULATE_S0: 703 btstack_crypto_ccm_calc_s0(btstack_crypto_ccm); 704 break; 705 case CCM_CALCULATE_SN: 706 btstack_crypto_ccm_calc_sn(btstack_crypto_ccm); 707 break; 708 case CCM_CALCULATE_XN: 709 btstack_crypto_ccm_calc_xn(btstack_crypto_ccm, btstack_crypto->operation == BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK ? btstack_crypto_ccm->input : btstack_crypto_ccm->output); 710 break; 711 default: 712 break; 713 } 714 #endif 715 break; 716 717 #ifdef ENABLE_ECC_P256 718 case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY: 719 btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto; 720 switch (btstack_crypto_ecc_p256_key_generation_state){ 721 case ECC_P256_KEY_GENERATION_DONE: 722 // done 723 btstack_crypto_log_ec_publickey(btstack_crypto_ecc_p256_public_key); 724 memcpy(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_public_key, 64); 725 btstack_linked_list_pop(&btstack_crypto_operations); 726 (*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context); 727 break; 728 case ECC_P256_KEY_GENERATION_IDLE: 729 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION 730 log_info("start ecc random"); 731 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_GENERATING_RANDOM; 732 btstack_crypto_ecc_p256_random_offset = 0; 733 btstack_crypto_wait_for_hci_result = 1; 734 hci_send_cmd(&hci_le_rand); 735 #else 736 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_W4_KEY; 737 btstack_crypto_wait_for_hci_result = 1; 738 hci_send_cmd(&hci_le_read_local_p256_public_key); 739 #endif 740 break; 741 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION 742 case ECC_P256_KEY_GENERATION_GENERATING_RANDOM: 743 log_info("more ecc random"); 744 btstack_crypto_wait_for_hci_result = 1; 745 hci_send_cmd(&hci_le_rand); 746 break; 747 #endif 748 default: 749 break; 750 } 751 break; 752 case BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY: 753 btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto; 754 #ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION 755 btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ec_p192); 756 // done 757 btstack_linked_list_pop(&btstack_crypto_operations); 758 (*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context); 759 #else 760 btstack_crypto_wait_for_hci_result = 1; 761 hci_send_cmd(&hci_le_generate_dhkey, &btstack_crypto_ec_p192->public_key[0], &btstack_crypto_ec_p192->public_key[32]); 762 #endif 763 break; 764 765 #endif /* ENABLE_ECC_P256 */ 766 767 default: 768 break; 769 } 770 } 771 772 static void btstack_crypto_handle_random_data(const uint8_t * data, uint16_t len){ 773 btstack_crypto_random_t * btstack_crypto_random; 774 btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations); 775 uint16_t bytes_to_copy; 776 if (!btstack_crypto) return; 777 switch (btstack_crypto->operation){ 778 case BTSTACK_CRYPTO_RANDOM: 779 btstack_crypto_random = (btstack_crypto_random_t*) btstack_crypto; 780 bytes_to_copy = btstack_min(btstack_crypto_random->size, len); 781 memcpy(btstack_crypto_random->buffer, data, bytes_to_copy); 782 btstack_crypto_random->buffer += bytes_to_copy; 783 btstack_crypto_random->size -= bytes_to_copy; 784 // data processed, more? 785 if (!btstack_crypto_random->size) { 786 // done 787 btstack_linked_list_pop(&btstack_crypto_operations); 788 (*btstack_crypto_random->btstack_crypto.context_callback.callback)(btstack_crypto_random->btstack_crypto.context_callback.context); 789 } 790 break; 791 #ifdef ENABLE_ECC_P256 792 case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY: 793 memcpy(&btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_len], data, 8); 794 btstack_crypto_ecc_p256_random_len += 8; 795 if (btstack_crypto_ecc_p256_random_len >= 64) { 796 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_ACTIVE; 797 btstack_crypto_ecc_p256_generate_key_software(); 798 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE; 799 } 800 break; 801 #endif 802 default: 803 break; 804 } 805 // more work? 806 btstack_crypto_run(); 807 } 808 809 static void btstack_crypto_handle_encryption_result(const uint8_t * data){ 810 btstack_crypto_aes128_t * btstack_crypto_aes128; 811 btstack_crypto_aes128_cmac_t * btstack_crypto_cmac; 812 btstack_crypto_ccm_t * btstack_crypto_ccm; 813 uint8_t result[16]; 814 815 btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations); 816 if (!btstack_crypto) return; 817 switch (btstack_crypto->operation){ 818 case BTSTACK_CRYPTO_AES128: 819 btstack_crypto_aes128 = (btstack_crypto_aes128_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations); 820 reverse_128(data, btstack_crypto_aes128->ciphertext); 821 btstack_crypto_done(btstack_crypto); 822 break; 823 case BTSTACK_CRYPTO_CMAC_GENERATOR: 824 case BTSTACK_CRYPTO_CMAC_MESSAGE: 825 btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations); 826 reverse_128(data, result); 827 btstack_crypto_cmac_handle_encryption_result(btstack_crypto_cmac, result); 828 break; 829 case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK: 830 btstack_crypto_ccm = (btstack_crypto_ccm_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations); 831 switch (btstack_crypto_ccm->state){ 832 case CCM_W4_X1: 833 reverse_128(data, btstack_crypto_ccm->x_i); 834 #ifdef DEBUG_CCM 835 printf("%16s: ", "X1"); 836 printf_hexdump(btstack_crypto_ccm->x_i, 16); 837 #endif 838 btstack_crypto_ccm->aad_remainder_len = 0; 839 btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN; 840 break; 841 case CCM_W4_AAD_XN: 842 reverse_128(data, btstack_crypto_ccm->x_i); 843 #ifdef DEBUG_CCM 844 printf("%16s: ", "Xn+1 AAD"); 845 printf_hexdump(btstack_crypto_ccm->x_i, 16); 846 #endif 847 // more aad? 848 if (btstack_crypto_ccm->aad_offset < (btstack_crypto_ccm->aad_len + 2)){ 849 btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN; 850 } else { 851 // done 852 btstack_crypto_done(btstack_crypto); 853 } 854 break; 855 default: 856 break; 857 } 858 break; 859 case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK: 860 btstack_crypto_ccm = (btstack_crypto_ccm_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations); 861 switch (btstack_crypto_ccm->state){ 862 case CCM_W4_X1: 863 reverse_128(data, btstack_crypto_ccm->x_i); 864 #ifdef DEBUG_CCM 865 printf("%16s: ", "X1"); 866 printf_hexdump(btstack_crypto_ccm->x_i, 16); 867 #endif 868 btstack_crypto_ccm->state = CCM_CALCULATE_XN; 869 break; 870 case CCM_W4_XN: 871 reverse_128(data, btstack_crypto_ccm->x_i); 872 #ifdef DEBUG_CCM 873 printf("%16s: ", "Xn+1"); 874 printf_hexdump(btstack_crypto_ccm->x_i, 16); 875 #endif 876 btstack_crypto_ccm->state = CCM_CALCULATE_SN; 877 break; 878 case CCM_W4_S0: 879 #ifdef DEBUG_CCM 880 reverse_128(data, result); 881 printf("%16s: ", "X0"); 882 printf_hexdump(btstack_crypto_ccm->x_i, 16); 883 #endif 884 btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data); 885 break; 886 case CCM_W4_SN: 887 #ifdef DEBUG_CCM 888 reverse_128(data, result); 889 printf("%16s: ", "Sn"); 890 printf_hexdump(btstack_crypto_ccm->x_i, 16); 891 #endif 892 btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data); 893 btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_XN); 894 break; 895 default: 896 break; 897 } 898 break; 899 case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK: 900 btstack_crypto_ccm = (btstack_crypto_ccm_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations); 901 switch (btstack_crypto_ccm->state){ 902 case CCM_W4_X1: 903 reverse_128(data, btstack_crypto_ccm->x_i); 904 #ifdef DEBUG_CCM 905 printf("%16s: ", "X1"); 906 printf_hexdump(btstack_crypto_ccm->x_i, 16); 907 #endif 908 btstack_crypto_ccm->state = CCM_CALCULATE_SN; 909 break; 910 case CCM_W4_XN: 911 reverse_128(data, btstack_crypto_ccm->x_i); 912 #ifdef DEBUG_CCM 913 printf("%16s: ", "Xn+1"); 914 printf_hexdump(btstack_crypto_ccm->x_i, 16); 915 #endif 916 btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_SN); 917 break; 918 case CCM_W4_S0: 919 btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data); 920 break; 921 case CCM_W4_SN: 922 btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data); 923 btstack_crypto_ccm->state = CCM_CALCULATE_XN; 924 break; 925 default: 926 break; 927 } 928 break; 929 default: 930 break; 931 } 932 } 933 934 static void btstack_crypto_event_handler(uint8_t packet_type, uint16_t cid, uint8_t *packet, uint16_t size){ 935 UNUSED(cid); // ok: there is no channel 936 UNUSED(size); // ok: fixed format events read from HCI buffer 937 938 #ifdef ENABLE_ECC_P256 939 #ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION 940 btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192; 941 #endif 942 #endif 943 944 if (packet_type != HCI_EVENT_PACKET) return; 945 946 switch (hci_event_packet_get_type(packet)){ 947 case HCI_EVENT_COMMAND_COMPLETE: 948 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){ 949 if (hci_get_state() != HCI_STATE_WORKING) return; 950 if (!btstack_crypto_wait_for_hci_result) return; 951 btstack_crypto_wait_for_hci_result = 0; 952 btstack_crypto_handle_encryption_result(&packet[6]); 953 } 954 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){ 955 if (hci_get_state() != HCI_STATE_WORKING) return; 956 if (!btstack_crypto_wait_for_hci_result) return; 957 btstack_crypto_wait_for_hci_result = 0; 958 btstack_crypto_handle_random_data(&packet[6], 8); 959 } 960 if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_commands)){ 961 int ecdh_operations_supported = (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+34] & 0x06) == 0x06; 962 log_info("controller supports ECDH operation: %u", ecdh_operations_supported); 963 #ifdef ENABLE_ECC_P256 964 #ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION 965 if (!ecdh_operations_supported){ 966 // mbedTLS can also be used if already available (and malloc is supported) 967 log_error("ECC-P256 support enabled, but HCI Controller doesn't support it. Please add ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS to btstack_config.h"); 968 } 969 #endif 970 #endif 971 } 972 break; 973 974 #ifdef ENABLE_ECC_P256 975 #ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION 976 case HCI_EVENT_LE_META: 977 btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations); 978 if (!btstack_crypto_ec_p192) break; 979 switch (hci_event_le_meta_get_subevent_code(packet)){ 980 case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE: 981 if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY) break; 982 if (!btstack_crypto_wait_for_hci_result) return; 983 btstack_crypto_wait_for_hci_result = 0; 984 if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){ 985 log_error("Read Local P256 Public Key failed"); 986 } 987 hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &btstack_crypto_ecc_p256_public_key[0]); 988 hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &btstack_crypto_ecc_p256_public_key[32]); 989 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE; 990 break; 991 case HCI_SUBEVENT_LE_GENERATE_DHKEY_COMPLETE: 992 if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY) break; 993 if (!btstack_crypto_wait_for_hci_result) return; 994 btstack_crypto_wait_for_hci_result = 0; 995 if (hci_subevent_le_generate_dhkey_complete_get_status(packet)){ 996 log_error("Generate DHKEY failed -> abort"); 997 } 998 hci_subevent_le_generate_dhkey_complete_get_dhkey(packet, btstack_crypto_ec_p192->dhkey); 999 // done 1000 btstack_linked_list_pop(&btstack_crypto_operations); 1001 (*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context); 1002 break; 1003 default: 1004 break; 1005 } 1006 break; 1007 #endif 1008 #endif 1009 default: 1010 break; 1011 } 1012 1013 // try processing 1014 btstack_crypto_run(); 1015 } 1016 1017 void btstack_crypto_init(void){ 1018 if (btstack_crypto_initialized) return; 1019 btstack_crypto_initialized = 1; 1020 1021 // register with HCI 1022 hci_event_callback_registration.callback = &btstack_crypto_event_handler; 1023 hci_add_event_handler(&hci_event_callback_registration); 1024 1025 #ifdef USE_MBEDTLS_ECC_P256 1026 mbedtls_ecp_group_init(&mbedtls_ec_group); 1027 mbedtls_ecp_group_load(&mbedtls_ec_group, MBEDTLS_ECP_DP_SECP256R1); 1028 #endif 1029 } 1030 1031 void btstack_crypto_random_generate(btstack_crypto_random_t * request, uint8_t * buffer, uint16_t size, void (* callback)(void * arg), void * callback_arg){ 1032 request->btstack_crypto.context_callback.callback = callback; 1033 request->btstack_crypto.context_callback.context = callback_arg; 1034 request->btstack_crypto.operation = BTSTACK_CRYPTO_RANDOM; 1035 request->buffer = buffer; 1036 request->size = size; 1037 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1038 btstack_crypto_run(); 1039 } 1040 1041 void btstack_crypto_aes128_encrypt(btstack_crypto_aes128_t * request, const uint8_t * key, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){ 1042 request->btstack_crypto.context_callback.callback = callback; 1043 request->btstack_crypto.context_callback.context = callback_arg; 1044 request->btstack_crypto.operation = BTSTACK_CRYPTO_AES128; 1045 request->key = key; 1046 request->plaintext = plaintext; 1047 request->ciphertext = ciphertext; 1048 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1049 btstack_crypto_run(); 1050 } 1051 1052 void btstack_crypto_aes128_cmac_generator(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, uint8_t (*get_byte_callback)(uint16_t pos), uint8_t * hash, void (* callback)(void * arg), void * callback_arg){ 1053 request->btstack_crypto.context_callback.callback = callback; 1054 request->btstack_crypto.context_callback.context = callback_arg; 1055 request->btstack_crypto.operation = BTSTACK_CRYPTO_CMAC_GENERATOR; 1056 request->key = key; 1057 request->size = size; 1058 request->data.get_byte_callback = get_byte_callback; 1059 request->hash = hash; 1060 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1061 btstack_crypto_run(); 1062 } 1063 1064 void btstack_crypto_aes128_cmac_message(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, const uint8_t * message, uint8_t * hash, void (* callback)(void * arg), void * callback_arg){ 1065 request->btstack_crypto.context_callback.callback = callback; 1066 request->btstack_crypto.context_callback.context = callback_arg; 1067 request->btstack_crypto.operation = BTSTACK_CRYPTO_CMAC_MESSAGE; 1068 request->key = key; 1069 request->size = size; 1070 request->data.message = message; 1071 request->hash = hash; 1072 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1073 btstack_crypto_run(); 1074 } 1075 1076 void btstack_crypto_aes128_cmac_zero(btstack_crypto_aes128_cmac_t * request, uint16_t len, const uint8_t * message, uint8_t * hash, void (* callback)(void * arg), void * callback_arg){ 1077 request->btstack_crypto.context_callback.callback = callback; 1078 request->btstack_crypto.context_callback.context = callback_arg; 1079 request->btstack_crypto.operation = BTSTACK_CRYPTO_CMAC_MESSAGE; 1080 request->key = zero; 1081 request->size = len; 1082 request->data.message = message; 1083 request->hash = hash; 1084 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1085 btstack_crypto_run(); 1086 } 1087 1088 #ifdef ENABLE_ECC_P256 1089 void btstack_crypto_ecc_p256_generate_key(btstack_crypto_ecc_p256_t * request, uint8_t * public_key, void (* callback)(void * arg), void * callback_arg){ 1090 // reset key generation 1091 if (btstack_crypto_ecc_p256_key_generation_state == ECC_P256_KEY_GENERATION_DONE){ 1092 btstack_crypto_ecc_p256_random_len = 0; 1093 btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_IDLE; 1094 } 1095 request->btstack_crypto.context_callback.callback = callback; 1096 request->btstack_crypto.context_callback.context = callback_arg; 1097 request->btstack_crypto.operation = BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY; 1098 request->public_key = public_key; 1099 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1100 btstack_crypto_run(); 1101 } 1102 1103 void btstack_crypto_ecc_p256_calculate_dhkey(btstack_crypto_ecc_p256_t * request, const uint8_t * public_key, uint8_t * dhkey, void (* callback)(void * arg), void * callback_arg){ 1104 request->btstack_crypto.context_callback.callback = callback; 1105 request->btstack_crypto.context_callback.context = callback_arg; 1106 request->btstack_crypto.operation = BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY; 1107 request->public_key = (uint8_t *) public_key; 1108 request->dhkey = dhkey; 1109 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1110 btstack_crypto_run(); 1111 } 1112 1113 int btstack_crypto_ecc_p256_validate_public_key(const uint8_t * public_key){ 1114 1115 // validate public key using micro-ecc 1116 int err = 0; 1117 1118 #ifdef USE_MICRO_ECC_P256 1119 #if uECC_SUPPORTS_secp256r1 1120 // standard version 1121 err = uECC_valid_public_key(public_key, uECC_secp256r1()) == 0; 1122 #else 1123 // static version 1124 err = uECC_valid_public_key(public_key) == 0; 1125 #endif 1126 #endif 1127 1128 #ifdef USE_MBEDTLS_ECC_P256 1129 mbedtls_ecp_point Q; 1130 mbedtls_ecp_point_init( &Q ); 1131 mbedtls_mpi_read_binary(&Q.X, &public_key[0], 32); 1132 mbedtls_mpi_read_binary(&Q.Y, &public_key[32], 32); 1133 mbedtls_mpi_lset(&Q.Z, 1); 1134 err = mbedtls_ecp_check_pubkey(&mbedtls_ec_group, &Q); 1135 mbedtls_ecp_point_free( & Q); 1136 #endif 1137 1138 if (err){ 1139 log_error("public key invalid %x", err); 1140 } 1141 return err; 1142 } 1143 #endif 1144 1145 void btstack_crypto_ccm_init(btstack_crypto_ccm_t * request, const uint8_t * key, const uint8_t * nonce, uint16_t message_len, uint16_t additional_authenticated_data_len, uint8_t auth_len){ 1146 request->key = key; 1147 request->nonce = nonce; 1148 request->message_len = message_len; 1149 request->aad_len = additional_authenticated_data_len; 1150 request->aad_offset = 0; 1151 request->auth_len = auth_len; 1152 request->counter = 1; 1153 request->state = CCM_CALCULATE_X1; 1154 } 1155 1156 void btstack_crypto_ccm_digest(btstack_crypto_ccm_t * request, uint8_t * additional_authenticated_data, uint16_t additional_authenticated_data_len, void (* callback)(void * arg), void * callback_arg){ 1157 // not implemented yet 1158 request->btstack_crypto.context_callback.callback = callback; 1159 request->btstack_crypto.context_callback.context = callback_arg; 1160 request->btstack_crypto.operation = BTSTACK_CRYPTO_CCM_DIGEST_BLOCK; 1161 request->block_len = additional_authenticated_data_len; 1162 request->input = additional_authenticated_data; 1163 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1164 btstack_crypto_run(); 1165 } 1166 1167 void btstack_crypto_ccm_get_authentication_value(btstack_crypto_ccm_t * request, uint8_t * authentication_value){ 1168 memcpy(authentication_value, request->x_i, request->auth_len); 1169 } 1170 1171 void btstack_crypto_ccm_encrypt_block(btstack_crypto_ccm_t * request, uint16_t block_len, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){ 1172 #ifdef DEBUG_CCM 1173 printf("\nbtstack_crypto_ccm_encrypt_block, len %u\n", block_len); 1174 #endif 1175 request->btstack_crypto.context_callback.callback = callback; 1176 request->btstack_crypto.context_callback.context = callback_arg; 1177 request->btstack_crypto.operation = BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK; 1178 request->block_len = block_len; 1179 request->input = plaintext; 1180 request->output = ciphertext; 1181 if (request->state != CCM_CALCULATE_X1){ 1182 request->state = CCM_CALCULATE_XN; 1183 } 1184 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1185 btstack_crypto_run(); 1186 } 1187 1188 void btstack_crypto_ccm_decrypt_block(btstack_crypto_ccm_t * request, uint16_t block_len, const uint8_t * ciphertext, uint8_t * plaintext, void (* callback)(void * arg), void * callback_arg){ 1189 request->btstack_crypto.context_callback.callback = callback; 1190 request->btstack_crypto.context_callback.context = callback_arg; 1191 request->btstack_crypto.operation = BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK; 1192 request->block_len = block_len; 1193 request->input = ciphertext; 1194 request->output = plaintext; 1195 if (request->state != CCM_CALCULATE_X1){ 1196 request->state = CCM_CALCULATE_SN; 1197 } 1198 btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request); 1199 btstack_crypto_run(); 1200 } 1201 1202