xref: /btstack/src/btstack_util.c (revision 5222912b1f9c3566e39bfc7510c3fa3878d25676)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define __BTSTACK_FILE__ "btstack_util.c"
39 
40 /*
41  *  btstack_util.c
42  *
43  *  General utility functions
44  *
45  *  Created by Matthias Ringwald on 7/23/09.
46  */
47 
48 #include "btstack_config.h"
49 #include "btstack_debug.h"
50 #include "btstack_util.h"
51 
52 #include <stdio.h>
53 #include <string.h>
54 
55 /**
56  * @brief Compare two Bluetooth addresses
57  * @param a
58  * @param b
59  * @return 0 if equal
60  */
61 int bd_addr_cmp(const bd_addr_t a, const bd_addr_t b){
62     return memcmp(a,b, BD_ADDR_LEN);
63 }
64 
65 /**
66  * @brief Copy Bluetooth address
67  * @param dest
68  * @param src
69  */
70 void bd_addr_copy(bd_addr_t dest, const bd_addr_t src){
71     memcpy(dest,src,BD_ADDR_LEN);
72 }
73 
74 uint16_t little_endian_read_16(const uint8_t * buffer, int pos){
75     return ((uint16_t) buffer[pos]) | (((uint16_t)buffer[(pos)+1]) << 8);
76 }
77 uint32_t little_endian_read_24(const uint8_t * buffer, int pos){
78     return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16);
79 }
80 uint32_t little_endian_read_32(const uint8_t * buffer, int pos){
81     return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16) | (((uint32_t) buffer[(pos)+3]) << 24);
82 }
83 
84 void little_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){
85     buffer[pos++] = value;
86     buffer[pos++] = value >> 8;
87 }
88 
89 void little_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){
90     buffer[pos++] = value;
91     buffer[pos++] = value >> 8;
92     buffer[pos++] = value >> 16;
93     buffer[pos++] = value >> 24;
94 }
95 
96 uint32_t big_endian_read_16( const uint8_t * buffer, int pos) {
97     return ((uint16_t) buffer[(pos)+1]) | (((uint16_t)buffer[ pos   ]) << 8);
98 }
99 
100 uint32_t big_endian_read_24( const uint8_t * buffer, int pos) {
101     return ( ((uint32_t)buffer[(pos)+2]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t) buffer[pos]) << 16));
102 }
103 
104 uint32_t big_endian_read_32( const uint8_t * buffer, int pos) {
105     return ((uint32_t) buffer[(pos)+3]) | (((uint32_t)buffer[(pos)+2]) << 8) | (((uint32_t)buffer[(pos)+1]) << 16) | (((uint32_t) buffer[pos]) << 24);
106 }
107 
108 void big_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){
109     buffer[pos++] = value >> 8;
110     buffer[pos++] = value;
111 }
112 
113 void big_endian_store_24(uint8_t *buffer, uint16_t pos, uint32_t value){
114     buffer[pos++] = value >> 16;
115     buffer[pos++] = value >> 8;
116     buffer[pos++] = value;
117 }
118 
119 void big_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){
120     buffer[pos++] = value >> 24;
121     buffer[pos++] = value >> 16;
122     buffer[pos++] = value >> 8;
123     buffer[pos++] = value;
124 }
125 
126 // general swap/endianess utils
127 void reverse_bytes(const uint8_t *src, uint8_t *dst, int len){
128     int i;
129     for (i = 0; i < len; i++)
130         dst[len - 1 - i] = src[i];
131 }
132 void reverse_24(const uint8_t * src, uint8_t * dst){
133     reverse_bytes(src, dst, 3);
134 }
135 void reverse_48(const uint8_t * src, uint8_t * dst){
136     reverse_bytes(src, dst, 6);
137 }
138 void reverse_56(const uint8_t * src, uint8_t * dst){
139     reverse_bytes(src, dst, 7);
140 }
141 void reverse_64(const uint8_t * src, uint8_t * dst){
142     reverse_bytes(src, dst, 8);
143 }
144 void reverse_128(const uint8_t * src, uint8_t * dst){
145     reverse_bytes(src, dst, 16);
146 }
147 void reverse_256(const uint8_t * src, uint8_t * dst){
148     reverse_bytes(src, dst, 32);
149 }
150 
151 void reverse_bd_addr(const bd_addr_t src, bd_addr_t dest){
152     reverse_bytes(src, dest, 6);
153 }
154 
155 uint32_t btstack_min(uint32_t a, uint32_t b){
156     return a < b ? a : b;
157 }
158 
159 uint32_t btstack_max(uint32_t a, uint32_t b){
160     return a > b ? a : b;
161 }
162 
163 char char_for_nibble(int nibble){
164     if (nibble < 10) return '0' + nibble;
165     nibble -= 10;
166     if (nibble < 6) return 'A' + nibble;
167     return '?';
168 }
169 
170 static inline char char_for_high_nibble(int value){
171     return char_for_nibble((value >> 4) & 0x0f);
172 }
173 
174 static inline char char_for_low_nibble(int value){
175     return char_for_nibble(value & 0x0f);
176 }
177 
178 int nibble_for_char(char c){
179     if (c >= '0' && c <= '9') return c - '0';
180     if (c >= 'a' && c <= 'f') return c - 'a' + 10;
181     if (c >= 'A' && c <= 'F') return c - 'A' + 10;
182     return -1;
183 }
184 
185 void printf_hexdump(const void *data, int size){
186     if (size <= 0) return;
187     int i;
188     for (i=0; i<size;i++){
189         printf("%02X ", ((uint8_t *)data)[i]);
190     }
191     printf("\n");
192 }
193 
194 void log_info_hexdump(const void *data, int size){
195 #ifdef ENABLE_LOG_INFO
196 
197 #define ITEMS_PER_LINE 16
198 // template '0x12, '
199 #define BYTES_PER_BYTE  6
200 
201     char buffer[BYTES_PER_BYTE*ITEMS_PER_LINE+1];
202     int i, j;
203     j = 0;
204     for (i=0; i<size;i++){
205 
206         // help static analyzer proof that j stays within bounds
207         if (j > BYTES_PER_BYTE * (ITEMS_PER_LINE-1)){
208             j = 0;
209         }
210 
211         uint8_t byte = ((uint8_t *)data)[i];
212         buffer[j++] = '0';
213         buffer[j++] = 'x';
214         buffer[j++] = char_for_high_nibble(byte);
215         buffer[j++] = char_for_low_nibble(byte);
216         buffer[j++] = ',';
217         buffer[j++] = ' ';
218 
219         if (j >= BYTES_PER_BYTE * ITEMS_PER_LINE ){
220             buffer[j] = 0;
221             log_info("%s", buffer);
222             j = 0;
223         }
224     }
225     if (j != 0){
226         buffer[j] = 0;
227         log_info("%s", buffer);
228     }
229 #else
230     UNUSED(data);
231     UNUSED(size);
232 #endif
233 }
234 
235 void log_info_key(const char * name, sm_key_t key){
236 #ifdef ENABLE_LOG_INFO
237     char buffer[16*2+1];
238     int i;
239     int j = 0;
240     for (i=0; i<16;i++){
241         uint8_t byte = key[i];
242         buffer[j++] = char_for_high_nibble(byte);
243         buffer[j++] = char_for_low_nibble(byte);
244     }
245     buffer[j] = 0;
246     log_info("%-6s %s", name, buffer);
247 #else
248     UNUSED(name);
249     UNUSED(key);
250 #endif
251 }
252 
253 // UUIDs are stored in big endian, similar to bd_addr_t
254 
255 // Bluetooth Base UUID: 00000000-0000-1000-8000- 00805F9B34FB
256 const uint8_t bluetooth_base_uuid[] = { 0x00, 0x00, 0x00, 0x00, /* - */ 0x00, 0x00, /* - */ 0x10, 0x00, /* - */
257     0x80, 0x00, /* - */ 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB };
258 
259 void uuid_add_bluetooth_prefix(uint8_t *uuid, uint32_t shortUUID){
260     memcpy(uuid, bluetooth_base_uuid, 16);
261     big_endian_store_32(uuid, 0, shortUUID);
262 }
263 
264 int uuid_has_bluetooth_prefix(const uint8_t * uuid128){
265     return memcmp(&uuid128[4], &bluetooth_base_uuid[4], 12) == 0;
266 }
267 
268 static char uuid128_to_str_buffer[32+4+1];
269 char * uuid128_to_str(const uint8_t * uuid){
270     int i;
271     int j = 0;
272     // after 4, 6, 8, and 10 bytes = XYXYXYXY-XYXY-XYXY-XYXY-XYXYXYXYXYXY, there's a dash
273     const int dash_locations = (1<<3) | (1<<5) | (1<<7) | (1<<9);
274     for (i=0;i<16;i++){
275         uint8_t byte = uuid[i];
276         uuid128_to_str_buffer[j++] = char_for_high_nibble(byte);
277         uuid128_to_str_buffer[j++] = char_for_low_nibble(byte);
278         if (dash_locations & (1<<i)){
279             uuid128_to_str_buffer[j++] = '-';
280         }
281     }
282     return uuid128_to_str_buffer;
283 }
284 
285 static char bd_addr_to_str_buffer[6*3];  // 12:45:78:01:34:67\0
286 char * bd_addr_to_str(const bd_addr_t addr){
287     // orig code
288     // sprintf(bd_addr_to_str_buffer, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
289     // sprintf-free code
290     char * p = bd_addr_to_str_buffer;
291     int i;
292     for (i = 0; i < 6 ; i++) {
293         uint8_t byte = addr[i];
294         *p++ = char_for_high_nibble(byte);
295         *p++ = char_for_low_nibble(byte);
296         *p++ = ':';
297     }
298     *--p = 0;
299     return (char *) bd_addr_to_str_buffer;
300 }
301 
302 static int scan_hex_byte(const char * byte_string){
303     int upper_nibble = nibble_for_char(*byte_string++);
304     if (upper_nibble < 0) return -1;
305     int lower_nibble = nibble_for_char(*byte_string);
306     if (lower_nibble < 0) return -1;
307     return (upper_nibble << 4) | lower_nibble;
308 }
309 
310 int sscanf_bd_addr(const char * addr_string, bd_addr_t addr){
311     uint8_t buffer[BD_ADDR_LEN];
312     int result = 0;
313     int i;
314     for (i = 0; i < BD_ADDR_LEN; i++) {
315         int single_byte = scan_hex_byte(addr_string);
316         if (single_byte < 0) break;
317         addr_string += 2;
318         buffer[i] = single_byte;
319         // don't check seperator after last byte
320         if (i == BD_ADDR_LEN - 1) {
321             result = 1;
322             break;
323         }
324         char separator = *addr_string++;
325         if (separator != ':' && separator != '-' && separator != ' ') break;
326     }
327 
328     if (result){
329         bd_addr_copy(addr, buffer);
330     }
331 	return result;
332 }
333 
334 uint32_t btstack_atoi(const char *str){
335     uint32_t val = 0;
336     while (1){
337         char chr = *str;
338         if (!chr || chr < '0' || chr > '9')
339             return val;
340         val = (val * 10) + (chr - '0');
341         str++;
342     }
343 }