1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI (Extensible Firmware Interface) support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <[email protected]>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *	David Mosberger-Tang <[email protected]>
10  *	Stephane Eranian <[email protected]>
11  * Copyright (C) 2005-2008 Intel Co.
12  *	Fenghua Yu <[email protected]>
13  *	Bibo Mao <[email protected]>
14  *	Chandramouli Narayanan <[email protected]>
15  *	Huang Ying <[email protected]>
16  * Copyright (C) 2013 SuSE Labs
17  *	Borislav Petkov <[email protected]> - runtime services VA mapping
18  *
19  * Copied from efi_32.c to eliminate the duplicated code between EFI
20  * 32/64 support code. --ying 2007-10-26
21  *
22  * All EFI Runtime Services are not implemented yet as EFI only
23  * supports physical mode addressing on SoftSDV. This is to be fixed
24  * in a future version.  --drummond 1999-07-20
25  *
26  * Implemented EFI runtime services and virtual mode calls.  --davidm
27  *
28  * Goutham Rao: <[email protected]>
29  *	Skip non-WB memory and ignore empty memory ranges.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/efi.h>
37 #include <linux/efi-bgrt.h>
38 #include <linux/export.h>
39 #include <linux/memblock.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47 
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/e820/api.h>
51 #include <asm/time.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/uv/uv.h>
55 
56 static unsigned long efi_systab_phys __initdata;
57 static unsigned long efi_runtime, efi_nr_tables;
58 
59 unsigned long efi_fw_vendor, efi_config_table;
60 
61 static const efi_config_table_type_t arch_tables[] __initconst = {
62 #ifdef CONFIG_X86_UV
63 	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
64 #endif
65 	{},
66 };
67 
68 static const unsigned long * const efi_tables[] = {
69 	&efi.acpi,
70 	&efi.acpi20,
71 	&efi.smbios,
72 	&efi.smbios3,
73 #ifdef CONFIG_X86_UV
74 	&uv_systab_phys,
75 #endif
76 	&efi_fw_vendor,
77 	&efi_runtime,
78 	&efi_config_table,
79 	&efi.esrt,
80 	&efi_mem_attr_table,
81 #ifdef CONFIG_EFI_RCI2_TABLE
82 	&rci2_table_phys,
83 #endif
84 	&efi.tpm_log,
85 	&efi.tpm_final_log,
86 	&efi_rng_seed,
87 #ifdef CONFIG_LOAD_UEFI_KEYS
88 	&efi.mokvar_table,
89 #endif
90 #ifdef CONFIG_EFI_COCO_SECRET
91 	&efi.coco_secret,
92 #endif
93 #ifdef CONFIG_UNACCEPTED_MEMORY
94 	&efi.unaccepted,
95 #endif
96 };
97 
98 u64 efi_setup;		/* efi setup_data physical address */
99 
100 static int add_efi_memmap __initdata;
setup_add_efi_memmap(char * arg)101 static int __init setup_add_efi_memmap(char *arg)
102 {
103 	add_efi_memmap = 1;
104 	return 0;
105 }
106 early_param("add_efi_memmap", setup_add_efi_memmap);
107 
108 /*
109  * Tell the kernel about the EFI memory map.  This might include
110  * more than the max 128 entries that can fit in the passed in e820
111  * legacy (zeropage) memory map, but the kernel's e820 table can hold
112  * E820_MAX_ENTRIES.
113  */
114 
do_add_efi_memmap(void)115 static void __init do_add_efi_memmap(void)
116 {
117 	efi_memory_desc_t *md;
118 
119 	if (!efi_enabled(EFI_MEMMAP))
120 		return;
121 
122 	for_each_efi_memory_desc(md) {
123 		unsigned long long start = md->phys_addr;
124 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
125 		int e820_type;
126 
127 		switch (md->type) {
128 		case EFI_LOADER_CODE:
129 		case EFI_LOADER_DATA:
130 		case EFI_BOOT_SERVICES_CODE:
131 		case EFI_BOOT_SERVICES_DATA:
132 		case EFI_CONVENTIONAL_MEMORY:
133 			if (efi_soft_reserve_enabled()
134 			    && (md->attribute & EFI_MEMORY_SP))
135 				e820_type = E820_TYPE_SOFT_RESERVED;
136 			else if (md->attribute & EFI_MEMORY_WB)
137 				e820_type = E820_TYPE_RAM;
138 			else
139 				e820_type = E820_TYPE_RESERVED;
140 			break;
141 		case EFI_ACPI_RECLAIM_MEMORY:
142 			e820_type = E820_TYPE_ACPI;
143 			break;
144 		case EFI_ACPI_MEMORY_NVS:
145 			e820_type = E820_TYPE_NVS;
146 			break;
147 		case EFI_UNUSABLE_MEMORY:
148 			e820_type = E820_TYPE_UNUSABLE;
149 			break;
150 		case EFI_PERSISTENT_MEMORY:
151 			e820_type = E820_TYPE_PMEM;
152 			break;
153 		default:
154 			/*
155 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
156 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
157 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
158 			 */
159 			e820_type = E820_TYPE_RESERVED;
160 			break;
161 		}
162 
163 		e820__range_add(start, size, e820_type);
164 	}
165 	e820__update_table(e820_table);
166 }
167 
168 /*
169  * Given add_efi_memmap defaults to 0 and there is no alternative
170  * e820 mechanism for soft-reserved memory, import the full EFI memory
171  * map if soft reservations are present and enabled. Otherwise, the
172  * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
173  * the efi=nosoftreserve option.
174  */
do_efi_soft_reserve(void)175 static bool do_efi_soft_reserve(void)
176 {
177 	efi_memory_desc_t *md;
178 
179 	if (!efi_enabled(EFI_MEMMAP))
180 		return false;
181 
182 	if (!efi_soft_reserve_enabled())
183 		return false;
184 
185 	for_each_efi_memory_desc(md)
186 		if (md->type == EFI_CONVENTIONAL_MEMORY &&
187 		    (md->attribute & EFI_MEMORY_SP))
188 			return true;
189 	return false;
190 }
191 
efi_memblock_x86_reserve_range(void)192 int __init efi_memblock_x86_reserve_range(void)
193 {
194 	struct efi_info *e = &boot_params.efi_info;
195 	struct efi_memory_map_data data;
196 	phys_addr_t pmap;
197 	int rv;
198 
199 	if (efi_enabled(EFI_PARAVIRT))
200 		return 0;
201 
202 	/* Can't handle firmware tables above 4GB on i386 */
203 	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
204 		pr_err("Memory map is above 4GB, disabling EFI.\n");
205 		return -EINVAL;
206 	}
207 	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
208 
209 	data.phys_map		= pmap;
210 	data.size 		= e->efi_memmap_size;
211 	data.desc_size		= e->efi_memdesc_size;
212 	data.desc_version	= e->efi_memdesc_version;
213 
214 	if (!efi_enabled(EFI_PARAVIRT)) {
215 		rv = efi_memmap_init_early(&data);
216 		if (rv)
217 			return rv;
218 	}
219 
220 	if (add_efi_memmap || do_efi_soft_reserve())
221 		do_add_efi_memmap();
222 
223 	WARN(efi.memmap.desc_version != 1,
224 	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
225 	     efi.memmap.desc_version);
226 
227 	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
228 	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
229 
230 	return 0;
231 }
232 
233 #define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
234 #define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
235 #define U64_HIGH_BIT		(~(U64_MAX >> 1))
236 
efi_memmap_entry_valid(const efi_memory_desc_t * md,int i)237 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
238 {
239 	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
240 	u64 end_hi = 0;
241 	char buf[64];
242 
243 	if (md->num_pages == 0) {
244 		end = 0;
245 	} else if (md->num_pages > EFI_PAGES_MAX ||
246 		   EFI_PAGES_MAX - md->num_pages <
247 		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
248 		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
249 			>> OVERFLOW_ADDR_SHIFT;
250 
251 		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
252 			end_hi += 1;
253 	} else {
254 		return true;
255 	}
256 
257 	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
258 
259 	if (end_hi) {
260 		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
261 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
262 			md->phys_addr, end_hi, end);
263 	} else {
264 		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
265 			i, efi_md_typeattr_format(buf, sizeof(buf), md),
266 			md->phys_addr, end);
267 	}
268 	return false;
269 }
270 
efi_clean_memmap(void)271 static void __init efi_clean_memmap(void)
272 {
273 	efi_memory_desc_t *out = efi.memmap.map;
274 	const efi_memory_desc_t *in = out;
275 	const efi_memory_desc_t *end = efi.memmap.map_end;
276 	int i, n_removal;
277 
278 	for (i = n_removal = 0; in < end; i++) {
279 		if (efi_memmap_entry_valid(in, i)) {
280 			if (out != in)
281 				memcpy(out, in, efi.memmap.desc_size);
282 			out = (void *)out + efi.memmap.desc_size;
283 		} else {
284 			n_removal++;
285 		}
286 		in = (void *)in + efi.memmap.desc_size;
287 	}
288 
289 	if (n_removal > 0) {
290 		struct efi_memory_map_data data = {
291 			.phys_map	= efi.memmap.phys_map,
292 			.desc_version	= efi.memmap.desc_version,
293 			.desc_size	= efi.memmap.desc_size,
294 			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
295 			.flags		= 0,
296 		};
297 
298 		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
299 		efi_memmap_install(&data);
300 	}
301 }
302 
303 /*
304  * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
305  * mapped by the OS so they can be accessed by EFI runtime services, but
306  * should have no other significance to the OS (UEFI r2.10, sec 7.2).
307  * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
308  * regions to E820_TYPE_RESERVED entries, which prevent Linux from
309  * allocating space from them (see remove_e820_regions()).
310  *
311  * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
312  * PCI host bridge windows, which means Linux can't allocate BAR space for
313  * hot-added devices.
314  *
315  * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
316  * problem.
317  *
318  * Retain small EfiMemoryMappedIO regions because on some platforms, these
319  * describe non-window space that's included in host bridge _CRS.  If we
320  * assign that space to PCI devices, they don't work.
321  */
efi_remove_e820_mmio(void)322 static void __init efi_remove_e820_mmio(void)
323 {
324 	efi_memory_desc_t *md;
325 	u64 size, start, end;
326 	int i = 0;
327 
328 	for_each_efi_memory_desc(md) {
329 		if (md->type == EFI_MEMORY_MAPPED_IO) {
330 			size = md->num_pages << EFI_PAGE_SHIFT;
331 			start = md->phys_addr;
332 			end = start + size - 1;
333 			if (size >= 256*1024) {
334 				pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
335 					i, start, end, size >> 20);
336 				e820__range_remove(start, size,
337 						   E820_TYPE_RESERVED, 1);
338 			} else {
339 				pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
340 					i, start, end, size >> 10);
341 			}
342 		}
343 		i++;
344 	}
345 }
346 
efi_print_memmap(void)347 void __init efi_print_memmap(void)
348 {
349 	efi_memory_desc_t *md;
350 	int i = 0;
351 
352 	for_each_efi_memory_desc(md) {
353 		char buf[64];
354 
355 		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
356 			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
357 			md->phys_addr,
358 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
359 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
360 	}
361 }
362 
efi_systab_init(unsigned long phys)363 static int __init efi_systab_init(unsigned long phys)
364 {
365 	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
366 					  : sizeof(efi_system_table_32_t);
367 	const efi_table_hdr_t *hdr;
368 	bool over4g = false;
369 	void *p;
370 	int ret;
371 
372 	hdr = p = early_memremap_ro(phys, size);
373 	if (p == NULL) {
374 		pr_err("Couldn't map the system table!\n");
375 		return -ENOMEM;
376 	}
377 
378 	ret = efi_systab_check_header(hdr);
379 	if (ret) {
380 		early_memunmap(p, size);
381 		return ret;
382 	}
383 
384 	if (efi_enabled(EFI_64BIT)) {
385 		const efi_system_table_64_t *systab64 = p;
386 
387 		efi_runtime	= systab64->runtime;
388 		over4g		= systab64->runtime > U32_MAX;
389 
390 		if (efi_setup) {
391 			struct efi_setup_data *data;
392 
393 			data = early_memremap_ro(efi_setup, sizeof(*data));
394 			if (!data) {
395 				early_memunmap(p, size);
396 				return -ENOMEM;
397 			}
398 
399 			efi_fw_vendor		= (unsigned long)data->fw_vendor;
400 			efi_config_table	= (unsigned long)data->tables;
401 
402 			over4g |= data->fw_vendor	> U32_MAX ||
403 				  data->tables		> U32_MAX;
404 
405 			early_memunmap(data, sizeof(*data));
406 		} else {
407 			efi_fw_vendor		= systab64->fw_vendor;
408 			efi_config_table	= systab64->tables;
409 
410 			over4g |= systab64->fw_vendor	> U32_MAX ||
411 				  systab64->tables	> U32_MAX;
412 		}
413 		efi_nr_tables = systab64->nr_tables;
414 	} else {
415 		const efi_system_table_32_t *systab32 = p;
416 
417 		efi_fw_vendor		= systab32->fw_vendor;
418 		efi_runtime		= systab32->runtime;
419 		efi_config_table	= systab32->tables;
420 		efi_nr_tables		= systab32->nr_tables;
421 	}
422 
423 	efi.runtime_version = hdr->revision;
424 
425 	efi_systab_report_header(hdr, efi_fw_vendor);
426 	early_memunmap(p, size);
427 
428 	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
429 		pr_err("EFI data located above 4GB, disabling EFI.\n");
430 		return -EINVAL;
431 	}
432 
433 	return 0;
434 }
435 
efi_config_init(const efi_config_table_type_t * arch_tables)436 static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
437 {
438 	void *config_tables;
439 	int sz, ret;
440 
441 	if (efi_nr_tables == 0)
442 		return 0;
443 
444 	if (efi_enabled(EFI_64BIT))
445 		sz = sizeof(efi_config_table_64_t);
446 	else
447 		sz = sizeof(efi_config_table_32_t);
448 
449 	/*
450 	 * Let's see what config tables the firmware passed to us.
451 	 */
452 	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
453 	if (config_tables == NULL) {
454 		pr_err("Could not map Configuration table!\n");
455 		return -ENOMEM;
456 	}
457 
458 	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
459 				      arch_tables);
460 
461 	early_memunmap(config_tables, efi_nr_tables * sz);
462 	return ret;
463 }
464 
efi_init(void)465 void __init efi_init(void)
466 {
467 	if (IS_ENABLED(CONFIG_X86_32) &&
468 	    (boot_params.efi_info.efi_systab_hi ||
469 	     boot_params.efi_info.efi_memmap_hi)) {
470 		pr_info("Table located above 4GB, disabling EFI.\n");
471 		return;
472 	}
473 
474 	efi_systab_phys = boot_params.efi_info.efi_systab |
475 			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
476 
477 	if (efi_systab_init(efi_systab_phys))
478 		return;
479 
480 	if (efi_reuse_config(efi_config_table, efi_nr_tables))
481 		return;
482 
483 	if (efi_config_init(arch_tables))
484 		return;
485 
486 	/*
487 	 * Note: We currently don't support runtime services on an EFI
488 	 * that doesn't match the kernel 32/64-bit mode.
489 	 */
490 
491 	if (!efi_runtime_supported())
492 		pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
493 
494 	if (!efi_runtime_supported() || efi_runtime_disabled()) {
495 		efi_memmap_unmap();
496 		return;
497 	}
498 
499 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
500 	efi_clean_memmap();
501 
502 	efi_remove_e820_mmio();
503 
504 	if (efi_enabled(EFI_DBG))
505 		efi_print_memmap();
506 }
507 
508 /* Merge contiguous regions of the same type and attribute */
efi_merge_regions(void)509 static void __init efi_merge_regions(void)
510 {
511 	efi_memory_desc_t *md, *prev_md = NULL;
512 
513 	for_each_efi_memory_desc(md) {
514 		u64 prev_size;
515 
516 		if (!prev_md) {
517 			prev_md = md;
518 			continue;
519 		}
520 
521 		if (prev_md->type != md->type ||
522 		    prev_md->attribute != md->attribute) {
523 			prev_md = md;
524 			continue;
525 		}
526 
527 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
528 
529 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
530 			prev_md->num_pages += md->num_pages;
531 			md->type = EFI_RESERVED_TYPE;
532 			md->attribute = 0;
533 			continue;
534 		}
535 		prev_md = md;
536 	}
537 }
538 
realloc_pages(void * old_memmap,int old_shift)539 static void *realloc_pages(void *old_memmap, int old_shift)
540 {
541 	void *ret;
542 
543 	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
544 	if (!ret)
545 		goto out;
546 
547 	/*
548 	 * A first-time allocation doesn't have anything to copy.
549 	 */
550 	if (!old_memmap)
551 		return ret;
552 
553 	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
554 
555 out:
556 	free_pages((unsigned long)old_memmap, old_shift);
557 	return ret;
558 }
559 
560 /*
561  * Iterate the EFI memory map in reverse order because the regions
562  * will be mapped top-down. The end result is the same as if we had
563  * mapped things forward, but doesn't require us to change the
564  * existing implementation of efi_map_region().
565  */
efi_map_next_entry_reverse(void * entry)566 static inline void *efi_map_next_entry_reverse(void *entry)
567 {
568 	/* Initial call */
569 	if (!entry)
570 		return efi.memmap.map_end - efi.memmap.desc_size;
571 
572 	entry -= efi.memmap.desc_size;
573 	if (entry < efi.memmap.map)
574 		return NULL;
575 
576 	return entry;
577 }
578 
579 /*
580  * efi_map_next_entry - Return the next EFI memory map descriptor
581  * @entry: Previous EFI memory map descriptor
582  *
583  * This is a helper function to iterate over the EFI memory map, which
584  * we do in different orders depending on the current configuration.
585  *
586  * To begin traversing the memory map @entry must be %NULL.
587  *
588  * Returns %NULL when we reach the end of the memory map.
589  */
efi_map_next_entry(void * entry)590 static void *efi_map_next_entry(void *entry)
591 {
592 	if (efi_enabled(EFI_64BIT)) {
593 		/*
594 		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
595 		 * config table feature requires us to map all entries
596 		 * in the same order as they appear in the EFI memory
597 		 * map. That is to say, entry N must have a lower
598 		 * virtual address than entry N+1. This is because the
599 		 * firmware toolchain leaves relative references in
600 		 * the code/data sections, which are split and become
601 		 * separate EFI memory regions. Mapping things
602 		 * out-of-order leads to the firmware accessing
603 		 * unmapped addresses.
604 		 *
605 		 * Since we need to map things this way whether or not
606 		 * the kernel actually makes use of
607 		 * EFI_PROPERTIES_TABLE, let's just switch to this
608 		 * scheme by default for 64-bit.
609 		 */
610 		return efi_map_next_entry_reverse(entry);
611 	}
612 
613 	/* Initial call */
614 	if (!entry)
615 		return efi.memmap.map;
616 
617 	entry += efi.memmap.desc_size;
618 	if (entry >= efi.memmap.map_end)
619 		return NULL;
620 
621 	return entry;
622 }
623 
should_map_region(efi_memory_desc_t * md)624 static bool should_map_region(efi_memory_desc_t *md)
625 {
626 	/*
627 	 * Runtime regions always require runtime mappings (obviously).
628 	 */
629 	if (md->attribute & EFI_MEMORY_RUNTIME)
630 		return true;
631 
632 	/*
633 	 * 32-bit EFI doesn't suffer from the bug that requires us to
634 	 * reserve boot services regions, and mixed mode support
635 	 * doesn't exist for 32-bit kernels.
636 	 */
637 	if (IS_ENABLED(CONFIG_X86_32))
638 		return false;
639 
640 	/*
641 	 * EFI specific purpose memory may be reserved by default
642 	 * depending on kernel config and boot options.
643 	 */
644 	if (md->type == EFI_CONVENTIONAL_MEMORY &&
645 	    efi_soft_reserve_enabled() &&
646 	    (md->attribute & EFI_MEMORY_SP))
647 		return false;
648 
649 	/*
650 	 * Map all of RAM so that we can access arguments in the 1:1
651 	 * mapping when making EFI runtime calls.
652 	 */
653 	if (efi_is_mixed()) {
654 		if (md->type == EFI_CONVENTIONAL_MEMORY ||
655 		    md->type == EFI_LOADER_DATA ||
656 		    md->type == EFI_LOADER_CODE)
657 			return true;
658 	}
659 
660 	/*
661 	 * Map boot services regions as a workaround for buggy
662 	 * firmware that accesses them even when they shouldn't.
663 	 *
664 	 * See efi_{reserve,free}_boot_services().
665 	 */
666 	if (md->type == EFI_BOOT_SERVICES_CODE ||
667 	    md->type == EFI_BOOT_SERVICES_DATA)
668 		return true;
669 
670 	return false;
671 }
672 
673 /*
674  * Map the efi memory ranges of the runtime services and update new_mmap with
675  * virtual addresses.
676  */
efi_map_regions(int * count,int * pg_shift)677 static void * __init efi_map_regions(int *count, int *pg_shift)
678 {
679 	void *p, *new_memmap = NULL;
680 	unsigned long left = 0;
681 	unsigned long desc_size;
682 	efi_memory_desc_t *md;
683 
684 	desc_size = efi.memmap.desc_size;
685 
686 	p = NULL;
687 	while ((p = efi_map_next_entry(p))) {
688 		md = p;
689 
690 		if (!should_map_region(md))
691 			continue;
692 
693 		efi_map_region(md);
694 
695 		if (left < desc_size) {
696 			new_memmap = realloc_pages(new_memmap, *pg_shift);
697 			if (!new_memmap)
698 				return NULL;
699 
700 			left += PAGE_SIZE << *pg_shift;
701 			(*pg_shift)++;
702 		}
703 
704 		memcpy(new_memmap + (*count * desc_size), md, desc_size);
705 
706 		left -= desc_size;
707 		(*count)++;
708 	}
709 
710 	return new_memmap;
711 }
712 
kexec_enter_virtual_mode(void)713 static void __init kexec_enter_virtual_mode(void)
714 {
715 #ifdef CONFIG_KEXEC_CORE
716 	efi_memory_desc_t *md;
717 	unsigned int num_pages;
718 
719 	/*
720 	 * We don't do virtual mode, since we don't do runtime services, on
721 	 * non-native EFI.
722 	 */
723 	if (efi_is_mixed()) {
724 		efi_memmap_unmap();
725 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
726 		return;
727 	}
728 
729 	if (efi_alloc_page_tables()) {
730 		pr_err("Failed to allocate EFI page tables\n");
731 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
732 		return;
733 	}
734 
735 	/*
736 	* Map efi regions which were passed via setup_data. The virt_addr is a
737 	* fixed addr which was used in first kernel of a kexec boot.
738 	*/
739 	for_each_efi_memory_desc(md)
740 		efi_map_region_fixed(md); /* FIXME: add error handling */
741 
742 	/*
743 	 * Unregister the early EFI memmap from efi_init() and install
744 	 * the new EFI memory map.
745 	 */
746 	efi_memmap_unmap();
747 
748 	if (efi_memmap_init_late(efi.memmap.phys_map,
749 				 efi.memmap.desc_size * efi.memmap.nr_map)) {
750 		pr_err("Failed to remap late EFI memory map\n");
751 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
752 		return;
753 	}
754 
755 	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
756 	num_pages >>= PAGE_SHIFT;
757 
758 	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
759 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
760 		return;
761 	}
762 
763 	efi_sync_low_kernel_mappings();
764 	efi_native_runtime_setup();
765 	efi_runtime_update_mappings();
766 #endif
767 }
768 
769 /*
770  * This function will switch the EFI runtime services to virtual mode.
771  * Essentially, we look through the EFI memmap and map every region that
772  * has the runtime attribute bit set in its memory descriptor into the
773  * efi_pgd page table.
774  *
775  * The new method does a pagetable switch in a preemption-safe manner
776  * so that we're in a different address space when calling a runtime
777  * function. For function arguments passing we do copy the PUDs of the
778  * kernel page table into efi_pgd prior to each call.
779  *
780  * Specially for kexec boot, efi runtime maps in previous kernel should
781  * be passed in via setup_data. In that case runtime ranges will be mapped
782  * to the same virtual addresses as the first kernel, see
783  * kexec_enter_virtual_mode().
784  */
__efi_enter_virtual_mode(void)785 static void __init __efi_enter_virtual_mode(void)
786 {
787 	int count = 0, pg_shift = 0;
788 	void *new_memmap = NULL;
789 	efi_status_t status;
790 	unsigned long pa;
791 
792 	if (efi_alloc_page_tables()) {
793 		pr_err("Failed to allocate EFI page tables\n");
794 		goto err;
795 	}
796 
797 	efi_merge_regions();
798 	new_memmap = efi_map_regions(&count, &pg_shift);
799 	if (!new_memmap) {
800 		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
801 		goto err;
802 	}
803 
804 	pa = __pa(new_memmap);
805 
806 	/*
807 	 * Unregister the early EFI memmap from efi_init() and install
808 	 * the new EFI memory map that we are about to pass to the
809 	 * firmware via SetVirtualAddressMap().
810 	 */
811 	efi_memmap_unmap();
812 
813 	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
814 		pr_err("Failed to remap late EFI memory map\n");
815 		goto err;
816 	}
817 
818 	if (efi_enabled(EFI_DBG)) {
819 		pr_info("EFI runtime memory map:\n");
820 		efi_print_memmap();
821 	}
822 
823 	if (efi_setup_page_tables(pa, 1 << pg_shift))
824 		goto err;
825 
826 	efi_sync_low_kernel_mappings();
827 
828 	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
829 					     efi.memmap.desc_size,
830 					     efi.memmap.desc_version,
831 					     (efi_memory_desc_t *)pa,
832 					     efi_systab_phys);
833 	if (status != EFI_SUCCESS) {
834 		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
835 		       status);
836 		goto err;
837 	}
838 
839 	efi_check_for_embedded_firmwares();
840 	efi_free_boot_services();
841 
842 	if (!efi_is_mixed())
843 		efi_native_runtime_setup();
844 	else
845 		efi_thunk_runtime_setup();
846 
847 	/*
848 	 * Apply more restrictive page table mapping attributes now that
849 	 * SVAM() has been called and the firmware has performed all
850 	 * necessary relocation fixups for the new virtual addresses.
851 	 */
852 	efi_runtime_update_mappings();
853 
854 	/* clean DUMMY object */
855 	efi_delete_dummy_variable();
856 	return;
857 
858 err:
859 	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
860 }
861 
efi_enter_virtual_mode(void)862 void __init efi_enter_virtual_mode(void)
863 {
864 	if (efi_enabled(EFI_PARAVIRT))
865 		return;
866 
867 	efi.runtime = (efi_runtime_services_t *)efi_runtime;
868 
869 	if (efi_setup)
870 		kexec_enter_virtual_mode();
871 	else
872 		__efi_enter_virtual_mode();
873 
874 	efi_dump_pagetable();
875 }
876 
efi_is_table_address(unsigned long phys_addr)877 bool efi_is_table_address(unsigned long phys_addr)
878 {
879 	unsigned int i;
880 
881 	if (phys_addr == EFI_INVALID_TABLE_ADDR)
882 		return false;
883 
884 	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
885 		if (*(efi_tables[i]) == phys_addr)
886 			return true;
887 
888 	return false;
889 }
890 
891 #define EFI_FIELD(var) efi_ ## var
892 
893 #define EFI_ATTR_SHOW(name) \
894 static ssize_t name##_show(struct kobject *kobj, \
895 				struct kobj_attribute *attr, char *buf) \
896 { \
897 	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
898 }
899 
900 EFI_ATTR_SHOW(fw_vendor);
901 EFI_ATTR_SHOW(runtime);
902 EFI_ATTR_SHOW(config_table);
903 
904 struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
905 struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
906 struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
907 
efi_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)908 umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
909 {
910 	if (attr == &efi_attr_fw_vendor.attr) {
911 		if (efi_enabled(EFI_PARAVIRT) ||
912 				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
913 			return 0;
914 	} else if (attr == &efi_attr_runtime.attr) {
915 		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
916 			return 0;
917 	} else if (attr == &efi_attr_config_table.attr) {
918 		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
919 			return 0;
920 	}
921 	return attr->mode;
922 }
923 
__x86_ima_efi_boot_mode(void)924 enum efi_secureboot_mode __x86_ima_efi_boot_mode(void)
925 {
926 	return boot_params.secure_boot;
927 }
928