xref: /openwifi/driver/sdr.c (revision 7d0af6df9ead867eaeb582e7bd1b204f7315d19d)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 
59 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
60 #include "hw_def.h"
61 #include "sdr.h"
62 #include "git_rev.h"
63 
64 // driver API of component driver
65 extern struct tx_intf_driver_api *tx_intf_api;
66 extern struct rx_intf_driver_api *rx_intf_api;
67 extern struct openofdm_tx_driver_api *openofdm_tx_api;
68 extern struct openofdm_rx_driver_api *openofdm_rx_api;
69 extern struct xpu_driver_api *xpu_api;
70 
71 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
72 u8 gen_mpdu_delim_crc(u16 m);
73 
74 #include "sdrctl_intf.c"
75 #include "sysfs_intf.c"
76 
77 static int test_mode = 0; // 0 normal; 1 rx test
78 
79 MODULE_AUTHOR("Xianjun Jiao");
80 MODULE_DESCRIPTION("SDR driver");
81 MODULE_LICENSE("GPL v2");
82 
83 module_param(test_mode, int, 0);
84 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
85 
86 // ---------------rfkill---------------------------------------
87 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
88 {
89 	int reg;
90 
91 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
92 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
93 	else
94 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
95 
96 	if (reg == AD9361_RADIO_ON_TX_ATT)
97 		return true;// 0 off, 1 on
98 	return false;
99 }
100 
101 void openwifi_rfkill_init(struct ieee80211_hw *hw)
102 {
103 	struct openwifi_priv *priv = hw->priv;
104 
105 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
106 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
107 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
108 	wiphy_rfkill_start_polling(hw->wiphy);
109 }
110 
111 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
112 {
113 	bool enabled;
114 	struct openwifi_priv *priv = hw->priv;
115 
116 	enabled = openwifi_is_radio_enabled(priv);
117 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
118 	if (unlikely(enabled != priv->rfkill_off)) {
119 		priv->rfkill_off = enabled;
120 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
121 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
122 	}
123 }
124 
125 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
126 {
127 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
128 	wiphy_rfkill_stop_polling(hw->wiphy);
129 }
130 //----------------rfkill end-----------------------------------
131 
132 //static void ad9361_rf_init(void);
133 //static void ad9361_rf_stop(void);
134 //static void ad9361_rf_calc_rssi(void);
135 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
136 				  struct ieee80211_conf *conf)
137 {
138 	struct openwifi_priv *priv = dev->priv;
139 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
140 	u32 actual_tx_lo;
141 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
142 	int static_lbt_th, auto_lbt_th, fpga_lbt_th;
143 
144 	if (change_flag) {
145 		priv->actual_rx_lo = actual_rx_lo;
146 
147 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
148 
149 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
150 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
151 
152 		if (actual_rx_lo<2412) {
153 			priv->rssi_correction = 153;
154 		} else if (actual_rx_lo<=2484) {
155 			priv->rssi_correction = 153;
156 		} else if (actual_rx_lo<5160) {
157 			priv->rssi_correction = 153;
158 		} else if (actual_rx_lo<=5240) {
159 			priv->rssi_correction = 145;
160 		} else if (actual_rx_lo<=5320) {
161 			priv->rssi_correction = 148;
162 		} else {
163 			priv->rssi_correction = 148;
164 		}
165 
166 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
167 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
168 		auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
169 		static_lbt_th = priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH];
170 		fpga_lbt_th = (static_lbt_th==0?auto_lbt_th:static_lbt_th);
171 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
172 
173 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
174 
175 		if (actual_rx_lo < 2500) {
176 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
177 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
178 			if (priv->band != BAND_2_4GHZ) {
179 				priv->band = BAND_2_4GHZ;
180 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
181 			}
182 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
183 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
184 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
185 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
186 		}
187 		else {
188 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
189 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
190 			if (priv->band != BAND_5_8GHZ) {
191 				priv->band = BAND_5_8GHZ;
192 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
193 			}
194 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
195 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
196 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
197 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
198 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
199 		}
200 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
201 		// //-- use less
202 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
203 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
204 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
205 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
206 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d (auto %d static %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,auto_lbt_th,static_lbt_th);
207 	}
208 }
209 
210 const struct openwifi_rf_ops ad9361_rf_ops = {
211 	.name		= "ad9361",
212 //	.init		= ad9361_rf_init,
213 //	.stop		= ad9361_rf_stop,
214 	.set_chan	= ad9361_rf_set_channel,
215 //	.calc_rssi	= ad9361_rf_calc_rssi,
216 };
217 
218 u16 reverse16(u16 d) {
219 	union u16_byte2 tmp0, tmp1;
220 	tmp0.a = d;
221 	tmp1.c[0] = tmp0.c[1];
222 	tmp1.c[1] = tmp0.c[0];
223 	return(tmp1.a);
224 }
225 
226 u32 reverse32(u32 d) {
227 	union u32_byte4 tmp0, tmp1;
228 	tmp0.a = d;
229 	tmp1.c[0] = tmp0.c[3];
230 	tmp1.c[1] = tmp0.c[2];
231 	tmp1.c[2] = tmp0.c[1];
232 	tmp1.c[3] = tmp0.c[0];
233 	return(tmp1.a);
234 }
235 
236 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
237 {
238 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
239 	int i;
240 
241 	ring->stop_flag = 0;
242 	ring->bd_wr_idx = 0;
243 	ring->bd_rd_idx = 0;
244 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
245 	if (ring->bds==NULL) {
246 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
247 		return -ENOMEM;
248 	}
249 
250 	for (i = 0; i < NUM_TX_BD; i++) {
251 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
252 		//at first right after skb allocated, head, data, tail are the same.
253 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
254 		ring->bds[i].seq_no = 0;
255 	}
256 
257 	return 0;
258 }
259 
260 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
261 {
262 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
263 	int i;
264 
265 	ring->stop_flag = 0;
266 	ring->bd_wr_idx = 0;
267 	ring->bd_rd_idx = 0;
268 	for (i = 0; i < NUM_TX_BD; i++) {
269 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
270 			continue;
271 		if (ring->bds[i].dma_mapping_addr != 0)
272 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
273 //		if (ring->bds[i].skb_linked!=NULL)
274 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
275 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
276 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
277 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
278 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
279 
280 		ring->bds[i].skb_linked=0;
281 		ring->bds[i].dma_mapping_addr = 0;
282 		ring->bds[i].seq_no = 0;
283 	}
284 	if (ring->bds)
285 		kfree(ring->bds);
286 	ring->bds = NULL;
287 }
288 
289 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
290 {
291 	int i;
292 	u8 *pdata_tmp;
293 
294 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
295 	if (!priv->rx_cyclic_buf) {
296 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
297 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
298 		return(-1);
299 	}
300 
301 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
302 	for (i=0; i<NUM_RX_BD; i++) {
303 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
304 		(*((u32*)(pdata_tmp+0 ))) = 0;
305 		(*((u32*)(pdata_tmp+4 ))) = 0;
306 	}
307 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
308 
309 	return 0;
310 }
311 
312 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
313 {
314 	if (priv->rx_cyclic_buf)
315 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
316 
317 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
318 	priv->rx_cyclic_buf = 0;
319 }
320 
321 static int rx_dma_setup(struct ieee80211_hw *dev){
322 	struct openwifi_priv *priv = dev->priv;
323 	struct dma_device *rx_dev = priv->rx_chan->device;
324 
325 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
326 	if (!(priv->rxd)) {
327 		openwifi_free_rx_ring(priv);
328 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
329 		return(-1);
330 	}
331 	priv->rxd->callback = 0;
332 	priv->rxd->callback_param = 0;
333 
334 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
335 
336 	if (dma_submit_error(priv->rx_cookie)) {
337 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
338 		return(-1);
339 	}
340 
341 	dma_async_issue_pending(priv->rx_chan);
342 	return(0);
343 }
344 
345 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
346 {
347 	struct ieee80211_hw *dev = dev_id;
348 	struct openwifi_priv *priv = dev->priv;
349 	struct ieee80211_rx_status rx_status = {0};
350 	struct sk_buff *skb;
351 	struct ieee80211_hdr *hdr;
352 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
353 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
354 	// u32 dma_driver_buf_idx_mod;
355 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
356 	s8 signal;
357 	u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
358 	bool content_ok = false, len_overflow = false;
359 
360 #ifdef USE_NEW_RX_INTERRUPT
361 	int i;
362 	spin_lock(&priv->lock);
363 	for (i=0; i<NUM_RX_BD; i++) {
364 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
365 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
366 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
367 			continue;
368 #else
369 	static u8 target_buf_idx_old = 0;
370 	spin_lock(&priv->lock);
371 	while(1) { // loop all rx buffers that have new rx packets
372 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
373 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
374 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
375 			break;
376 #endif
377 
378 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
379 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
380 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
381 		len =          (*((u16*)(pdata_tmp+12)));
382 
383 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
384 
385 		rate_idx =     (*((u16*)(pdata_tmp+14)));
386 		ht_flag  =     ((rate_idx&0x10)!=0);
387 		short_gi =     ((rate_idx&0x20)!=0);
388 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
389 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
390 		rate_idx =     (rate_idx&0x1F);
391 
392 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
393 
394 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
395 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
396 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
397 		fcs_ok = ((fcs_ok&0x80)!=0);
398 
399 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
400 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
401 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
402 			// }
403 			content_ok = true;
404 		} else {
405 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
406 			content_ok = false;
407 		}
408 
409 		rssi_val = (rssi_val>>1);
410 		if ( (rssi_val+128)<priv->rssi_correction )
411 			signal = -128;
412 		else
413 			signal = rssi_val - priv->rssi_correction;
414 
415 		// fc_di =        (*((u32*)(pdata_tmp+16)));
416 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
417 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
418 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
419 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
420 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
421 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
422 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
423 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
424 			addr1_low32  = *((u32*)(hdr->addr1+2));
425 			addr1_high16 = *((u16*)(hdr->addr1));
426 			if (len>=20) {
427 				addr2_low32  = *((u32*)(hdr->addr2+2));
428 				addr2_high16 = *((u16*)(hdr->addr2));
429 			}
430 			if (len>=26) {
431 				addr3_low32  = *((u32*)(hdr->addr3+2));
432 				addr3_high16 = *((u16*)(hdr->addr3));
433 			}
434 			if (len>=28)
435 				sc = hdr->seq_ctrl;
436 
437 			if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) )
438 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
439 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
440 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
441 #ifdef USE_NEW_RX_INTERRUPT
442 					sc, fcs_ok, i, signal);
443 #else
444 					sc, fcs_ok, target_buf_idx_old, signal);
445 #endif
446 		}
447 
448 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
449 		if (content_ok) {
450 			skb = dev_alloc_skb(len);
451 			if (skb) {
452 				skb_put_data(skb,pdata_tmp+16,len);
453 
454 				rx_status.antenna = 0;
455 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
456 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
457 				rx_status.signal = signal;
458 				rx_status.freq = dev->conf.chandef.chan->center_freq;
459 				rx_status.band = dev->conf.chandef.chan->band;
460 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
461 				rx_status.flag |= RX_FLAG_MACTIME_START;
462 				if (!fcs_ok)
463 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
464 				if (rate_idx <= 15)
465 					rx_status.encoding = RX_ENC_LEGACY;
466 				else
467 					rx_status.encoding = RX_ENC_HT;
468 				rx_status.bw = RATE_INFO_BW_20;
469 				if (short_gi)
470 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
471 				if(ht_aggr)
472 				{
473 					rx_status.ampdu_reference = priv->ampdu_reference;
474 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
475 					if (ht_aggr_last)
476 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
477 				}
478 
479 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
480 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
481 			} else
482 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
483 
484 			if(ht_aggr_last)
485 				priv->ampdu_reference++;
486 		}
487 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
488 		loop_count++;
489 #ifndef USE_NEW_RX_INTERRUPT
490 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
491 #endif
492 	}
493 
494 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
495 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
496 
497 // openwifi_rx_interrupt_out:
498 	spin_unlock(&priv->lock);
499 	return IRQ_HANDLED;
500 }
501 
502 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
503 {
504 	struct ieee80211_hw *dev = dev_id;
505 	struct openwifi_priv *priv = dev->priv;
506 	struct openwifi_ring *ring;
507 	struct sk_buff *skb;
508 	struct ieee80211_tx_info *info;
509 	u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;
510 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
511 	u8 nof_retx=-1, last_bd_rd_idx, i;
512 	u64 blk_ack_bitmap;
513 	// u16 prio_rd_idx_store[64]={0};
514 	bool tx_fail=false;
515 
516 	spin_lock(&priv->lock);
517 
518 	while(1) { // loop all packets that have been sent by FPGA
519 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
520         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
521 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
522 
523 		if (reg_val1!=0xFFFFFFFF) {
524 			nof_retx = (reg_val1&0xF);
525 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
526 			prio = ((reg_val1>>17)&0x3);
527 			num_slot_random = ((reg_val1>>19)&0x1FF);
528 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
529 			cw = ((reg_val1>>28)&0xF);
530 			//cw = ((0xF0000000 & reg_val1) >> 28);
531 			if(cw > 10) {
532 				cw = 10 ;
533 				num_slot_random += 512 ;
534 			}
535 			pkt_cnt = (reg_val2&0x3F);
536 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
537 
538 			ring = &(priv->tx_ring[prio]);
539 
540 			if ( ring->stop_flag == 1) {
541 				// Wake up Linux queue if FPGA and driver ring have room
542 				queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
543 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
544 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
545 
546 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
547 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
548 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
549 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx);
550 					ieee80211_wake_queue(dev, prio);
551 					ring->stop_flag = 0;
552 				}
553 			}
554 
555 			for(i = 1; i <= pkt_cnt; i++)
556 			{
557 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
558 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
559 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
560 
561 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
562 						skb->len, DMA_MEM_TO_DEV);
563 
564 				info = IEEE80211_SKB_CB(skb);
565 				ieee80211_tx_info_clear_status(info);
566 
567 				// Aggregation packet
568 				if(pkt_cnt > 1)
569 				{
570 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
571 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
572 					info->flags |= IEEE80211_TX_STAT_AMPDU;
573 					info->status.ampdu_len = 1;
574 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
575 
576 					skb_pull(skb, LEN_MPDU_DELIM);
577 					//skb_trim(skb, num_byte_pad_skb);
578 				}
579 				// Normal packet
580 				else
581 				{
582 					tx_fail = ((blk_ack_bitmap&0x1)==0);
583 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
584 				}
585 
586 				if (tx_fail == false)
587 					info->flags |= IEEE80211_TX_STAT_ACK;
588 
589 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
590 				info->status.rates[1].idx = -1;
591 				info->status.rates[2].idx = -1;
592 				info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
593 
594 				if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
595 					printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx);
596 				if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
597 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw);
598 
599 				ieee80211_tx_status_irqsafe(dev, skb);
600 			}
601 
602 			loop_count++;
603 
604 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
605 
606 		} else
607 			break;
608 	}
609 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
610 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
611 
612 	spin_unlock(&priv->lock);
613 	return IRQ_HANDLED;
614 }
615 
616 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
617 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
618 {
619 	u32 i, crc = 0;
620 	u8 idx;
621 	for( i = 0; i < num_bytes; i++)
622 	{
623 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
624 		crc = (crc >> 4) ^ crc_table[idx];
625 
626 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
627 		crc = (crc >> 4) ^ crc_table[idx];
628 	}
629 
630 	return crc;
631 }
632 
633 u8 gen_mpdu_delim_crc(u16 m)
634 {
635 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
636 
637 	for (i = 0; i < 16; i++)
638 	{
639 		temp = c[7] ^ ((m >> i) & 0x01);
640 
641 		c[7] = c[6];
642 		c[6] = c[5];
643 		c[5] = c[4];
644 		c[4] = c[3];
645 		c[3] = c[2];
646 		c[2] = c[1] ^ temp;
647 		c[1] = c[0] ^ temp;
648 		c[0] = temp;
649 	}
650 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
651 
652 	return mpdu_delim_crc;
653 }
654 
655 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
656 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
657 {
658 	return container_of(led_cdev, struct gpio_led_data, cdev);
659 }
660 
661 static void openwifi_tx(struct ieee80211_hw *dev,
662 		       struct ieee80211_tx_control *control,
663 		       struct sk_buff *skb)
664 {
665 	struct openwifi_priv *priv = dev->priv;
666 	unsigned long flags;
667 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
668 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
669 	struct openwifi_ring *ring = NULL;
670 	dma_addr_t dma_mapping_addr;
671 	unsigned int prio=0, i;
672 	u32 num_dma_symbol, len_mpdu = 0, len_mpdu_delim_pad = 0, num_dma_byte, len_psdu, num_byte_pad;
673 	u32 rate_signal_value,rate_hw_value=0,ack_flag;
674 	u32 pkt_need_ack=0, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
675 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
676 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw=0,use_short_gi=0,*dma_buf,retry_limit_hw_value,rc_flags,*qos_hdr;
677 	bool use_rts_cts, use_cts_protect=false, ht_aggr_start=false, use_ht_rate=false, use_ht_aggr=false, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
678 	__le16 frame_control,duration_id;
679 	u32 dma_fifo_no_room_flag, hw_queue_len;
680 	enum dma_status status;
681 
682 	static u32 addr1_low32_prev = -1, rate_hw_value_prev = -1, pkt_need_ack_prev = -1;
683 	static u16 addr1_high16_prev = -1;
684 	static __le16 duration_id_prev = -1;
685 	static unsigned int prio_prev = -1;
686 	static u8 retry_limit_raw_prev = -1;
687 	static u8 use_short_gi_prev = -1;
688 
689 	// static bool led_status=0;
690 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
691 
692 	// if ( (priv->phy_tx_sn&7) ==0 ) {
693 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
694 	// 	if (openofdm_state_history!=openofdm_state_history_old){
695 	// 		led_status = (~led_status);
696 	// 		openofdm_state_history_old = openofdm_state_history;
697 	// 		gpiod_set_value(led_dat->gpiod, led_status);
698 	// 	}
699 	// }
700 
701 	if (test_mode==1){
702 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
703 		goto openwifi_tx_early_out;
704 	}
705 
706 	if (skb->data_len>0) {// more data are not in linear data area skb->data
707 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
708 		goto openwifi_tx_early_out;
709 	}
710 
711 	len_mpdu = skb->len;
712 
713 	// get Linux priority/queue setting info and target mac address
714 	prio = skb_get_queue_mapping(skb);
715 	addr1_low32  = *((u32*)(hdr->addr1+2));
716 	ring = &(priv->tx_ring[prio]);
717 
718 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
719 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
720 		queue_idx = prio;
721 	} else {// customized prio to queue_idx mapping
722 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
723 		// check current packet belonging to which slice/hw-queue
724 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
725 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
726 					break;
727 				}
728 			}
729 		//}
730 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
731 	}
732 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
733 	// get other info from packet header
734 	addr1_high16 = *((u16*)(hdr->addr1));
735 	if (len_mpdu>=20) {
736 		addr2_low32  = *((u32*)(hdr->addr2+2));
737 		addr2_high16 = *((u16*)(hdr->addr2));
738 	}
739 	if (len_mpdu>=26) {
740 		addr3_low32  = *((u32*)(hdr->addr3+2));
741 		addr3_high16 = *((u16*)(hdr->addr3));
742 	}
743 
744 	duration_id = hdr->duration_id;
745 	frame_control=hdr->frame_control;
746 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
747 	fc_type = ((frame_control)>>2)&3;
748 	fc_subtype = ((frame_control)>>4)&0xf;
749 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
750 	//if it is broadcasting or multicasting addr
751 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
752 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
753 				  (addr1_high16==0x3333) ||
754 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
755 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
756 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
757 	} else {
758 		pkt_need_ack = 0;
759 	}
760 
761 	// get Linux rate (MCS) setting
762 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
763 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
764 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
765 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
766 
767 	retry_limit_raw = info->control.rates[0].count;
768 
769 	rc_flags = info->control.rates[0].flags;
770 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
771 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
772 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
773 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
774 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
775 
776 	if (use_rts_cts)
777 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
778 
779 	if (use_cts_protect) {
780 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
781 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
782 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
783 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
784 		sifs = (priv->actual_rx_lo<2500?10:16);
785 		if (pkt_need_ack)
786 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
787 		traffic_pkt_duration = 20 + 4*(((22+len_mpdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
788 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
789 	}
790 
791 // this is 11b stuff
792 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
793 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
794 
795 	if (len_mpdu>=28) {
796 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
797 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
798 				priv->seqno += 0x10;
799 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
800 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
801 		}
802 		sc = hdr->seq_ctrl;
803 	}
804 
805 	if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
806 		printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
807 			len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
808 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
809 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
810 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
811 			ring->bd_wr_idx,ring->bd_rd_idx);
812 
813 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
814 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
815 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
816 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
817 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
818 
819 	// -----------end of preprocess some info from header and skb----------------
820 
821 	// /* HW will perform RTS-CTS when only RTS flags is set.
822 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
823 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
824 	//  */
825 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
826 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
827 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
828 	// 					len_mpdu, info);
829 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
830 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
831 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
832 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
833 	// 					len_mpdu, info);
834 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
835 	// }
836 
837 	if(use_ht_aggr)
838 	{
839 		qos_hdr = ieee80211_get_qos_ctl(hdr);
840 		if(ieee80211_is_data_qos(frame_control) == false || qos_hdr[0] != priv->tid)
841 		{
842 			printk("%s openwifi_tx: WARNING packet is either not qos or tid %u does not match registered tid %u\n", sdr_compatible_str, qos_hdr[0], priv->tid);
843 			goto openwifi_tx_early_out;
844 		}
845 
846 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
847 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
848 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
849 
850 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
851 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
852 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
853 		{
854 			addr1_low32_prev = addr1_low32;
855 			addr1_high16_prev = addr1_high16;
856 			duration_id_prev = duration_id;
857 			rate_hw_value_prev = rate_hw_value;
858 			use_short_gi_prev = use_short_gi;
859 			prio_prev = prio;
860 			retry_limit_raw_prev = retry_limit_raw;
861 			pkt_need_ack_prev = pkt_need_ack;
862 
863 			ht_aggr_start = true;
864 		}
865 	}
866 	else
867 	{
868 		// psdu = [ MPDU ]
869 		len_psdu = len_mpdu;
870 
871 		addr1_low32_prev = -1;
872 		addr1_high16_prev = -1;
873 		duration_id_prev = -1;
874 		use_short_gi_prev = -1;
875 		rate_hw_value_prev = -1;
876 		prio_prev = -1;
877 		retry_limit_raw_prev = -1;
878 		pkt_need_ack_prev = -1;
879 	}
880 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
881 
882 	// check whether the packet is bigger than DMA buffer size
883 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
884 	if (num_dma_byte > TX_BD_BUF_SIZE) {
885 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
886 		goto openwifi_tx_early_out;
887 	}
888 
889 	// Copy MPDU delimiter and padding into sk_buff
890 	if(use_ht_aggr)
891 	{
892 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
893 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {
894 			struct sk_buff *skb_new; // in case original skb headroom is not enough to host MPDU delimiter
895 			printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_MPDU_DELIM\n", sdr_compatible_str, ring->bd_wr_idx);
896 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
897 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
898 				goto openwifi_tx_early_out;
899 			}
900 			if (skb->sk != NULL)
901 				skb_set_owner_w(skb_new, skb->sk);
902 			dev_kfree_skb(skb);
903 			skb = skb_new;
904 		}
905 		skb_push( skb, LEN_MPDU_DELIM );
906 		dma_buf = skb->data;
907 
908 		// fill in MPDU delimiter
909 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
910 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
911 		*((u8 *)(dma_buf+3)) = 0x4e;
912 
913 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
914 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
915 		if (skb_tailroom(skb)<num_byte_pad) {
916 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
917 			goto openwifi_tx_early_out;
918 		}
919 		skb_put( skb, num_byte_pad );
920 
921 		// fill in MPDU CRC
922 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
923 
924 		// fill in MPDU delimiter padding
925 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
926 
927 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
928 		// If they have different lengths, add "empty MPDU delimiter" for alignment
929 		if(num_dma_byte == len_psdu + 4)
930 		{
931 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
932 			len_psdu = num_dma_byte;
933 		}
934 	}
935 	else
936 	{
937 		// Extend sk_buff to hold padding
938 		num_byte_pad = num_dma_byte - len_mpdu;
939 		if (skb_tailroom(skb)<num_byte_pad) {
940 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
941 			goto openwifi_tx_early_out;
942 		}
943 		skb_put( skb, num_byte_pad );
944 
945 		dma_buf = skb->data;
946 	}
947 //	for(i = 0; i <= num_dma_symbol; i++)
948 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
949 
950 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
951 
952 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
953 
954 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
955 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
956 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | (len_mpdu+LEN_PHY_CRC) );
957 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
958 
959 	/* We must be sure that tx_flags is written last because the HW
960 	 * looks at it to check if the rest of data is valid or not
961 	 */
962 	//wmb();
963 	// entry->flags = cpu_to_le32(tx_flags);
964 	/* We must be sure this has been written before following HW
965 	 * register write, because this write will make the HW attempts
966 	 * to DMA the just-written data
967 	 */
968 	//wmb();
969 
970 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
971 
972 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
973 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
974 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
975 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
976 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
977 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
978 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
979 		ring->stop_flag = 1;
980 		goto openwifi_tx_early_out_after_lock;
981 	}
982 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
983 
984 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
985 	if (status!=DMA_COMPLETE) {
986 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
987 		goto openwifi_tx_early_out_after_lock;
988 	}
989 
990 //-------------------------fire skb DMA to hardware----------------------------------
991 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
992 				 num_dma_byte, DMA_MEM_TO_DEV);
993 
994 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
995 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
996 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
997 		goto openwifi_tx_early_out_after_lock;
998 	}
999 
1000 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1001 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1002 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1003 
1004 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1005 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1006 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1007 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1008 	if (!(priv->txd)) {
1009 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1010 		goto openwifi_tx_after_dma_mapping;
1011 	}
1012 
1013 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1014 
1015 	if (dma_submit_error(priv->tx_cookie)) {
1016 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1017 		goto openwifi_tx_after_dma_mapping;
1018 	}
1019 
1020 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1021 	ring->bds[ring->bd_wr_idx].seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1022 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1023 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1024 
1025 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1026 
1027 	dma_async_issue_pending(priv->tx_chan);
1028 
1029 	spin_unlock_irqrestore(&priv->lock, flags);
1030 
1031 	return;
1032 
1033 openwifi_tx_after_dma_mapping:
1034 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1035 
1036 openwifi_tx_early_out_after_lock:
1037 	dev_kfree_skb(skb);
1038 	spin_unlock_irqrestore(&priv->lock, flags);
1039 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1040 	return;
1041 
1042 openwifi_tx_early_out:
1043 	dev_kfree_skb(skb);
1044 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1045 }
1046 
1047 static int openwifi_start(struct ieee80211_hw *dev)
1048 {
1049 	struct openwifi_priv *priv = dev->priv;
1050 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
1051 	u32 reg;
1052 
1053 	for (i=0; i<MAX_NUM_VIF; i++) {
1054 		priv->vif[i] = NULL;
1055 	}
1056 
1057 	memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1058 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1059 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1060 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
1061 
1062 	//turn on radio
1063 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
1064 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1065 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1066 	} else {
1067 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1068 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1069 	}
1070 	if (reg == AD9361_RADIO_ON_TX_ATT) {
1071 		priv->rfkill_off = 1;// 0 off, 1 on
1072 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1073 	}
1074 	else
1075 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
1076 
1077 	if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1078 		priv->ctrl_out.index=0x16;
1079 	else
1080 		priv->ctrl_out.index=0x17;
1081 
1082 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1083 	if (ret < 0) {
1084 		printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
1085 	} else {
1086 		printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1087 	}
1088 
1089 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1090 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1091 
1092 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1093 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1094 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1095 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1096 	xpu_api->hw_init(priv->xpu_cfg);
1097 
1098 	agc_gain_delay = 50; //samples
1099 	rssi_half_db_offset = 150; // to be consistent
1100 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
1101 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
1102 
1103 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
1104 	// rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel
1105 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
1106 	xpu_api->XPU_REG_FORCE_IDLE_MISC_write(75); //control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
1107 
1108 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
1109 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
1110 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
1111 
1112 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1113 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1114 
1115 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1116 
1117 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1118 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1119 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1120 
1121 	// setup time schedule of 4 slices
1122 	// slice 0
1123 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1124 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1125 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1126 
1127 	// slice 1
1128 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1129 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1130 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1131 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1132 
1133 	// slice 2
1134 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1135 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1136 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1137 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1138 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1139 
1140 	// slice 3
1141 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1142 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1143 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1144 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1145 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1146 
1147 	// all slice sync rest
1148 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1149 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1150 
1151 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1152 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1153 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1154 
1155 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1156 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1157 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1158 
1159 	if (test_mode==1) {
1160 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1161 		goto normal_out;
1162 	}
1163 
1164 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1165 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1166 		ret = PTR_ERR(priv->rx_chan);
1167 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1168 		goto err_dma;
1169 	}
1170 
1171 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1172 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1173 		ret = PTR_ERR(priv->tx_chan);
1174 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1175 		goto err_dma;
1176 	}
1177 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1178 
1179 	ret = openwifi_init_rx_ring(priv);
1180 	if (ret) {
1181 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1182 		goto err_free_rings;
1183 	}
1184 
1185 	priv->seqno=0;
1186 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1187 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1188 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1189 			goto err_free_rings;
1190 		}
1191 	}
1192 
1193 	if ( (ret = rx_dma_setup(dev)) ) {
1194 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1195 		goto err_free_rings;
1196 	}
1197 
1198 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1199 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1200 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1201 	if (ret) {
1202 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1203 		goto err_free_rings;
1204 	} else {
1205 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1206 	}
1207 
1208 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1209 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1210 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1211 	if (ret) {
1212 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1213 		goto err_free_rings;
1214 	} else {
1215 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1216 	}
1217 
1218 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1219 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1220 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1221 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1222 
1223 	//ieee80211_wake_queue(dev, 0);
1224 
1225 normal_out:
1226 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1227 	return 0;
1228 
1229 err_free_rings:
1230 	openwifi_free_rx_ring(priv);
1231 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1232 		openwifi_free_tx_ring(priv, i);
1233 
1234 err_dma:
1235 	ret = -1;
1236 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1237 	return ret;
1238 }
1239 
1240 static void openwifi_stop(struct ieee80211_hw *dev)
1241 {
1242 	struct openwifi_priv *priv = dev->priv;
1243 	u32 reg, reg1;
1244 	int i;
1245 
1246 	if (test_mode==1){
1247 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1248 		goto normal_out;
1249 	}
1250 
1251 	//turn off radio
1252 	#if 1
1253 	ad9361_tx_mute(priv->ad9361_phy, 1);
1254 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1255 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1256 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1257 		priv->rfkill_off = 0;// 0 off, 1 on
1258 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1259 	}
1260 	else
1261 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1262 	#endif
1263 
1264 	//ieee80211_stop_queue(dev, 0);
1265 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1266 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1267 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1268 
1269 	for (i=0; i<MAX_NUM_VIF; i++) {
1270 		priv->vif[i] = NULL;
1271 	}
1272 
1273 	openwifi_free_rx_ring(priv);
1274 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1275 		openwifi_free_tx_ring(priv, i);
1276 
1277 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1278 	dmaengine_terminate_all(priv->rx_chan);
1279 	dma_release_channel(priv->rx_chan);
1280 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1281 	dmaengine_terminate_all(priv->tx_chan);
1282 	dma_release_channel(priv->tx_chan);
1283 
1284 	//priv->rf->stop(dev);
1285 
1286 	free_irq(priv->irq_rx, dev);
1287 	free_irq(priv->irq_tx, dev);
1288 
1289 normal_out:
1290 	printk("%s openwifi_stop\n", sdr_compatible_str);
1291 }
1292 
1293 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1294 			   struct ieee80211_vif *vif)
1295 {
1296 	u32 tsft_low, tsft_high;
1297 
1298 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1299 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1300 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1301 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1302 }
1303 
1304 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1305 {
1306 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1307 	u32 tsft_low  = (tsf&0xffffffff);
1308 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1309 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1310 }
1311 
1312 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1313 {
1314 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1315 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1316 }
1317 
1318 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1319 {
1320 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1321 	return(0);
1322 }
1323 
1324 static void openwifi_beacon_work(struct work_struct *work)
1325 {
1326 	struct openwifi_vif *vif_priv =
1327 		container_of(work, struct openwifi_vif, beacon_work.work);
1328 	struct ieee80211_vif *vif =
1329 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1330 	struct ieee80211_hw *dev = vif_priv->dev;
1331 	struct ieee80211_mgmt *mgmt;
1332 	struct sk_buff *skb;
1333 
1334 	/* don't overflow the tx ring */
1335 	if (ieee80211_queue_stopped(dev, 0))
1336 		goto resched;
1337 
1338 	/* grab a fresh beacon */
1339 	skb = ieee80211_beacon_get(dev, vif);
1340 	if (!skb)
1341 		goto resched;
1342 
1343 	/*
1344 	 * update beacon timestamp w/ TSF value
1345 	 * TODO: make hardware update beacon timestamp
1346 	 */
1347 	mgmt = (struct ieee80211_mgmt *)skb->data;
1348 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1349 
1350 	/* TODO: use actual beacon queue */
1351 	skb_set_queue_mapping(skb, 0);
1352 	openwifi_tx(dev, NULL, skb);
1353 
1354 resched:
1355 	/*
1356 	 * schedule next beacon
1357 	 * TODO: use hardware support for beacon timing
1358 	 */
1359 	schedule_delayed_work(&vif_priv->beacon_work,
1360 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1361 }
1362 
1363 static int openwifi_add_interface(struct ieee80211_hw *dev,
1364 				 struct ieee80211_vif *vif)
1365 {
1366 	int i;
1367 	struct openwifi_priv *priv = dev->priv;
1368 	struct openwifi_vif *vif_priv;
1369 
1370 	switch (vif->type) {
1371 	case NL80211_IFTYPE_AP:
1372 	case NL80211_IFTYPE_STATION:
1373 	case NL80211_IFTYPE_ADHOC:
1374 	case NL80211_IFTYPE_MONITOR:
1375 	case NL80211_IFTYPE_MESH_POINT:
1376 		break;
1377 	default:
1378 		return -EOPNOTSUPP;
1379 	}
1380 	// let's support more than 1 interface
1381 	for (i=0; i<MAX_NUM_VIF; i++) {
1382 		if (priv->vif[i] == NULL)
1383 			break;
1384 	}
1385 
1386 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1387 
1388 	if (i==MAX_NUM_VIF)
1389 		return -EBUSY;
1390 
1391 	priv->vif[i] = vif;
1392 
1393 	/* Initialize driver private area */
1394 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1395 	vif_priv->idx = i;
1396 
1397 	vif_priv->dev = dev;
1398 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1399 	vif_priv->enable_beacon = false;
1400 
1401 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1402 
1403 	return 0;
1404 }
1405 
1406 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1407 				     struct ieee80211_vif *vif)
1408 {
1409 	struct openwifi_vif *vif_priv;
1410 	struct openwifi_priv *priv = dev->priv;
1411 
1412 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1413 	priv->vif[vif_priv->idx] = NULL;
1414 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1415 }
1416 
1417 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1418 {
1419 	struct openwifi_priv *priv = dev->priv;
1420 	struct ieee80211_conf *conf = &dev->conf;
1421 
1422 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1423 		priv->rf->set_chan(dev, conf);
1424 	else
1425 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1426 
1427 	return 0;
1428 }
1429 
1430 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1431 				     struct ieee80211_vif *vif,
1432 				     struct ieee80211_bss_conf *info,
1433 				     u32 changed)
1434 {
1435 	struct openwifi_priv *priv = dev->priv;
1436 	struct openwifi_vif *vif_priv;
1437 	u32 bssid_low, bssid_high;
1438 
1439 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1440 
1441 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1442 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1443 	if (changed & BSS_CHANGED_BSSID) {
1444 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1445 		// write new bssid to our HW, and do not change bssid filter
1446 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1447 		bssid_low = ( *( (u32*)(info->bssid) ) );
1448 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1449 
1450 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1451 		//bssid_high = (bssid_high|bssid_filter_high);
1452 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1453 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1454 	}
1455 
1456 	if (changed & BSS_CHANGED_BEACON_INT) {
1457 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1458 	}
1459 
1460 	if (changed & BSS_CHANGED_TXPOWER)
1461 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1462 
1463 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1464 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1465 
1466 	if (changed & BSS_CHANGED_BASIC_RATES)
1467 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1468 
1469 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1470 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1471 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1472 		if (info->use_short_slot && priv->use_short_slot==false) {
1473 			priv->use_short_slot=true;
1474 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1475 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1476 			priv->use_short_slot=false;
1477 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1478 		}
1479 	}
1480 
1481 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1482 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1483 		vif_priv->enable_beacon = info->enable_beacon;
1484 	}
1485 
1486 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1487 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1488 		if (vif_priv->enable_beacon)
1489 			schedule_work(&vif_priv->beacon_work.work);
1490 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1491 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1492 	}
1493 }
1494 // helper function
1495 u32 log2val(u32 val){
1496 	u32 ret_val = 0 ;
1497 	while(val>1){
1498 		val = val >> 1 ;
1499 		ret_val ++ ;
1500 	}
1501 	return ret_val ;
1502 }
1503 
1504 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1505 	      const struct ieee80211_tx_queue_params *params)
1506 {
1507 	u32 reg_val, cw_min_exp, cw_max_exp;
1508 
1509 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1510 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1511 
1512 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1513 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1514 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1515 	switch(queue){
1516 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1517 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1518 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1519 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1520 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1521 	}
1522 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1523 	return(0);
1524 }
1525 
1526 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1527 				     struct netdev_hw_addr_list *mc_list)
1528 {
1529 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1530 	return netdev_hw_addr_list_count(mc_list);
1531 }
1532 
1533 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1534 				     unsigned int changed_flags,
1535 				     unsigned int *total_flags,
1536 				     u64 multicast)
1537 {
1538 	u32 filter_flag;
1539 
1540 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1541 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1542 
1543 	filter_flag = (*total_flags);
1544 
1545 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1546 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1547 
1548 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1549 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1550 		filter_flag = (filter_flag|MONITOR_ALL);
1551 	else
1552 		filter_flag = (filter_flag&(~MONITOR_ALL));
1553 
1554 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1555 		filter_flag = (filter_flag|MY_BEACON);
1556 
1557 	filter_flag = (filter_flag|FIF_PSPOLL);
1558 
1559 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1560 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1561 
1562 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1563 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1564 }
1565 
1566 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
1567 {
1568 	struct ieee80211_sta *sta = params->sta;
1569 	enum ieee80211_ampdu_mlme_action action = params->action;
1570 	struct openwifi_priv *priv = hw->priv;
1571 	u16 max_tx_bytes, buf_size;
1572 	u32 ampdu_action_config;
1573 
1574 	switch (action)
1575 	{
1576 		case IEEE80211_AMPDU_TX_START:
1577 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1578 			break;
1579 		case IEEE80211_AMPDU_TX_STOP_CONT:
1580 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
1581 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1582 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1583 			break;
1584 		case IEEE80211_AMPDU_TX_OPERATIONAL:
1585 			priv->tid = params->tid;
1586 			buf_size = 4;
1587 //			buf_size = (params->buf_size) - 1;
1588 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
1589 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
1590 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
1591 			break;
1592 		case IEEE80211_AMPDU_RX_START:
1593 			xpu_api->XPU_REG_AMPDU_ACTION_write((params->tid & 0x000F)<<1 | 1);
1594 			break;
1595 		case IEEE80211_AMPDU_RX_STOP:
1596 			xpu_api->XPU_REG_AMPDU_ACTION_write((params->tid & 0x000F)<<1 | 0);
1597 			break;
1598 		default:
1599 			return -EOPNOTSUPP;
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 static const struct ieee80211_ops openwifi_ops = {
1606 	.tx			       = openwifi_tx,
1607 	.start			   = openwifi_start,
1608 	.stop			   = openwifi_stop,
1609 	.add_interface	   = openwifi_add_interface,
1610 	.remove_interface  = openwifi_remove_interface,
1611 	.config			   = openwifi_config,
1612 	.bss_info_changed  = openwifi_bss_info_changed,
1613 	.conf_tx		   = openwifi_conf_tx,
1614 	.prepare_multicast = openwifi_prepare_multicast,
1615 	.configure_filter  = openwifi_configure_filter,
1616 	.rfkill_poll	   = openwifi_rfkill_poll,
1617 	.get_tsf		   = openwifi_get_tsf,
1618 	.set_tsf		   = openwifi_set_tsf,
1619 	.reset_tsf		   = openwifi_reset_tsf,
1620 	.set_rts_threshold = openwifi_set_rts_threshold,
1621 	.ampdu_action      = openwifi_ampdu_action,
1622 	.testmode_cmd	   = openwifi_testmode_cmd,
1623 };
1624 
1625 static const struct of_device_id openwifi_dev_of_ids[] = {
1626 	{ .compatible = "sdr,sdr", },
1627 	{}
1628 };
1629 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1630 
1631 static int custom_match_spi_dev(struct device *dev, void *data)
1632 {
1633     const char *name = data;
1634 
1635 	bool ret = sysfs_streq(name, dev->of_node->name);
1636 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1637 	return ret;
1638 }
1639 
1640 static int custom_match_platform_dev(struct device *dev, void *data)
1641 {
1642 	struct platform_device *plat_dev = to_platform_device(dev);
1643 	const char *name = data;
1644 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1645 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1646 
1647 	if (match_flag) {
1648 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1649 	}
1650 	return(match_flag);
1651 }
1652 
1653 static int openwifi_dev_probe(struct platform_device *pdev)
1654 {
1655 	struct ieee80211_hw *dev;
1656 	struct openwifi_priv *priv;
1657 	int err=1, rand_val;
1658 	const char *chip_name, *fpga_model;
1659 	u32 reg;//, reg1;
1660 
1661 	struct device_node *np = pdev->dev.of_node;
1662 
1663 	struct device *tmp_dev;
1664 	struct platform_device *tmp_pdev;
1665 	struct iio_dev *tmp_indio_dev;
1666 	// struct gpio_leds_priv *tmp_led_priv;
1667 
1668 	printk("\n");
1669 
1670 	if (np) {
1671 		const struct of_device_id *match;
1672 
1673 		match = of_match_node(openwifi_dev_of_ids, np);
1674 		if (match) {
1675 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1676 			err = 0;
1677 		}
1678 	}
1679 
1680 	if (err)
1681 		return err;
1682 
1683 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1684 	if (!dev) {
1685 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1686 		err = -ENOMEM;
1687 		goto err_free_dev;
1688 	}
1689 
1690 	priv = dev->priv;
1691 	priv->pdev = pdev;
1692 
1693 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1694 	if(err < 0) {
1695 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1696 		priv->fpga_type = SMALL_FPGA;
1697 	} else {
1698 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1699 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1700 			priv->fpga_type = LARGE_FPGA;
1701 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1702 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1703 			priv->fpga_type = SMALL_FPGA;
1704 	}
1705 
1706 	// //-------------find ad9361-phy driver for lo/channel control---------------
1707 	priv->actual_rx_lo = 0;
1708 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1709 	if (tmp_dev == NULL) {
1710 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1711 		err = -ENOMEM;
1712 		goto err_free_dev;
1713 	}
1714 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1715 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1716 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1717 		err = -ENOMEM;
1718 		goto err_free_dev;
1719 	}
1720 
1721 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1722 	if (!(priv->ad9361_phy)) {
1723 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1724 		err = -ENOMEM;
1725 		goto err_free_dev;
1726 	}
1727 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1728 
1729 	priv->ctrl_out.en_mask=0xFF;
1730 	priv->ctrl_out.index=0x16;
1731 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1732 	if (err < 0) {
1733 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
1734 	} else {
1735 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1736 	}
1737 
1738 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1739 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1740 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1741 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1742 
1743 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1744 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1745 	if (!tmp_dev) {
1746 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1747 		err = -ENOMEM;
1748 		goto err_free_dev;
1749 	}
1750 
1751 	tmp_pdev = to_platform_device(tmp_dev);
1752 	if (!tmp_pdev) {
1753 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1754 		err = -ENOMEM;
1755 		goto err_free_dev;
1756 	}
1757 
1758 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1759 	if (!tmp_indio_dev) {
1760 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1761 		err = -ENOMEM;
1762 		goto err_free_dev;
1763 	}
1764 
1765 	priv->dds_st = iio_priv(tmp_indio_dev);
1766 	if (!(priv->dds_st)) {
1767 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1768 		err = -ENOMEM;
1769 		goto err_free_dev;
1770 	}
1771 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1772 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1773 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1774 
1775 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1776 	// turn off radio by muting tx
1777 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1778 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1779 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1780 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1781 	// 	priv->rfkill_off = 0;// 0 off, 1 on
1782 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
1783 	// }
1784 	// else
1785 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1786 
1787 	priv->last_auto_fpga_lbt_th = 134;//just to avoid uninitialized
1788 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
1789 
1790 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1791 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1792 
1793 	priv->xpu_cfg = XPU_NORMAL;
1794 
1795 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
1796 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
1797 
1798 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
1799 	if (priv->rf_bw == 20000000) {
1800 		priv->rx_intf_cfg = RX_INTF_BYPASS;
1801 		priv->tx_intf_cfg = TX_INTF_BYPASS;
1802 		//priv->rx_freq_offset_to_lo_MHz = 0;
1803 		//priv->tx_freq_offset_to_lo_MHz = 0;
1804 	} else if (priv->rf_bw == 40000000) {
1805 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
1806 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
1807 
1808 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
1809 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1810 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
1811 		// // try another antenna option
1812 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1813 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1814 
1815 		#if 0
1816 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
1817 			priv->rx_freq_offset_to_lo_MHz = -10;
1818 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
1819 			priv->rx_freq_offset_to_lo_MHz = 10;
1820 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
1821 			priv->rx_freq_offset_to_lo_MHz = 0;
1822 		} else {
1823 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
1824 		}
1825 		#endif
1826 	} else {
1827 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
1828 	}
1829 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1830 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1831 	printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
1832 
1833 	//let's by default turn radio on when probing
1834 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
1835 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1836 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1837 	} else {
1838 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1839 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1840 	}
1841 	if (reg == AD9361_RADIO_ON_TX_ATT) {
1842 		priv->rfkill_off = 1;// 0 off, 1 on
1843 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
1844 	} else
1845 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
1846 
1847 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
1848 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
1849 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
1850 
1851 	// //set ad9361 in certain mode
1852 	#if 0
1853 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
1854 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1855 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
1856 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1857 
1858 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1859 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1860 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1861 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1862 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1863 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1864 	#endif
1865 
1866 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
1867 
1868 	SET_IEEE80211_DEV(dev, &pdev->dev);
1869 	platform_set_drvdata(pdev, dev);
1870 
1871 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
1872 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
1873 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
1874 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
1875 
1876 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
1877 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
1878 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
1879 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
1880 
1881 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
1882 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
1883 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
1884 	priv->ampdu_reference = 0;
1885 
1886 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
1887 	priv->band_2GHz.channels = priv->channels_2GHz;
1888 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
1889 	priv->band_2GHz.bitrates = priv->rates_2GHz;
1890 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
1891 	priv->band_2GHz.ht_cap.ht_supported = true;
1892 	priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
1893 	priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
1894 	priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
1895 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
1896 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
1897 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1898 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
1899 
1900 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
1901 	priv->band_5GHz.channels = priv->channels_5GHz;
1902 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
1903 	priv->band_5GHz.bitrates = priv->rates_5GHz;
1904 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
1905 	priv->band_5GHz.ht_cap.ht_supported = true;
1906 	priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
1907 	priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
1908 	priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
1909 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
1910 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
1911 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1912 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
1913 
1914 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
1915 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
1916 
1917 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
1918 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
1919 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
1920 	ieee80211_hw_set(dev, AMPDU_AGGREGATION);
1921 
1922 	dev->vif_data_size = sizeof(struct openwifi_vif);
1923 	dev->wiphy->interface_modes =
1924 			BIT(NL80211_IFTYPE_MONITOR)|
1925 			BIT(NL80211_IFTYPE_P2P_GO) |
1926 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
1927 			BIT(NL80211_IFTYPE_AP) |
1928 			BIT(NL80211_IFTYPE_STATION) |
1929 			BIT(NL80211_IFTYPE_ADHOC) |
1930 			BIT(NL80211_IFTYPE_MESH_POINT) |
1931 			BIT(NL80211_IFTYPE_OCB);
1932 	dev->wiphy->iface_combinations = &openwifi_if_comb;
1933 	dev->wiphy->n_iface_combinations = 1;
1934 
1935 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
1936 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
1937 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
1938 
1939 	chip_name = "ZYNQ";
1940 
1941 	/* we declare to MAC80211 all the queues except for beacon queue
1942 	 * that will be eventually handled by DRV.
1943 	 * TX rings are arranged in such a way that lower is the IDX,
1944 	 * higher is the priority, in order to achieve direct mapping
1945 	 * with mac80211, however the beacon queue is an exception and it
1946 	 * is mapped on the highst tx ring IDX.
1947 	 */
1948 	dev->queues = MAX_NUM_HW_QUEUE;
1949 	//dev->queues = 1;
1950 
1951 	ieee80211_hw_set(dev, SIGNAL_DBM);
1952 
1953 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1954 
1955 	priv->rf = &ad9361_rf_ops;
1956 
1957 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
1958 	priv->slice_idx = 0xFFFFFFFF;
1959 
1960 	sg_init_table(&(priv->tx_sg), 1);
1961 
1962 	get_random_bytes(&rand_val, sizeof(rand_val));
1963     rand_val%=250;
1964 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
1965 	priv->mac_addr[5]=rand_val+1;
1966 	//priv->mac_addr[5]=0x11;
1967 	if (!is_valid_ether_addr(priv->mac_addr)) {
1968 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
1969 		eth_random_addr(priv->mac_addr);
1970 	} else {
1971 		printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
1972 	}
1973 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
1974 
1975 	spin_lock_init(&priv->lock);
1976 
1977 	err = ieee80211_register_hw(dev);
1978 	if (err) {
1979 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
1980 		goto err_free_dev;
1981 	} else {
1982 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
1983 	}
1984 
1985 	// // //--------------------hook leds (not complete yet)--------------------------------
1986 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
1987 	// if (!tmp_dev) {
1988 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
1989 	// 	err = -ENOMEM;
1990 	// 	goto err_free_dev;
1991 	// }
1992 
1993 	// tmp_pdev = to_platform_device(tmp_dev);
1994 	// if (!tmp_pdev) {
1995 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
1996 	// 	err = -ENOMEM;
1997 	// 	goto err_free_dev;
1998 	// }
1999 
2000 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2001 	// if (!tmp_led_priv) {
2002 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2003 	// 	err = -ENOMEM;
2004 	// 	goto err_free_dev;
2005 	// }
2006 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2007 	// if (tmp_led_priv->num_leds!=4){
2008 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2009 	// 	err = -ENOMEM;
2010 	// 	goto err_free_dev;
2011 	// }
2012 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2013 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2014 	// priv->num_led = tmp_led_priv->num_leds;
2015 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2016 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2017 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2018 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2019 
2020 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2021 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2022 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2023 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2024 
2025 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2026 		   priv->mac_addr, chip_name, priv->rf->name);
2027 
2028 	openwifi_rfkill_init(dev);
2029 	return 0;
2030 
2031  err_free_dev:
2032 	ieee80211_free_hw(dev);
2033 
2034 	return err;
2035 }
2036 
2037 static int openwifi_dev_remove(struct platform_device *pdev)
2038 {
2039 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2040 
2041 	if (!dev) {
2042 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2043 		return(-1);
2044 	}
2045 
2046 	openwifi_rfkill_exit(dev);
2047 	ieee80211_unregister_hw(dev);
2048 	ieee80211_free_hw(dev);
2049 	return(0);
2050 }
2051 
2052 static struct platform_driver openwifi_dev_driver = {
2053 	.driver = {
2054 		.name = "sdr,sdr",
2055 		.owner = THIS_MODULE,
2056 		.of_match_table = openwifi_dev_of_ids,
2057 	},
2058 	.probe = openwifi_dev_probe,
2059 	.remove = openwifi_dev_remove,
2060 };
2061 
2062 module_platform_driver(openwifi_dev_driver);
2063