xref: /openwifi/driver/sdr.c (revision 9f07176e800de8d683b9ee1ec006df6938206b74)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 
59 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
60 #include "hw_def.h"
61 #include "sdr.h"
62 #include "git_rev.h"
63 
64 // driver API of component driver
65 extern struct tx_intf_driver_api *tx_intf_api;
66 extern struct rx_intf_driver_api *rx_intf_api;
67 extern struct openofdm_tx_driver_api *openofdm_tx_api;
68 extern struct openofdm_rx_driver_api *openofdm_rx_api;
69 extern struct xpu_driver_api *xpu_api;
70 
71 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
72 u8 gen_mpdu_delim_crc(u16 m);
73 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
74 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
75 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction);
76 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction);
77 int rssi_correction_lookup_table(u32 freq_MHz);
78 
79 #include "sdrctl_intf.c"
80 #include "sysfs_intf.c"
81 
82 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
83 // Internal indication variables after parsing test_mode
84 static bool AGGR_ENABLE = false;
85 static bool TX_OFFSET_TUNING_ENABLE = false;
86 
87 static int init_tx_att = 0;
88 
89 MODULE_AUTHOR("Xianjun Jiao");
90 MODULE_DESCRIPTION("SDR driver");
91 MODULE_LICENSE("GPL v2");
92 
93 module_param(test_mode, int, 0);
94 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
95 
96 module_param(init_tx_att, int, 0);
97 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000	example: set to 3000 for 3dB attenuation");
98 
99 // ---------------rfkill---------------------------------------
100 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
101 {
102 	int reg;
103 
104 	if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
105 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
106 	else
107 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
108 
109 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
110 		return true;// 0 off, 1 on
111 	return false;
112 }
113 
114 void openwifi_rfkill_init(struct ieee80211_hw *hw)
115 {
116 	struct openwifi_priv *priv = hw->priv;
117 
118 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
119 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
120 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
121 	wiphy_rfkill_start_polling(hw->wiphy);
122 }
123 
124 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
125 {
126 	bool enabled;
127 	struct openwifi_priv *priv = hw->priv;
128 
129 	enabled = openwifi_is_radio_enabled(priv);
130 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
131 	if (unlikely(enabled != priv->rfkill_off)) {
132 		priv->rfkill_off = enabled;
133 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
134 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
135 	}
136 }
137 
138 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
139 {
140 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
141 	wiphy_rfkill_stop_polling(hw->wiphy);
142 }
143 //----------------rfkill end-----------------------------------
144 
145 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction)
146 {
147 	return ((rssi_correction+rssi_dbm)<<1);
148 }
149 
150 inline int rssi_correction_lookup_table(u32 freq_MHz)
151 {
152 	int rssi_correction;
153 
154 	if (freq_MHz<2412) {
155 		rssi_correction = 153;
156 	} else if (freq_MHz<=2484) {
157 		rssi_correction = 153;
158 	} else if (freq_MHz<5160) {
159 		rssi_correction = 153;
160 	} else if (freq_MHz<=5240) {
161 		rssi_correction = 145;
162 	} else if (freq_MHz<=5320) {
163 		rssi_correction = 148;
164 	} else {
165 		rssi_correction = 148;
166 	}
167 
168 	return rssi_correction;
169 }
170 
171 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
172 				  struct ieee80211_conf *conf)
173 {
174 	struct openwifi_priv *priv = dev->priv;
175 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
176 	u32 actual_tx_lo;
177 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
178 	int static_lbt_th, auto_lbt_th, fpga_lbt_th;
179 
180 	if (change_flag) {
181 		priv->actual_rx_lo = actual_rx_lo;
182 		priv->actual_tx_lo = actual_tx_lo;
183 
184 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
185 
186 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
187 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
188 
189 		if (actual_rx_lo<2412) {
190 			priv->rssi_correction = 153;
191 		} else if (actual_rx_lo<=2484) {
192 			priv->rssi_correction = 153;
193 		} else if (actual_rx_lo<5160) {
194 			priv->rssi_correction = 153;
195 		} else if (actual_rx_lo<=5240) {
196 			priv->rssi_correction = 145;
197 		} else if (actual_rx_lo<=5320) {
198 			priv->rssi_correction = 148;
199 		} else {
200 			priv->rssi_correction = 148;
201 		}
202 
203 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
204 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
205 		auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
206 		static_lbt_th = priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH];
207 		fpga_lbt_th = (static_lbt_th==0?auto_lbt_th:static_lbt_th);
208 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
209 
210 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
211 
212 		if (actual_rx_lo < 2500) {
213 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
214 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
215 			if (priv->band != BAND_2_4GHZ) {
216 				priv->band = BAND_2_4GHZ;
217 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
218 			}
219 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
220 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
221 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
222 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
223 		}
224 		else {
225 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
226 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
227 			if (priv->band != BAND_5_8GHZ) {
228 				priv->band = BAND_5_8GHZ;
229 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
230 			}
231 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
232 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
233 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
234 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
235 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
236 		}
237 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
238 		// //-- use less
239 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
240 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
241 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
242 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
243 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d (auto %d static %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,auto_lbt_th,static_lbt_th);
244 	}
245 }
246 
247 const struct openwifi_rf_ops ad9361_rf_ops = {
248 	.name		= "ad9361",
249 //	.init		= ad9361_rf_init,
250 //	.stop		= ad9361_rf_stop,
251 	.set_chan	= ad9361_rf_set_channel,
252 //	.calc_rssi	= ad9361_rf_calc_rssi,
253 };
254 
255 u16 reverse16(u16 d) {
256 	union u16_byte2 tmp0, tmp1;
257 	tmp0.a = d;
258 	tmp1.c[0] = tmp0.c[1];
259 	tmp1.c[1] = tmp0.c[0];
260 	return(tmp1.a);
261 }
262 
263 u32 reverse32(u32 d) {
264 	union u32_byte4 tmp0, tmp1;
265 	tmp0.a = d;
266 	tmp1.c[0] = tmp0.c[3];
267 	tmp1.c[1] = tmp0.c[2];
268 	tmp1.c[2] = tmp0.c[1];
269 	tmp1.c[3] = tmp0.c[0];
270 	return(tmp1.a);
271 }
272 
273 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
274 {
275 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
276 	int i;
277 
278 	ring->stop_flag = 0;
279 	ring->bd_wr_idx = 0;
280 	ring->bd_rd_idx = 0;
281 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
282 	if (ring->bds==NULL) {
283 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
284 		return -ENOMEM;
285 	}
286 
287 	for (i = 0; i < NUM_TX_BD; i++) {
288 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
289 		//at first right after skb allocated, head, data, tail are the same.
290 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
291 		ring->bds[i].seq_no = 0;
292 	}
293 
294 	return 0;
295 }
296 
297 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
298 {
299 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
300 	int i;
301 
302 	ring->stop_flag = 0;
303 	ring->bd_wr_idx = 0;
304 	ring->bd_rd_idx = 0;
305 	for (i = 0; i < NUM_TX_BD; i++) {
306 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
307 			continue;
308 		if (ring->bds[i].dma_mapping_addr != 0)
309 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
310 //		if (ring->bds[i].skb_linked!=NULL)
311 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
312 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
313 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
314 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
315 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
316 
317 		ring->bds[i].skb_linked=0;
318 		ring->bds[i].dma_mapping_addr = 0;
319 		ring->bds[i].seq_no = 0;
320 	}
321 	if (ring->bds)
322 		kfree(ring->bds);
323 	ring->bds = NULL;
324 }
325 
326 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
327 {
328 	int i;
329 	u8 *pdata_tmp;
330 
331 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
332 	if (!priv->rx_cyclic_buf) {
333 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
334 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
335 		return(-1);
336 	}
337 
338 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
339 	for (i=0; i<NUM_RX_BD; i++) {
340 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
341 		(*((u32*)(pdata_tmp+0 ))) = 0;
342 		(*((u32*)(pdata_tmp+4 ))) = 0;
343 	}
344 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
345 
346 	return 0;
347 }
348 
349 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
350 {
351 	if (priv->rx_cyclic_buf)
352 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
353 
354 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
355 	priv->rx_cyclic_buf = 0;
356 }
357 
358 static int rx_dma_setup(struct ieee80211_hw *dev){
359 	struct openwifi_priv *priv = dev->priv;
360 	struct dma_device *rx_dev = priv->rx_chan->device;
361 
362 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
363 	if (!(priv->rxd)) {
364 		openwifi_free_rx_ring(priv);
365 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
366 		return(-1);
367 	}
368 	priv->rxd->callback = 0;
369 	priv->rxd->callback_param = 0;
370 
371 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
372 
373 	if (dma_submit_error(priv->rx_cookie)) {
374 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
375 		return(-1);
376 	}
377 
378 	dma_async_issue_pending(priv->rx_chan);
379 	return(0);
380 }
381 
382 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction)
383 {
384 	int rssi_db, rssi_dbm;
385 
386 	rssi_db = (rssi_half_db>>1);
387 
388 	rssi_dbm = rssi_db - rssi_correction;
389 
390 	rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm);
391 
392 	return rssi_dbm;
393 }
394 
395 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
396 {
397 	struct ieee80211_hw *dev = dev_id;
398 	struct openwifi_priv *priv = dev->priv;
399 	struct ieee80211_rx_status rx_status = {0};
400 	struct sk_buff *skb;
401 	struct ieee80211_hdr *hdr;
402 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
403 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
404 	// u32 dma_driver_buf_idx_mod;
405 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
406 	s8 signal;
407 	u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
408 	bool content_ok = false, len_overflow = false;
409 
410 #ifdef USE_NEW_RX_INTERRUPT
411 	int i;
412 	spin_lock(&priv->lock);
413 	for (i=0; i<NUM_RX_BD; i++) {
414 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
415 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
416 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
417 			continue;
418 #else
419 	static u8 target_buf_idx_old = 0;
420 	spin_lock(&priv->lock);
421 	while(1) { // loop all rx buffers that have new rx packets
422 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
423 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
424 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
425 			break;
426 #endif
427 
428 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
429 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
430 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
431 		len =          (*((u16*)(pdata_tmp+12)));
432 
433 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
434 
435 		rate_idx =     (*((u16*)(pdata_tmp+14)));
436 		ht_flag  =     ((rate_idx&0x10)!=0);
437 		short_gi =     ((rate_idx&0x20)!=0);
438 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
439 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
440 		rate_idx =     (rate_idx&0x1F);
441 
442 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
443 
444 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
445 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
446 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
447 		fcs_ok = ((fcs_ok&0x80)!=0);
448 
449 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
450 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
451 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
452 			// }
453 			content_ok = true;
454 		} else {
455 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
456 			content_ok = false;
457 		}
458 
459 		rssi_val = (rssi_val>>1);
460 		if ( (rssi_val+128)<priv->rssi_correction )
461 			signal = -128;
462 		else
463 			signal = rssi_val - priv->rssi_correction;
464 
465 		// fc_di =        (*((u32*)(pdata_tmp+16)));
466 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
467 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
468 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
469 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
470 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
471 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
472 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
473 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
474 			addr1_low32  = *((u32*)(hdr->addr1+2));
475 			addr1_high16 = *((u16*)(hdr->addr1));
476 			if (len>=20) {
477 				addr2_low32  = *((u32*)(hdr->addr2+2));
478 				addr2_high16 = *((u16*)(hdr->addr2));
479 			}
480 			if (len>=26) {
481 				addr3_low32  = *((u32*)(hdr->addr3+2));
482 				addr3_high16 = *((u16*)(hdr->addr3));
483 			}
484 			if (len>=28)
485 				sc = hdr->seq_ctrl;
486 
487 			if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) )
488 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
489 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
490 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
491 #ifdef USE_NEW_RX_INTERRUPT
492 					sc, fcs_ok, i, signal);
493 #else
494 					sc, fcs_ok, target_buf_idx_old, signal);
495 #endif
496 		}
497 
498 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
499 		if (content_ok) {
500 			skb = dev_alloc_skb(len);
501 			if (skb) {
502 				skb_put_data(skb,pdata_tmp+16,len);
503 
504 				rx_status.antenna = priv->runtime_rx_ant_cfg;
505 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
506 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
507 				rx_status.signal = signal;
508 				rx_status.freq = dev->conf.chandef.chan->center_freq;
509 				rx_status.band = dev->conf.chandef.chan->band;
510 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
511 				rx_status.flag |= RX_FLAG_MACTIME_START;
512 				if (!fcs_ok)
513 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
514 				if (rate_idx <= 15)
515 					rx_status.encoding = RX_ENC_LEGACY;
516 				else
517 					rx_status.encoding = RX_ENC_HT;
518 				rx_status.bw = RATE_INFO_BW_20;
519 				if (short_gi)
520 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
521 				if(ht_aggr)
522 				{
523 					rx_status.ampdu_reference = priv->ampdu_reference;
524 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
525 					if (ht_aggr_last)
526 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
527 				}
528 
529 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
530 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
531 			} else
532 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
533 
534 			if(ht_aggr_last)
535 				priv->ampdu_reference++;
536 		}
537 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
538 		loop_count++;
539 #ifndef USE_NEW_RX_INTERRUPT
540 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
541 #endif
542 	}
543 
544 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
545 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
546 
547 // openwifi_rx_interrupt_out:
548 	spin_unlock(&priv->lock);
549 	return IRQ_HANDLED;
550 }
551 
552 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
553 {
554 	struct ieee80211_hw *dev = dev_id;
555 	struct openwifi_priv *priv = dev->priv;
556 	struct openwifi_ring *ring;
557 	struct sk_buff *skb;
558 	struct ieee80211_tx_info *info;
559 	u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;
560 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
561 	u8 nof_retx=-1, last_bd_rd_idx, i;
562 	u64 blk_ack_bitmap;
563 	// u16 prio_rd_idx_store[64]={0};
564 	bool tx_fail=false;
565 
566 	spin_lock(&priv->lock);
567 
568 	while(1) { // loop all packets that have been sent by FPGA
569 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
570         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
571 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
572 
573 		if (reg_val1!=0xFFFFFFFF) {
574 			nof_retx = (reg_val1&0xF);
575 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
576 			prio = ((reg_val1>>17)&0x3);
577 			num_slot_random = ((reg_val1>>19)&0x1FF);
578 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
579 			cw = ((reg_val1>>28)&0xF);
580 			//cw = ((0xF0000000 & reg_val1) >> 28);
581 			if(cw > 10) {
582 				cw = 10 ;
583 				num_slot_random += 512 ;
584 			}
585 			pkt_cnt = (reg_val2&0x3F);
586 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
587 
588 			ring = &(priv->tx_ring[prio]);
589 
590 			if ( ring->stop_flag == 1) {
591 				// Wake up Linux queue if FPGA and driver ring have room
592 				queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
593 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
594 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
595 
596 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
597 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
598 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
599 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx);
600 					ieee80211_wake_queue(dev, prio);
601 					ring->stop_flag = 0;
602 				}
603 			}
604 
605 			for(i = 1; i <= pkt_cnt; i++)
606 			{
607 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
608 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
609 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
610 
611 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
612 						skb->len, DMA_MEM_TO_DEV);
613 
614 				info = IEEE80211_SKB_CB(skb);
615 				ieee80211_tx_info_clear_status(info);
616 
617 				// Aggregation packet
618 				if(pkt_cnt > 1)
619 				{
620 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
621 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
622 					info->flags |= IEEE80211_TX_STAT_AMPDU;
623 					info->status.ampdu_len = 1;
624 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
625 
626 					skb_pull(skb, LEN_MPDU_DELIM);
627 					//skb_trim(skb, num_byte_pad_skb);
628 				}
629 				// Normal packet
630 				else
631 				{
632 					tx_fail = ((blk_ack_bitmap&0x1)==0);
633 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
634 				}
635 
636 				if (tx_fail == false)
637 					info->flags |= IEEE80211_TX_STAT_ACK;
638 
639 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
640 				info->status.rates[1].idx = -1;
641 				info->status.rates[2].idx = -1;
642 				info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
643 				info->status.antenna = priv->runtime_tx_ant_cfg;
644 
645 				if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
646 					printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx);
647 				if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
648 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw);
649 
650 				ieee80211_tx_status_irqsafe(dev, skb);
651 			}
652 
653 			loop_count++;
654 
655 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
656 
657 		} else
658 			break;
659 	}
660 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
661 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
662 
663 	spin_unlock(&priv->lock);
664 	return IRQ_HANDLED;
665 }
666 
667 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
668 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
669 {
670 	u32 i, crc = 0;
671 	u8 idx;
672 	for( i = 0; i < num_bytes; i++)
673 	{
674 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
675 		crc = (crc >> 4) ^ crc_table[idx];
676 
677 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
678 		crc = (crc >> 4) ^ crc_table[idx];
679 	}
680 
681 	return crc;
682 }
683 
684 u8 gen_mpdu_delim_crc(u16 m)
685 {
686 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
687 
688 	for (i = 0; i < 16; i++)
689 	{
690 		temp = c[7] ^ ((m >> i) & 0x01);
691 
692 		c[7] = c[6];
693 		c[6] = c[5];
694 		c[5] = c[4];
695 		c[4] = c[3];
696 		c[3] = c[2];
697 		c[2] = c[1] ^ temp;
698 		c[1] = c[0] ^ temp;
699 		c[0] = temp;
700 	}
701 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
702 
703 	return mpdu_delim_crc;
704 }
705 
706 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
707 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
708 {
709 	return container_of(led_cdev, struct gpio_led_data, cdev);
710 }
711 
712 static void openwifi_tx(struct ieee80211_hw *dev,
713 		       struct ieee80211_tx_control *control,
714 		       struct sk_buff *skb)
715 {
716 	struct openwifi_priv *priv = dev->priv;
717 	unsigned long flags;
718 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
719 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
720 	struct openwifi_ring *ring = NULL;
721 	dma_addr_t dma_mapping_addr;
722 	unsigned int prio=0, i;
723 	u32 num_dma_symbol, len_mpdu = 0, len_mpdu_delim_pad = 0, num_dma_byte, len_psdu, num_byte_pad;
724 	u32 rate_signal_value,rate_hw_value=0,ack_flag;
725 	u32 pkt_need_ack=0, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
726 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
727 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw=0,use_short_gi=0,*dma_buf,retry_limit_hw_value,rc_flags,*qos_hdr;
728 	bool use_rts_cts, use_cts_protect=false, ht_aggr_start=false, use_ht_rate=false, use_ht_aggr=false, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
729 	__le16 frame_control,duration_id;
730 	u32 dma_fifo_no_room_flag, hw_queue_len;
731 	enum dma_status status;
732 
733 	static u32 addr1_low32_prev = -1, rate_hw_value_prev = -1, pkt_need_ack_prev = -1;
734 	static u16 addr1_high16_prev = -1;
735 	static __le16 duration_id_prev = -1;
736 	static unsigned int prio_prev = -1;
737 	static u8 retry_limit_raw_prev = -1;
738 	static u8 use_short_gi_prev = -1;
739 
740 	// static bool led_status=0;
741 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
742 
743 	// if ( (priv->phy_tx_sn&7) ==0 ) {
744 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
745 	// 	if (openofdm_state_history!=openofdm_state_history_old){
746 	// 		led_status = (~led_status);
747 	// 		openofdm_state_history_old = openofdm_state_history;
748 	// 		gpiod_set_value(led_dat->gpiod, led_status);
749 	// 	}
750 	// }
751 
752 	if (test_mode==1){
753 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
754 		goto openwifi_tx_early_out;
755 	}
756 
757 	if (skb->data_len>0) {// more data are not in linear data area skb->data
758 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
759 		goto openwifi_tx_early_out;
760 	}
761 
762 	len_mpdu = skb->len;
763 
764 	// get Linux priority/queue setting info and target mac address
765 	prio = skb_get_queue_mapping(skb);
766 	addr1_low32  = *((u32*)(hdr->addr1+2));
767 	ring = &(priv->tx_ring[prio]);
768 
769 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
770 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
771 		queue_idx = prio;
772 	} else {// customized prio to queue_idx mapping
773 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
774 		// check current packet belonging to which slice/hw-queue
775 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
776 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
777 					break;
778 				}
779 			}
780 		//}
781 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
782 	}
783 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
784 	// get other info from packet header
785 	addr1_high16 = *((u16*)(hdr->addr1));
786 	if (len_mpdu>=20) {
787 		addr2_low32  = *((u32*)(hdr->addr2+2));
788 		addr2_high16 = *((u16*)(hdr->addr2));
789 	}
790 	if (len_mpdu>=26) {
791 		addr3_low32  = *((u32*)(hdr->addr3+2));
792 		addr3_high16 = *((u16*)(hdr->addr3));
793 	}
794 
795 	duration_id = hdr->duration_id;
796 	frame_control=hdr->frame_control;
797 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
798 	fc_type = ((frame_control)>>2)&3;
799 	fc_subtype = ((frame_control)>>4)&0xf;
800 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
801 	//if it is broadcasting or multicasting addr
802 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
803 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
804 				  (addr1_high16==0x3333) ||
805 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
806 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
807 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
808 	} else {
809 		pkt_need_ack = 0;
810 	}
811 
812 	// get Linux rate (MCS) setting
813 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
814 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
815 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
816 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
817 
818 	retry_limit_raw = info->control.rates[0].count;
819 
820 	rc_flags = info->control.rates[0].flags;
821 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
822 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
823 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
824 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
825 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
826 
827 	if (use_rts_cts)
828 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
829 
830 	if (use_cts_protect) {
831 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
832 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
833 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
834 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
835 		sifs = (priv->actual_rx_lo<2500?10:16);
836 		if (pkt_need_ack)
837 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
838 		traffic_pkt_duration = 20 + 4*(((22+len_mpdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
839 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
840 	}
841 
842 // this is 11b stuff
843 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
844 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
845 
846 	if (len_mpdu>=28) {
847 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
848 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
849 				priv->seqno += 0x10;
850 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
851 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
852 		}
853 		sc = hdr->seq_ctrl;
854 	}
855 
856 	if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
857 		printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
858 			len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
859 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
860 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
861 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
862 			ring->bd_wr_idx,ring->bd_rd_idx);
863 
864 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
865 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
866 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
867 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
868 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
869 
870 	// -----------end of preprocess some info from header and skb----------------
871 
872 	// /* HW will perform RTS-CTS when only RTS flags is set.
873 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
874 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
875 	//  */
876 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
877 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
878 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
879 	// 					len_mpdu, info);
880 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
881 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
882 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
883 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
884 	// 					len_mpdu, info);
885 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
886 	// }
887 
888 	if(use_ht_aggr)
889 	{
890 		qos_hdr = ieee80211_get_qos_ctl(hdr);
891 		if(ieee80211_is_data_qos(frame_control) == false || qos_hdr[0] != priv->tid)
892 		{
893 			printk("%s openwifi_tx: WARNING packet is either not qos or tid %u does not match registered tid %u\n", sdr_compatible_str, qos_hdr[0], priv->tid);
894 			goto openwifi_tx_early_out;
895 		}
896 
897 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
898 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
899 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
900 
901 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
902 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
903 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
904 		{
905 			addr1_low32_prev = addr1_low32;
906 			addr1_high16_prev = addr1_high16;
907 			duration_id_prev = duration_id;
908 			rate_hw_value_prev = rate_hw_value;
909 			use_short_gi_prev = use_short_gi;
910 			prio_prev = prio;
911 			retry_limit_raw_prev = retry_limit_raw;
912 			pkt_need_ack_prev = pkt_need_ack;
913 
914 			ht_aggr_start = true;
915 		}
916 	}
917 	else
918 	{
919 		// psdu = [ MPDU ]
920 		len_psdu = len_mpdu;
921 
922 		addr1_low32_prev = -1;
923 		addr1_high16_prev = -1;
924 		duration_id_prev = -1;
925 		use_short_gi_prev = -1;
926 		rate_hw_value_prev = -1;
927 		prio_prev = -1;
928 		retry_limit_raw_prev = -1;
929 		pkt_need_ack_prev = -1;
930 	}
931 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
932 
933 	// check whether the packet is bigger than DMA buffer size
934 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
935 	if (num_dma_byte > TX_BD_BUF_SIZE) {
936 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
937 		goto openwifi_tx_early_out;
938 	}
939 
940 	// Copy MPDU delimiter and padding into sk_buff
941 	if(use_ht_aggr)
942 	{
943 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
944 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {
945 			struct sk_buff *skb_new; // in case original skb headroom is not enough to host MPDU delimiter
946 			printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_MPDU_DELIM\n", sdr_compatible_str, ring->bd_wr_idx);
947 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
948 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
949 				goto openwifi_tx_early_out;
950 			}
951 			if (skb->sk != NULL)
952 				skb_set_owner_w(skb_new, skb->sk);
953 			dev_kfree_skb(skb);
954 			skb = skb_new;
955 		}
956 		skb_push( skb, LEN_MPDU_DELIM );
957 		dma_buf = skb->data;
958 
959 		// fill in MPDU delimiter
960 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
961 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
962 		*((u8 *)(dma_buf+3)) = 0x4e;
963 
964 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
965 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
966 		if (skb_tailroom(skb)<num_byte_pad) {
967 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
968 			goto openwifi_tx_early_out;
969 		}
970 		skb_put( skb, num_byte_pad );
971 
972 		// fill in MPDU CRC
973 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
974 
975 		// fill in MPDU delimiter padding
976 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
977 
978 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
979 		// If they have different lengths, add "empty MPDU delimiter" for alignment
980 		if(num_dma_byte == len_psdu + 4)
981 		{
982 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
983 			len_psdu = num_dma_byte;
984 		}
985 	}
986 	else
987 	{
988 		// Extend sk_buff to hold padding
989 		num_byte_pad = num_dma_byte - len_mpdu;
990 		if (skb_tailroom(skb)<num_byte_pad) {
991 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
992 			goto openwifi_tx_early_out;
993 		}
994 		skb_put( skb, num_byte_pad );
995 
996 		dma_buf = skb->data;
997 	}
998 //	for(i = 0; i <= num_dma_symbol; i++)
999 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
1000 
1001 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
1002 
1003 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
1004 
1005 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
1006 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
1007 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | (len_mpdu+LEN_PHY_CRC) );
1008 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
1009 
1010 	/* We must be sure that tx_flags is written last because the HW
1011 	 * looks at it to check if the rest of data is valid or not
1012 	 */
1013 	//wmb();
1014 	// entry->flags = cpu_to_le32(tx_flags);
1015 	/* We must be sure this has been written before following HW
1016 	 * register write, because this write will make the HW attempts
1017 	 * to DMA the just-written data
1018 	 */
1019 	//wmb();
1020 
1021 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
1022 
1023 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
1024 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
1025 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1026 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
1027 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1028 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
1029 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
1030 		ring->stop_flag = 1;
1031 		goto openwifi_tx_early_out_after_lock;
1032 	}
1033 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
1034 
1035 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1036 	if (status!=DMA_COMPLETE) {
1037 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
1038 		goto openwifi_tx_early_out_after_lock;
1039 	}
1040 
1041 //-------------------------fire skb DMA to hardware----------------------------------
1042 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1043 				 num_dma_byte, DMA_MEM_TO_DEV);
1044 
1045 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1046 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1047 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1048 		goto openwifi_tx_early_out_after_lock;
1049 	}
1050 
1051 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1052 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1053 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1054 
1055 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1056 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1057 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1058 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1059 	if (!(priv->txd)) {
1060 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1061 		goto openwifi_tx_after_dma_mapping;
1062 	}
1063 
1064 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1065 
1066 	if (dma_submit_error(priv->tx_cookie)) {
1067 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1068 		goto openwifi_tx_after_dma_mapping;
1069 	}
1070 
1071 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1072 	ring->bds[ring->bd_wr_idx].seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1073 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1074 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1075 
1076 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1077 
1078 	dma_async_issue_pending(priv->tx_chan);
1079 
1080 	spin_unlock_irqrestore(&priv->lock, flags);
1081 
1082 	return;
1083 
1084 openwifi_tx_after_dma_mapping:
1085 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1086 
1087 openwifi_tx_early_out_after_lock:
1088 	dev_kfree_skb(skb);
1089 	spin_unlock_irqrestore(&priv->lock, flags);
1090 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1091 	return;
1092 
1093 openwifi_tx_early_out:
1094 	dev_kfree_skb(skb);
1095 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1096 }
1097 
1098 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1099 {
1100 	struct openwifi_priv *priv = dev->priv;
1101 	u8 fpga_tx_ant_setting, target_rx_ant;
1102 	u32 atten_mdb_tx0, atten_mdb_tx1;
1103 	struct ctrl_outs_control ctrl_out;
1104 	int ret;
1105 
1106 	printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1107 
1108 	if (tx_ant >= 4 || tx_ant == 0) {
1109 		return -EINVAL;
1110 	} else if (rx_ant >= 3 || rx_ant == 0) {
1111 		return -EINVAL;
1112 	}
1113 
1114 	fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1115 	target_rx_ant = ((rx_ant&1)?0:1);
1116 
1117 	// try rf chip setting firstly, only update internal state variable when rf chip succeed
1118 	atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1119 	atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1120 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1121 	if (ret < 0) {
1122 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1123 		return -EINVAL;
1124 	} else {
1125 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1126 	}
1127 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1128 	if (ret < 0) {
1129 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1130 		return -EINVAL;
1131 	} else {
1132 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1133 	}
1134 
1135 	ctrl_out.en_mask = priv->ctrl_out.en_mask;
1136 	ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1137 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1138 	if (ret < 0) {
1139 		printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1140 		return -EINVAL;
1141 	} else {
1142 		printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1143 	}
1144 
1145 	tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1146 	ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1147 	if (ret != fpga_tx_ant_setting) {
1148 		printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1149 		return -EINVAL;
1150 	} else {
1151 		printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1152 	}
1153 
1154 	rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1155 	ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1156 	if (ret != target_rx_ant) {
1157 		printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1158 		return -EINVAL;
1159 	} else {
1160 		printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1161 	}
1162 
1163 	// update internal state variable
1164 	priv->runtime_tx_ant_cfg = tx_ant;
1165 	priv->runtime_rx_ant_cfg = rx_ant;
1166 
1167 	if (TX_OFFSET_TUNING_ENABLE)
1168 		priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1169 	else {
1170 		if (tx_ant == 3)
1171 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1172 		else
1173 			priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1174 	}
1175 
1176 	priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1177 	priv->ctrl_out.index=ctrl_out.index;
1178 
1179 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1180 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1181 
1182 	return 0;
1183 }
1184 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1185 {
1186 	struct openwifi_priv *priv = dev->priv;
1187 
1188 	*tx_ant = priv->runtime_tx_ant_cfg;
1189 	*rx_ant = priv->runtime_rx_ant_cfg;
1190 
1191 	printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1192 
1193 	printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1194 	priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1195 
1196 	printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1197 	tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1198 
1199 	printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1200 	ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1201 
1202 	return 0;
1203 }
1204 
1205 static int openwifi_start(struct ieee80211_hw *dev)
1206 {
1207 	struct openwifi_priv *priv = dev->priv;
1208 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
1209 	u32 reg;
1210 
1211 	for (i=0; i<MAX_NUM_VIF; i++) {
1212 		priv->vif[i] = NULL;
1213 	}
1214 
1215 	// //keep software registers persistent between NIC down and up for multiple times
1216 	/*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1217 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1218 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1219 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1220 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1221 
1222 	//turn on radio
1223 	openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1224 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1225 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1226 		priv->rfkill_off = 1;// 0 off, 1 on
1227 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1228 	}
1229 	else
1230 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1231 
1232 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1233 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1234 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1235 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1236 	xpu_api->hw_init(priv->xpu_cfg);
1237 
1238 	agc_gain_delay = 50; //samples
1239 	rssi_half_db_offset = 150; // to be consistent
1240 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
1241 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
1242 
1243 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
1244 	// rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel
1245 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
1246 	xpu_api->XPU_REG_FORCE_IDLE_MISC_write(75); //control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
1247 
1248 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
1249 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
1250 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
1251 
1252 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1253 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1254 
1255 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1256 
1257 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1258 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1259 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1260 
1261 	// setup time schedule of 4 slices
1262 	// slice 0
1263 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1264 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1265 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1266 
1267 	// slice 1
1268 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1269 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1270 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1271 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1272 
1273 	// slice 2
1274 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1275 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1276 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1277 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1278 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1279 
1280 	// slice 3
1281 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1282 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1283 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1284 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1285 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1286 
1287 	// all slice sync rest
1288 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1289 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1290 
1291 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1292 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1293 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1294 
1295 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1296 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1297 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1298 
1299 	if (test_mode==1) {
1300 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1301 		goto normal_out;
1302 	}
1303 
1304 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1305 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1306 		ret = PTR_ERR(priv->rx_chan);
1307 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1308 		goto err_dma;
1309 	}
1310 
1311 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1312 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1313 		ret = PTR_ERR(priv->tx_chan);
1314 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1315 		goto err_dma;
1316 	}
1317 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1318 
1319 	ret = openwifi_init_rx_ring(priv);
1320 	if (ret) {
1321 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1322 		goto err_free_rings;
1323 	}
1324 
1325 	priv->seqno=0;
1326 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1327 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1328 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1329 			goto err_free_rings;
1330 		}
1331 	}
1332 
1333 	if ( (ret = rx_dma_setup(dev)) ) {
1334 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1335 		goto err_free_rings;
1336 	}
1337 
1338 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1339 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1340 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1341 	if (ret) {
1342 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1343 		goto err_free_rings;
1344 	} else {
1345 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1346 	}
1347 
1348 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1349 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1350 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1351 	if (ret) {
1352 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1353 		goto err_free_rings;
1354 	} else {
1355 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1356 	}
1357 
1358 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1359 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1360 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1361 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1362 
1363 	//ieee80211_wake_queue(dev, 0);
1364 
1365 normal_out:
1366 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1367 	return 0;
1368 
1369 err_free_rings:
1370 	openwifi_free_rx_ring(priv);
1371 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1372 		openwifi_free_tx_ring(priv, i);
1373 
1374 err_dma:
1375 	ret = -1;
1376 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1377 	return ret;
1378 }
1379 
1380 static void openwifi_stop(struct ieee80211_hw *dev)
1381 {
1382 	struct openwifi_priv *priv = dev->priv;
1383 	u32 reg, reg1;
1384 	int i;
1385 
1386 	if (test_mode==1){
1387 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1388 		goto normal_out;
1389 	}
1390 
1391 	//turn off radio
1392 	#if 1
1393 	ad9361_tx_mute(priv->ad9361_phy, 1);
1394 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1395 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1396 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1397 		priv->rfkill_off = 0;// 0 off, 1 on
1398 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1399 	}
1400 	else
1401 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1402 	#endif
1403 
1404 	//ieee80211_stop_queue(dev, 0);
1405 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1406 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1407 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1408 
1409 	for (i=0; i<MAX_NUM_VIF; i++) {
1410 		priv->vif[i] = NULL;
1411 	}
1412 
1413 	openwifi_free_rx_ring(priv);
1414 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1415 		openwifi_free_tx_ring(priv, i);
1416 
1417 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1418 	dmaengine_terminate_all(priv->rx_chan);
1419 	dma_release_channel(priv->rx_chan);
1420 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1421 	dmaengine_terminate_all(priv->tx_chan);
1422 	dma_release_channel(priv->tx_chan);
1423 
1424 	//priv->rf->stop(dev);
1425 
1426 	free_irq(priv->irq_rx, dev);
1427 	free_irq(priv->irq_tx, dev);
1428 
1429 normal_out:
1430 	printk("%s openwifi_stop\n", sdr_compatible_str);
1431 }
1432 
1433 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1434 			   struct ieee80211_vif *vif)
1435 {
1436 	u32 tsft_low, tsft_high;
1437 
1438 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1439 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1440 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1441 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1442 }
1443 
1444 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1445 {
1446 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1447 	u32 tsft_low  = (tsf&0xffffffff);
1448 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1449 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1450 }
1451 
1452 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1453 {
1454 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1455 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1456 }
1457 
1458 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1459 {
1460 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1461 	return(0);
1462 }
1463 
1464 static void openwifi_beacon_work(struct work_struct *work)
1465 {
1466 	struct openwifi_vif *vif_priv =
1467 		container_of(work, struct openwifi_vif, beacon_work.work);
1468 	struct ieee80211_vif *vif =
1469 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1470 	struct ieee80211_hw *dev = vif_priv->dev;
1471 	struct ieee80211_mgmt *mgmt;
1472 	struct sk_buff *skb;
1473 
1474 	/* don't overflow the tx ring */
1475 	if (ieee80211_queue_stopped(dev, 0))
1476 		goto resched;
1477 
1478 	/* grab a fresh beacon */
1479 	skb = ieee80211_beacon_get(dev, vif);
1480 	if (!skb)
1481 		goto resched;
1482 
1483 	/*
1484 	 * update beacon timestamp w/ TSF value
1485 	 * TODO: make hardware update beacon timestamp
1486 	 */
1487 	mgmt = (struct ieee80211_mgmt *)skb->data;
1488 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1489 
1490 	/* TODO: use actual beacon queue */
1491 	skb_set_queue_mapping(skb, 0);
1492 	openwifi_tx(dev, NULL, skb);
1493 
1494 resched:
1495 	/*
1496 	 * schedule next beacon
1497 	 * TODO: use hardware support for beacon timing
1498 	 */
1499 	schedule_delayed_work(&vif_priv->beacon_work,
1500 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1501 }
1502 
1503 static int openwifi_add_interface(struct ieee80211_hw *dev,
1504 				 struct ieee80211_vif *vif)
1505 {
1506 	int i;
1507 	struct openwifi_priv *priv = dev->priv;
1508 	struct openwifi_vif *vif_priv;
1509 
1510 	switch (vif->type) {
1511 	case NL80211_IFTYPE_AP:
1512 	case NL80211_IFTYPE_STATION:
1513 	case NL80211_IFTYPE_ADHOC:
1514 	case NL80211_IFTYPE_MONITOR:
1515 	case NL80211_IFTYPE_MESH_POINT:
1516 		break;
1517 	default:
1518 		return -EOPNOTSUPP;
1519 	}
1520 	// let's support more than 1 interface
1521 	for (i=0; i<MAX_NUM_VIF; i++) {
1522 		if (priv->vif[i] == NULL)
1523 			break;
1524 	}
1525 
1526 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1527 
1528 	if (i==MAX_NUM_VIF)
1529 		return -EBUSY;
1530 
1531 	priv->vif[i] = vif;
1532 
1533 	/* Initialize driver private area */
1534 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1535 	vif_priv->idx = i;
1536 
1537 	vif_priv->dev = dev;
1538 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1539 	vif_priv->enable_beacon = false;
1540 
1541 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1542 
1543 	return 0;
1544 }
1545 
1546 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1547 				     struct ieee80211_vif *vif)
1548 {
1549 	struct openwifi_vif *vif_priv;
1550 	struct openwifi_priv *priv = dev->priv;
1551 
1552 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1553 	priv->vif[vif_priv->idx] = NULL;
1554 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1555 }
1556 
1557 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1558 {
1559 	struct openwifi_priv *priv = dev->priv;
1560 	struct ieee80211_conf *conf = &dev->conf;
1561 
1562 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1563 		priv->rf->set_chan(dev, conf);
1564 	else
1565 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1566 
1567 	return 0;
1568 }
1569 
1570 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1571 				     struct ieee80211_vif *vif,
1572 				     struct ieee80211_bss_conf *info,
1573 				     u32 changed)
1574 {
1575 	struct openwifi_priv *priv = dev->priv;
1576 	struct openwifi_vif *vif_priv;
1577 	u32 bssid_low, bssid_high;
1578 
1579 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1580 
1581 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1582 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1583 	if (changed & BSS_CHANGED_BSSID) {
1584 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1585 		// write new bssid to our HW, and do not change bssid filter
1586 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1587 		bssid_low = ( *( (u32*)(info->bssid) ) );
1588 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1589 
1590 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1591 		//bssid_high = (bssid_high|bssid_filter_high);
1592 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1593 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1594 	}
1595 
1596 	if (changed & BSS_CHANGED_BEACON_INT) {
1597 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1598 	}
1599 
1600 	if (changed & BSS_CHANGED_TXPOWER)
1601 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1602 
1603 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1604 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1605 
1606 	if (changed & BSS_CHANGED_BASIC_RATES)
1607 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1608 
1609 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1610 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1611 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1612 		if (info->use_short_slot && priv->use_short_slot==false) {
1613 			priv->use_short_slot=true;
1614 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1615 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1616 			priv->use_short_slot=false;
1617 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1618 		}
1619 	}
1620 
1621 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1622 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1623 		vif_priv->enable_beacon = info->enable_beacon;
1624 	}
1625 
1626 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1627 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1628 		if (vif_priv->enable_beacon)
1629 			schedule_work(&vif_priv->beacon_work.work);
1630 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1631 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1632 	}
1633 }
1634 // helper function
1635 u32 log2val(u32 val){
1636 	u32 ret_val = 0 ;
1637 	while(val>1){
1638 		val = val >> 1 ;
1639 		ret_val ++ ;
1640 	}
1641 	return ret_val ;
1642 }
1643 
1644 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1645 	      const struct ieee80211_tx_queue_params *params)
1646 {
1647 	u32 reg_val, cw_min_exp, cw_max_exp;
1648 
1649 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1650 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1651 
1652 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1653 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1654 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1655 	switch(queue){
1656 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1657 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1658 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1659 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1660 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1661 	}
1662 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1663 	return(0);
1664 }
1665 
1666 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1667 				     struct netdev_hw_addr_list *mc_list)
1668 {
1669 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1670 	return netdev_hw_addr_list_count(mc_list);
1671 }
1672 
1673 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1674 				     unsigned int changed_flags,
1675 				     unsigned int *total_flags,
1676 				     u64 multicast)
1677 {
1678 	u32 filter_flag;
1679 
1680 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1681 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1682 
1683 	filter_flag = (*total_flags);
1684 
1685 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1686 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1687 
1688 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1689 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1690 		filter_flag = (filter_flag|MONITOR_ALL);
1691 	else
1692 		filter_flag = (filter_flag&(~MONITOR_ALL));
1693 
1694 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1695 		filter_flag = (filter_flag|MY_BEACON);
1696 
1697 	filter_flag = (filter_flag|FIF_PSPOLL);
1698 
1699 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1700 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1701 
1702 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1703 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1704 }
1705 
1706 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
1707 {
1708 	struct ieee80211_sta *sta = params->sta;
1709 	enum ieee80211_ampdu_mlme_action action = params->action;
1710 	// struct openwifi_priv *priv = hw->priv;
1711 	u16 max_tx_bytes, buf_size;
1712 	u32 ampdu_action_config;
1713 
1714 	if (!AGGR_ENABLE) {
1715 		return -EOPNOTSUPP;
1716 	}
1717 
1718 	switch (action)
1719 	{
1720 		case IEEE80211_AMPDU_TX_START:
1721 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1722 			break;
1723 		case IEEE80211_AMPDU_TX_STOP_CONT:
1724 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
1725 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1726 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1727 			break;
1728 		case IEEE80211_AMPDU_TX_OPERATIONAL:
1729 			buf_size = 4;
1730 //			buf_size = (params->buf_size) - 1;
1731 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
1732 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
1733 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
1734 			break;
1735 		case IEEE80211_AMPDU_RX_START:
1736 			printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1737 			break;
1738 		case IEEE80211_AMPDU_RX_STOP:
1739 			printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1740 			break;
1741 		default:
1742 			return -EOPNOTSUPP;
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 static const struct ieee80211_ops openwifi_ops = {
1749 	.tx			       = openwifi_tx,
1750 	.start			   = openwifi_start,
1751 	.stop			   = openwifi_stop,
1752 	.add_interface	   = openwifi_add_interface,
1753 	.remove_interface  = openwifi_remove_interface,
1754 	.config			   = openwifi_config,
1755 	.set_antenna       = openwifi_set_antenna,
1756 	.get_antenna       = openwifi_get_antenna,
1757 	.bss_info_changed  = openwifi_bss_info_changed,
1758 	.conf_tx		   = openwifi_conf_tx,
1759 	.prepare_multicast = openwifi_prepare_multicast,
1760 	.configure_filter  = openwifi_configure_filter,
1761 	.rfkill_poll	   = openwifi_rfkill_poll,
1762 	.get_tsf		   = openwifi_get_tsf,
1763 	.set_tsf		   = openwifi_set_tsf,
1764 	.reset_tsf		   = openwifi_reset_tsf,
1765 	.set_rts_threshold = openwifi_set_rts_threshold,
1766 	.ampdu_action      = openwifi_ampdu_action,
1767 	.testmode_cmd	   = openwifi_testmode_cmd,
1768 };
1769 
1770 static const struct of_device_id openwifi_dev_of_ids[] = {
1771 	{ .compatible = "sdr,sdr", },
1772 	{}
1773 };
1774 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1775 
1776 static int custom_match_spi_dev(struct device *dev, void *data)
1777 {
1778     const char *name = data;
1779 
1780 	bool ret = sysfs_streq(name, dev->of_node->name);
1781 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1782 	return ret;
1783 }
1784 
1785 static int custom_match_platform_dev(struct device *dev, void *data)
1786 {
1787 	struct platform_device *plat_dev = to_platform_device(dev);
1788 	const char *name = data;
1789 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1790 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1791 
1792 	if (match_flag) {
1793 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1794 	}
1795 	return(match_flag);
1796 }
1797 
1798 static int openwifi_dev_probe(struct platform_device *pdev)
1799 {
1800 	struct ieee80211_hw *dev;
1801 	struct openwifi_priv *priv;
1802 	int err=1, rand_val;
1803 	const char *chip_name, *fpga_model;
1804 	u32 reg;//, reg1;
1805 
1806 	struct device_node *np = pdev->dev.of_node;
1807 
1808 	struct device *tmp_dev;
1809 	struct platform_device *tmp_pdev;
1810 	struct iio_dev *tmp_indio_dev;
1811 	// struct gpio_leds_priv *tmp_led_priv;
1812 
1813 	printk("\n");
1814 
1815 	if (np) {
1816 		const struct of_device_id *match;
1817 
1818 		match = of_match_node(openwifi_dev_of_ids, np);
1819 		if (match) {
1820 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1821 			err = 0;
1822 		}
1823 	}
1824 
1825 	if (err)
1826 		return err;
1827 
1828 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1829 	if (!dev) {
1830 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1831 		err = -ENOMEM;
1832 		goto err_free_dev;
1833 	}
1834 
1835 	priv = dev->priv;
1836 	priv->pdev = pdev;
1837 
1838 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1839 	if(err < 0) {
1840 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1841 		priv->fpga_type = SMALL_FPGA;
1842 	} else {
1843 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1844 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1845 			priv->fpga_type = LARGE_FPGA;
1846 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1847 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1848 			priv->fpga_type = SMALL_FPGA;
1849 	}
1850 
1851 	// //-------------find ad9361-phy driver for lo/channel control---------------
1852 	priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1853 	priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1854 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1855 	if (tmp_dev == NULL) {
1856 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1857 		err = -ENODEV;
1858 		goto err_free_dev;
1859 	}
1860 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1861 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1862 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1863 		err = -ENODEV;
1864 		goto err_free_dev;
1865 	}
1866 
1867 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1868 	if (!(priv->ad9361_phy)) {
1869 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1870 		err = -ENODEV;
1871 		goto err_free_dev;
1872 	}
1873 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1874 
1875 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1876 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1877 	if (!tmp_dev) {
1878 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1879 		err = -ENODEV;
1880 		goto err_free_dev;
1881 	}
1882 
1883 	tmp_pdev = to_platform_device(tmp_dev);
1884 	if (!tmp_pdev) {
1885 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1886 		err = -ENODEV;
1887 		goto err_free_dev;
1888 	}
1889 
1890 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1891 	if (!tmp_indio_dev) {
1892 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1893 		err = -ENODEV;
1894 		goto err_free_dev;
1895 	}
1896 
1897 	priv->dds_st = iio_priv(tmp_indio_dev);
1898 	if (!(priv->dds_st)) {
1899 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1900 		err = -ENODEV;
1901 		goto err_free_dev;
1902 	}
1903 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1904 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1905 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1906 
1907 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1908 	// turn off radio by muting tx
1909 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1910 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1911 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1912 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1913 	// 	priv->rfkill_off = 0;// 0 off, 1 on
1914 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
1915 	// }
1916 	// else
1917 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1918 
1919 	// //-----------------------------parse the test_mode input--------------------------------
1920 	if (test_mode&1)
1921 		AGGR_ENABLE = true;
1922 
1923 	// if (test_mode&2)
1924 	// 	TX_OFFSET_TUNING_ENABLE = false;
1925 
1926 	priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel()
1927 	priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized
1928 
1929 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1930 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1931 
1932 	priv->xpu_cfg = XPU_NORMAL;
1933 
1934 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
1935 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
1936 
1937 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
1938 	if (priv->rf_bw == 20000000) {
1939 		priv->rx_intf_cfg = RX_INTF_BYPASS;
1940 		priv->tx_intf_cfg = TX_INTF_BYPASS;
1941 		//priv->rx_freq_offset_to_lo_MHz = 0;
1942 		//priv->tx_freq_offset_to_lo_MHz = 0;
1943 	} else if (priv->rf_bw == 40000000) {
1944 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
1945 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
1946 
1947 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
1948 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1949 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
1950 		// // try another antenna option
1951 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1952 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1953 
1954 		#if 0
1955 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
1956 			priv->rx_freq_offset_to_lo_MHz = -10;
1957 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
1958 			priv->rx_freq_offset_to_lo_MHz = 10;
1959 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
1960 			priv->rx_freq_offset_to_lo_MHz = 0;
1961 		} else {
1962 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
1963 		}
1964 		#endif
1965 	} else {
1966 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
1967 		err = -EBADRQC;
1968 		goto err_free_dev;
1969 	}
1970 
1971 	printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
1972 
1973 	priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
1974 	priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
1975 
1976 	priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
1977 	priv->ctrl_out.index  =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1978 
1979 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
1980 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
1981 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
1982 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1983 
1984 	priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
1985 
1986 	//let's by default turn radio on when probing
1987 	err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1988 	if (err) {
1989 		printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
1990 		err = -EIO;
1991 		goto err_free_dev;
1992 	}
1993 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1994 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1995 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1996 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1997 
1998 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1999 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
2000 		priv->rfkill_off = 1;// 0 off, 1 on
2001 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2002 	} else
2003 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
2004 
2005 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
2006 
2007 	// //set ad9361 in certain mode
2008 	#if 0
2009 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2010 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2011 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2012 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2013 
2014 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2015 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2016 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2017 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2018 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2019 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2020 	#endif
2021 
2022 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2023 
2024 	SET_IEEE80211_DEV(dev, &pdev->dev);
2025 	platform_set_drvdata(pdev, dev);
2026 
2027 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2028 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2029 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2030 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2031 
2032 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2033 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2034 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2035 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2036 
2037 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2038 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2039 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2040 	priv->ampdu_reference = 0;
2041 
2042 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2043 	priv->band_2GHz.channels = priv->channels_2GHz;
2044 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2045 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2046 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2047 	priv->band_2GHz.ht_cap.ht_supported = true;
2048 	// priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2049 	if (AGGR_ENABLE) {
2050 		priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2051 		priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2052 	}
2053 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2054 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2055 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2056 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2057 
2058 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2059 	priv->band_5GHz.channels = priv->channels_5GHz;
2060 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2061 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2062 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2063 	priv->band_5GHz.ht_cap.ht_supported = true;
2064 	// priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2065 	if (AGGR_ENABLE) {
2066 		priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2067 		priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2068 	}
2069 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2070 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2071 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2072 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2073 
2074 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2075 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2076 
2077 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
2078 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2079 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
2080 	if (AGGR_ENABLE) {
2081 		ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2082 	}
2083 
2084 
2085 	dev->vif_data_size = sizeof(struct openwifi_vif);
2086 	dev->wiphy->interface_modes =
2087 			BIT(NL80211_IFTYPE_MONITOR)|
2088 			BIT(NL80211_IFTYPE_P2P_GO) |
2089 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2090 			BIT(NL80211_IFTYPE_AP) |
2091 			BIT(NL80211_IFTYPE_STATION) |
2092 			BIT(NL80211_IFTYPE_ADHOC) |
2093 			BIT(NL80211_IFTYPE_MESH_POINT) |
2094 			BIT(NL80211_IFTYPE_OCB);
2095 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2096 	dev->wiphy->n_iface_combinations = 1;
2097 
2098 	dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2099 	dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2100 
2101 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2102 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2103 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2104 
2105 	chip_name = "ZYNQ";
2106 
2107 	/* we declare to MAC80211 all the queues except for beacon queue
2108 	 * that will be eventually handled by DRV.
2109 	 * TX rings are arranged in such a way that lower is the IDX,
2110 	 * higher is the priority, in order to achieve direct mapping
2111 	 * with mac80211, however the beacon queue is an exception and it
2112 	 * is mapped on the highst tx ring IDX.
2113 	 */
2114 	dev->queues = MAX_NUM_HW_QUEUE;
2115 	//dev->queues = 1;
2116 
2117 	ieee80211_hw_set(dev, SIGNAL_DBM);
2118 
2119 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2120 
2121 	priv->rf = &ad9361_rf_ops;
2122 
2123 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2124 	priv->slice_idx = 0xFFFFFFFF;
2125 
2126 	sg_init_table(&(priv->tx_sg), 1);
2127 
2128 	get_random_bytes(&rand_val, sizeof(rand_val));
2129     rand_val%=250;
2130 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2131 	priv->mac_addr[5]=rand_val+1;
2132 	//priv->mac_addr[5]=0x11;
2133 	if (!is_valid_ether_addr(priv->mac_addr)) {
2134 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2135 		eth_random_addr(priv->mac_addr);
2136 	}
2137 	printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2138 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2139 
2140 	spin_lock_init(&priv->lock);
2141 
2142 	err = ieee80211_register_hw(dev);
2143 	if (err) {
2144 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2145 		err = -EIO;
2146 		goto err_free_dev;
2147 	} else {
2148 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2149 	}
2150 
2151 	// // //--------------------hook leds (not complete yet)--------------------------------
2152 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2153 	// if (!tmp_dev) {
2154 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2155 	// 	err = -ENOMEM;
2156 	// 	goto err_free_dev;
2157 	// }
2158 
2159 	// tmp_pdev = to_platform_device(tmp_dev);
2160 	// if (!tmp_pdev) {
2161 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2162 	// 	err = -ENOMEM;
2163 	// 	goto err_free_dev;
2164 	// }
2165 
2166 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2167 	// if (!tmp_led_priv) {
2168 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2169 	// 	err = -ENOMEM;
2170 	// 	goto err_free_dev;
2171 	// }
2172 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2173 	// if (tmp_led_priv->num_leds!=4){
2174 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2175 	// 	err = -ENOMEM;
2176 	// 	goto err_free_dev;
2177 	// }
2178 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2179 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2180 	// priv->num_led = tmp_led_priv->num_leds;
2181 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2182 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2183 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2184 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2185 
2186 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2187 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2188 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2189 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2190 
2191 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2192 		   priv->mac_addr, chip_name, priv->rf->name);
2193 
2194 	openwifi_rfkill_init(dev);
2195 	return 0;
2196 
2197  err_free_dev:
2198 	ieee80211_free_hw(dev);
2199 
2200 	return err;
2201 }
2202 
2203 static int openwifi_dev_remove(struct platform_device *pdev)
2204 {
2205 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2206 
2207 	if (!dev) {
2208 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2209 		return(-1);
2210 	}
2211 
2212 	openwifi_rfkill_exit(dev);
2213 	ieee80211_unregister_hw(dev);
2214 	ieee80211_free_hw(dev);
2215 	return(0);
2216 }
2217 
2218 static struct platform_driver openwifi_dev_driver = {
2219 	.driver = {
2220 		.name = "sdr,sdr",
2221 		.owner = THIS_MODULE,
2222 		.of_match_table = openwifi_dev_of_ids,
2223 	},
2224 	.probe = openwifi_dev_probe,
2225 	.remove = openwifi_dev_remove,
2226 };
2227 
2228 module_platform_driver(openwifi_dev_driver);
2229