xref: /openwifi/driver/sdr.c (revision abdb610f56e6ff7bc54e8ad29637bde718951d91)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu
2 // SPDX-FileCopyrightText: 2019 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 
59 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
60 #include "hw_def.h"
61 #include "sdr.h"
62 #include "git_rev.h"
63 
64 // driver API of component driver
65 extern struct tx_intf_driver_api *tx_intf_api;
66 extern struct rx_intf_driver_api *rx_intf_api;
67 extern struct openofdm_tx_driver_api *openofdm_tx_api;
68 extern struct openofdm_rx_driver_api *openofdm_rx_api;
69 extern struct xpu_driver_api *xpu_api;
70 
71 static int test_mode = 0; // 0 normal; 1 rx test
72 
73 MODULE_AUTHOR("Xianjun Jiao");
74 MODULE_DESCRIPTION("SDR driver");
75 MODULE_LICENSE("GPL v2");
76 
77 module_param(test_mode, int, 0);
78 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
79 
80 // ---------------rfkill---------------------------------------
81 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
82 {
83 	int reg;
84 
85 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
86 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
87 	else
88 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
89 
90 	if (reg == AD9361_RADIO_ON_TX_ATT)
91 		return true;// 0 off, 1 on
92 	return false;
93 }
94 
95 void openwifi_rfkill_init(struct ieee80211_hw *hw)
96 {
97 	struct openwifi_priv *priv = hw->priv;
98 
99 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
100 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
101 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
102 	wiphy_rfkill_start_polling(hw->wiphy);
103 }
104 
105 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
106 {
107 	bool enabled;
108 	struct openwifi_priv *priv = hw->priv;
109 
110 	enabled = openwifi_is_radio_enabled(priv);
111 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
112 	if (unlikely(enabled != priv->rfkill_off)) {
113 		priv->rfkill_off = enabled;
114 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
115 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
116 	}
117 }
118 
119 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
120 {
121 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
122 	wiphy_rfkill_stop_polling(hw->wiphy);
123 }
124 //----------------rfkill end-----------------------------------
125 
126 //static void ad9361_rf_init(void);
127 //static void ad9361_rf_stop(void);
128 //static void ad9361_rf_calc_rssi(void);
129 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
130 				  struct ieee80211_conf *conf)
131 {
132 	struct openwifi_priv *priv = dev->priv;
133 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
134 	u32 actual_tx_lo;
135 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
136 	int static_lbt_th, auto_lbt_th, fpga_lbt_th;
137 
138 	if (change_flag) {
139 		priv->actual_rx_lo = actual_rx_lo;
140 
141 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
142 
143 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
144 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
145 
146 		if (actual_rx_lo<2412) {
147 			priv->rssi_correction = 153;
148 		} else if (actual_rx_lo<=2484) {
149 			priv->rssi_correction = 153;
150 		} else if (actual_rx_lo<5160) {
151 			priv->rssi_correction = 153;
152 		} else if (actual_rx_lo<=5240) {
153 			priv->rssi_correction = 145;
154 		} else if (actual_rx_lo<=5320) {
155 			priv->rssi_correction = 148;
156 		} else {
157 			priv->rssi_correction = 148;
158 		}
159 
160 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
161 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
162 		auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
163 		static_lbt_th = priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH];
164 		fpga_lbt_th = (static_lbt_th==0?auto_lbt_th:static_lbt_th);
165 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
166 
167 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
168 
169 		if (actual_rx_lo < 2500) {
170 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
171 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
172 			if (priv->band != BAND_2_4GHZ) {
173 				priv->band = BAND_2_4GHZ;
174 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
175 			}
176 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
177 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
178 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
179 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
180 		}
181 		else {
182 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
183 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
184 			if (priv->band != BAND_5_8GHZ) {
185 				priv->band = BAND_5_8GHZ;
186 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
187 			}
188 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
189 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
190 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
191 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
192 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
193 		}
194 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
195 		// //-- use less
196 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
197 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
198 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
199 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
200 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d (auto %d static %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,auto_lbt_th,static_lbt_th);
201 	}
202 }
203 
204 const struct openwifi_rf_ops ad9361_rf_ops = {
205 	.name		= "ad9361",
206 //	.init		= ad9361_rf_init,
207 //	.stop		= ad9361_rf_stop,
208 	.set_chan	= ad9361_rf_set_channel,
209 //	.calc_rssi	= ad9361_rf_calc_rssi,
210 };
211 
212 u16 reverse16(u16 d) {
213 	union u16_byte2 tmp0, tmp1;
214 	tmp0.a = d;
215 	tmp1.c[0] = tmp0.c[1];
216 	tmp1.c[1] = tmp0.c[0];
217 	return(tmp1.a);
218 }
219 
220 u32 reverse32(u32 d) {
221 	union u32_byte4 tmp0, tmp1;
222 	tmp0.a = d;
223 	tmp1.c[0] = tmp0.c[3];
224 	tmp1.c[1] = tmp0.c[2];
225 	tmp1.c[2] = tmp0.c[1];
226 	tmp1.c[3] = tmp0.c[0];
227 	return(tmp1.a);
228 }
229 
230 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
231 {
232 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
233 	int i;
234 
235 	ring->stop_flag = 0;
236 	ring->bd_wr_idx = 0;
237 	ring->bd_rd_idx = 0;
238 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
239 	if (ring->bds==NULL) {
240 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
241 		return -ENOMEM;
242 	}
243 
244 	for (i = 0; i < NUM_TX_BD; i++) {
245 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
246 		//at first right after skb allocated, head, data, tail are the same.
247 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
248 	}
249 
250 	return 0;
251 }
252 
253 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
254 {
255 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
256 	int i;
257 
258 	ring->stop_flag = 0;
259 	ring->bd_wr_idx = 0;
260 	ring->bd_rd_idx = 0;
261 	for (i = 0; i < NUM_TX_BD; i++) {
262 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
263 			continue;
264 		if (ring->bds[i].dma_mapping_addr != 0)
265 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
266 //		if (ring->bds[i].skb_linked!=NULL)
267 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
268 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
269 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
270 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
271 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
272 
273 		ring->bds[i].skb_linked=0;
274 		ring->bds[i].dma_mapping_addr = 0;
275 	}
276 	if (ring->bds)
277 		kfree(ring->bds);
278 	ring->bds = NULL;
279 }
280 
281 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
282 {
283 	int i;
284 	u8 *pdata_tmp;
285 
286 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
287 	if (!priv->rx_cyclic_buf) {
288 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
289 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
290 		return(-1);
291 	}
292 
293 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
294 	for (i=0; i<NUM_RX_BD; i++) {
295 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
296 		(*((u32*)(pdata_tmp+0 ))) = 0;
297 		(*((u32*)(pdata_tmp+4 ))) = 0;
298 	}
299 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
300 
301 	return 0;
302 }
303 
304 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
305 {
306 	if (priv->rx_cyclic_buf)
307 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
308 
309 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
310 	priv->rx_cyclic_buf = 0;
311 }
312 
313 static int rx_dma_setup(struct ieee80211_hw *dev){
314 	struct openwifi_priv *priv = dev->priv;
315 	struct dma_device *rx_dev = priv->rx_chan->device;
316 
317 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
318 	if (!(priv->rxd)) {
319 		openwifi_free_rx_ring(priv);
320 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
321 		return(-1);
322 	}
323 	priv->rxd->callback = 0;
324 	priv->rxd->callback_param = 0;
325 
326 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
327 
328 	if (dma_submit_error(priv->rx_cookie)) {
329 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
330 		return(-1);
331 	}
332 
333 	dma_async_issue_pending(priv->rx_chan);
334 	return(0);
335 }
336 
337 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
338 {
339 	struct ieee80211_hw *dev = dev_id;
340 	struct openwifi_priv *priv = dev->priv;
341 	struct ieee80211_rx_status rx_status = {0};
342 	struct sk_buff *skb;
343 	struct ieee80211_hdr *hdr;
344 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0, ht_flag, short_gi;//, fc_di;
345 	// u32 dma_driver_buf_idx_mod;
346 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
347 	s8 signal;
348 	u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
349 	bool content_ok = false, len_overflow = false;
350 
351 #ifdef USE_NEW_RX_INTERRUPT
352 	int i;
353 	spin_lock(&priv->lock);
354 	for (i=0; i<NUM_RX_BD; i++) {
355 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
356 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
357 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
358 			continue;
359 #else
360 	static u8 target_buf_idx_old = 0;
361 	spin_lock(&priv->lock);
362 	while(1) { // loop all rx buffers that have new rx packets
363 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
364 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
365 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
366 			break;
367 #endif
368 
369 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
370 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
371 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
372 		len =          (*((u16*)(pdata_tmp+12)));
373 
374 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
375 
376 		rate_idx =     (*((u16*)(pdata_tmp+14)));
377 		short_gi =     ((rate_idx&0x20)!=0);
378 		rate_idx =     (rate_idx&0xDF);
379 
380 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
381 
382 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
383 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
384 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
385 		fcs_ok = ((fcs_ok&0x80)!=0);
386 		ht_flag = ((rate_idx&0x10)!=0);
387 
388 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
389 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
390 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
391 			// }
392 			content_ok = true;
393 		} else {
394 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
395 			content_ok = false;
396 		}
397 
398 		rssi_val = (rssi_val>>1);
399 		if ( (rssi_val+128)<priv->rssi_correction )
400 			signal = -128;
401 		else
402 			signal = rssi_val - priv->rssi_correction;
403 
404 		// fc_di =        (*((u32*)(pdata_tmp+16)));
405 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
406 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
407 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
408 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
409 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
410 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
411 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
412 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
413 			addr1_low32  = *((u32*)(hdr->addr1+2));
414 			addr1_high16 = *((u16*)(hdr->addr1));
415 			if (len>=20) {
416 				addr2_low32  = *((u32*)(hdr->addr2+2));
417 				addr2_high16 = *((u16*)(hdr->addr2));
418 			}
419 			if (len>=26) {
420 				addr3_low32  = *((u32*)(hdr->addr3+2));
421 				addr3_high16 = *((u16*)(hdr->addr3));
422 			}
423 			if (len>=28)
424 				sc = hdr->seq_ctrl;
425 
426 			if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) )
427 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
428 					len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
429 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
430 #ifdef USE_NEW_RX_INTERRUPT
431 					sc, fcs_ok, i, signal);
432 #else
433 					sc, fcs_ok, target_buf_idx_old, signal);
434 #endif
435 		}
436 
437 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
438 		if (content_ok) {
439 			skb = dev_alloc_skb(len);
440 			if (skb) {
441 				skb_put_data(skb,pdata_tmp+16,len);
442 
443 				rx_status.antenna = 0;
444 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
445 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
446 				rx_status.signal = signal;
447 				rx_status.freq = dev->conf.chandef.chan->center_freq;
448 				rx_status.band = dev->conf.chandef.chan->band;
449 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
450 				rx_status.flag |= RX_FLAG_MACTIME_START;
451 				if (!fcs_ok)
452 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
453 				if (rate_idx <= 15)
454 					rx_status.encoding = RX_ENC_LEGACY;
455 				else
456 					rx_status.encoding = RX_ENC_HT;
457 				rx_status.bw = RATE_INFO_BW_20;
458 				if (short_gi)
459 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
460 
461 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
462 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
463 			} else
464 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
465 		}
466 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
467 		loop_count++;
468 #ifndef USE_NEW_RX_INTERRUPT
469 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
470 #endif
471 	}
472 
473 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
474 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
475 
476 // openwifi_rx_interrupt_out:
477 	spin_unlock(&priv->lock);
478 	return IRQ_HANDLED;
479 }
480 
481 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
482 {
483 	struct ieee80211_hw *dev = dev_id;
484 	struct openwifi_priv *priv = dev->priv;
485 	struct openwifi_ring *ring;
486 	struct sk_buff *skb;
487 	struct ieee80211_tx_info *info;
488 	u32 reg_val, hw_queue_len, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;//, i;
489 	u8 tx_result_report;
490 	// u16 prio_rd_idx_store[64]={0};
491 
492 	spin_lock(&priv->lock);
493 
494 	while(1) { // loop all packets that have been sent by FPGA
495 		reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();
496 		if (reg_val!=0xFFFFFFFF) {
497 			prio = ((0x7FFFF & reg_val)>>(5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
498 			cw = ((0xF0000000 & reg_val) >> 28);
499 			num_slot_random = ((0xFF80000 &reg_val)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
500 			if(cw > 10) {
501 				cw = 10 ;
502 				num_slot_random += 512 ;
503 			}
504 
505 			ring = &(priv->tx_ring[prio]);
506 			ring->bd_rd_idx = ((reg_val>>5)&MAX_PHY_TX_SN);
507 			skb = ring->bds[ring->bd_rd_idx].skb_linked;
508 
509 			dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
510 					skb->len, DMA_MEM_TO_DEV);
511 
512 			if ( ring->stop_flag == 1) {
513 				// Wake up Linux queue if FPGA and driver ring have room
514 				queue_idx = ((reg_val>>(5+NUM_BIT_MAX_PHY_TX_SN))&(MAX_NUM_HW_QUEUE-1));
515 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
516 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
517 
518 				// printk("%s openwifi_tx_interrupt: WARNING loop %d prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d call %d\n", sdr_compatible_str,
519 				// loop_count, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, priv->call_counter);
520 
521 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
522 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
523 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
524 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx);
525 					ieee80211_wake_queue(dev, prio);
526 					ring->stop_flag = 0;
527 				}
528 			}
529 
530 			if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
531 				printk("%s openwifi_tx_interrupt: WARNING %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
532 				continue;
533 			}
534 
535 			skb_pull(skb, LEN_PHY_HEADER);
536 			//skb_trim(skb, num_byte_pad_skb);
537 			info = IEEE80211_SKB_CB(skb);
538 			ieee80211_tx_info_clear_status(info);
539 
540 			tx_result_report = (reg_val&0x1F);
541 			if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
542 				if ((tx_result_report&0x10)==0)
543 					info->flags |= IEEE80211_TX_STAT_ACK;
544 
545 				// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
546 				// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
547 				// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
548 				// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
549 				// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
550 			}
551 
552 			info->status.rates[0].count = (tx_result_report&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
553 			info->status.rates[1].idx = -1;
554 			info->status.rates[2].idx = -1;
555 			info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
556 
557 			if ( (tx_result_report&0x10) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
558 				printk("%s openwifi_tx_interrupt: WARNING tx_result %02x prio%d wr%d rd%d\n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx);
559 			if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
560 				printk("%s openwifi_tx_interrupt: tx_result %02x prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random,cw);
561 
562 			ieee80211_tx_status_irqsafe(dev, skb);
563 
564 			loop_count++;
565 
566 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
567 
568 		} else
569 			break;
570 	}
571 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
572 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
573 
574 	spin_unlock(&priv->lock);
575 	return IRQ_HANDLED;
576 }
577 
578 u32 gen_parity(u32 v){
579 	v ^= v >> 1;
580 	v ^= v >> 2;
581 	v = (v & 0x11111111U) * 0x11111111U;
582 	return (v >> 28) & 1;
583 }
584 
585 u8 gen_ht_sig_crc(u64 m)
586 {
587 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, ht_sig_crc;
588 
589 	for (i = 0; i < 34; i++)
590 	{
591 		temp = c[7] ^ ((m >> i) & 0x01);
592 
593 		c[7] = c[6];
594 		c[6] = c[5];
595 		c[5] = c[4];
596 		c[4] = c[3];
597 		c[3] = c[2];
598 		c[2] = c[1] ^ temp;
599 		c[1] = c[0] ^ temp;
600 		c[0] = temp;
601 	}
602 	ht_sig_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
603 
604 	return ht_sig_crc;
605 }
606 
607 u32 calc_phy_header(u8 rate_hw_value, bool use_ht_rate, bool use_short_gi, u32 len, u8 *bytes){
608 	//u32 signal_word = 0 ;
609 	u8  SIG_RATE = 0, HT_SIG_RATE;
610 	u8	len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
611 	u32 l_len, ht_len, ht_sig1, ht_sig2;
612 
613 	// printk("rate_hw_value=%u\tuse_ht_rate=%u\tuse_short_gi=%u\tlen=%u\n", rate_hw_value, use_ht_rate, use_short_gi, len);
614 
615 	// HT-mixed mode ht signal
616 
617 	if(use_ht_rate)
618 	{
619 		SIG_RATE = wifi_mcs_table_11b_force_up[4];
620 		HT_SIG_RATE = rate_hw_value;
621 		l_len  = 24 * len / wifi_n_dbps_ht_table[rate_hw_value];
622 		ht_len = len;
623 	}
624 	else
625 	{
626 		// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
627 		// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
628 		SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
629 		l_len = len;
630 	}
631 
632 	len_2to0 = l_len & 0x07 ;
633 	len_10to3 = (l_len >> 3 ) & 0xFF ;
634 	len_msb = (l_len >> 11) & 0x01 ;
635 
636 	b0=SIG_RATE | (len_2to0 << 5) ;
637 	b1 = len_10to3 ;
638 	header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
639 	b2 = ( len_msb | (header_parity << 1) ) ;
640 
641 	memset(bytes,0,16);
642 	bytes[0] = b0 ;
643 	bytes[1] = b1 ;
644     bytes[2] = b2;
645 
646 	// HT-mixed mode signal
647 	if(use_ht_rate)
648 	{
649 		ht_sig1 = (HT_SIG_RATE & 0x7F) | ((ht_len << 8) & 0xFFFF00);
650 		ht_sig2 = 0x04 | (use_short_gi << 7);
651 		ht_sig2 = ht_sig2 | (gen_ht_sig_crc(ht_sig1 | ht_sig2 << 24) << 10);
652 
653 	    bytes[3]  = 1;
654 	    bytes[8]  = (ht_sig1 & 0xFF);
655 	    bytes[9]  = (ht_sig1 >> 8)  & 0xFF;
656 	    bytes[10] = (ht_sig1 >> 16) & 0xFF;
657 	    bytes[11] = (ht_sig2 & 0xFF);
658 	    bytes[12] = (ht_sig2 >> 8)  & 0xFF;
659 	    bytes[13] = (ht_sig2 >> 16) & 0xFF;
660 
661 		return(HT_SIG_RATE);
662 	}
663 	else
664 	{
665 		//signal_word = b0+(b1<<8)+(b2<<16) ;
666 		//return signal_word;
667 		return(SIG_RATE);
668 	}
669 }
670 
671 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
672 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
673 {
674 	return container_of(led_cdev, struct gpio_led_data, cdev);
675 }
676 
677 static void openwifi_tx(struct ieee80211_hw *dev,
678 		       struct ieee80211_tx_control *control,
679 		       struct sk_buff *skb)
680 {
681 	struct openwifi_priv *priv = dev->priv;
682 	unsigned long flags;
683 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
684 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
685 	struct openwifi_ring *ring;
686 	dma_addr_t dma_mapping_addr;
687 	unsigned int prio, i;
688 	u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
689 	u32 rate_signal_value,rate_hw_value,ack_flag;
690 	u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, dma_reg, cts_reg;//, openofdm_state_history;
691 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
692 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
693 	bool use_rts_cts, use_cts_protect, use_ht_rate=false, use_short_gi, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
694 	__le16 frame_control,duration_id;
695 	u32 dma_fifo_no_room_flag, hw_queue_len;
696 	enum dma_status status;
697 	// static bool led_status=0;
698 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
699 
700 	// if ( (priv->phy_tx_sn&7) ==0 ) {
701 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
702 	// 	if (openofdm_state_history!=openofdm_state_history_old){
703 	// 		led_status = (~led_status);
704 	// 		openofdm_state_history_old = openofdm_state_history;
705 	// 		gpiod_set_value(led_dat->gpiod, led_status);
706 	// 	}
707 	// }
708 
709 	if (test_mode==1){
710 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
711 		goto openwifi_tx_early_out;
712 	}
713 
714 	if (skb->data_len>0) {// more data are not in linear data area skb->data
715 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
716 		goto openwifi_tx_early_out;
717 	}
718 
719 	len_mac_pdu = skb->len;
720 	len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
721 	num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
722 
723 	// get Linux priority/queue setting info and target mac address
724 	prio = skb_get_queue_mapping(skb);
725 	addr1_low32  = *((u32*)(hdr->addr1+2));
726 	ring = &(priv->tx_ring[prio]);
727 
728 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
729 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
730 		queue_idx = prio;
731 	} else {// customized prio to queue_idx mapping
732 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
733 		// check current packet belonging to which slice/hw-queue
734 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
735 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
736 					break;
737 				}
738 			}
739 		//}
740 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
741 	}
742 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
743 
744 	// check whether the packet is bigger than DMA buffer size
745 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
746 	if (num_dma_byte > TX_BD_BUF_SIZE) {
747 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
748 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
749 		goto openwifi_tx_early_out;
750 	}
751 	num_byte_pad = num_dma_byte-len_phy_packet;
752 
753 	// get other info from packet header
754 	addr1_high16 = *((u16*)(hdr->addr1));
755 	if (len_mac_pdu>=20) {
756 		addr2_low32  = *((u32*)(hdr->addr2+2));
757 		addr2_high16 = *((u16*)(hdr->addr2));
758 	}
759 	if (len_mac_pdu>=26) {
760 		addr3_low32  = *((u32*)(hdr->addr3+2));
761 		addr3_high16 = *((u16*)(hdr->addr3));
762 	}
763 
764 	duration_id = hdr->duration_id;
765 	frame_control=hdr->frame_control;
766 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
767 	fc_type = ((frame_control)>>2)&3;
768 	fc_subtype = ((frame_control)>>4)&0xf;
769 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
770 	//if it is broadcasting or multicasting addr
771 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
772 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
773 				  (addr1_high16==0x3333) ||
774 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
775 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
776 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
777 	} else {
778 		pkt_need_ack = 0;
779 	}
780 
781 	// get Linux rate (MCS) setting
782 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
783 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
784 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
785 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
786 
787 	retry_limit_raw = info->control.rates[0].count;
788 
789 	rc_flags = info->control.rates[0].flags;
790 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
791 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
792 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
793 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
794 
795 	if (use_rts_cts)
796 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
797 
798 	if (use_cts_protect) {
799 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
800 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
801 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
802 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
803 		sifs = (priv->actual_rx_lo<2500?10:16);
804 		if (pkt_need_ack)
805 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
806 		traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
807 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
808 	}
809 
810 // this is 11b stuff
811 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
812 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
813 
814 	if (len_mac_pdu>=28) {
815 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
816 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
817 				priv->seqno += 0x10;
818 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
819 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
820 		}
821 		sc = hdr->seq_ctrl;
822 	}
823 
824 	if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
825 		printk("%s openwifi_tx: %4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
826 			len_mac_pdu, (use_ht_rate == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
827 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
828 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
829 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
830 			ring->bd_wr_idx,ring->bd_rd_idx);
831 
832 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
833 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
834 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
835 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
836 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
837 
838 	// -----------end of preprocess some info from header and skb----------------
839 
840 	// /* HW will perform RTS-CTS when only RTS flags is set.
841 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
842 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
843 	//  */
844 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
845 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
846 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
847 	// 					len_mac_pdu, info);
848 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
849 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
850 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
851 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
852 	// 					len_mac_pdu, info);
853 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
854 	// }
855 
856 	// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
857 	if (skb_headroom(skb)<LEN_PHY_HEADER) {
858 		struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
859 		printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_PHY_HEADER\n", sdr_compatible_str, ring->bd_wr_idx);
860 		if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
861 			printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
862 			goto openwifi_tx_early_out;
863 		}
864 		if (skb->sk != NULL)
865 			skb_set_owner_w(skb_new, skb->sk);
866 		dev_kfree_skb(skb);
867 		skb = skb_new;
868 	}
869 
870 	skb_push( skb, LEN_PHY_HEADER );
871 	rate_signal_value = calc_phy_header(rate_hw_value, use_ht_rate, use_short_gi, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
872 
873 	//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
874 	if (skb_tailroom(skb)<num_byte_pad) {
875 		printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
876 		// skb_pull(skb, LEN_PHY_HEADER);
877 		goto openwifi_tx_early_out;
878 	}
879 	skb_put( skb, num_byte_pad );
880 
881 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
882 	dma_buf = skb->data;
883 
884 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
885 	cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
886 	dma_reg = ( (( ((prio<<(NUM_BIT_MAX_NUM_HW_QUEUE+NUM_BIT_MAX_PHY_TX_SN))|(ring->bd_wr_idx<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
887 
888 	/* We must be sure that tx_flags is written last because the HW
889 	 * looks at it to check if the rest of data is valid or not
890 	 */
891 	//wmb();
892 	// entry->flags = cpu_to_le32(tx_flags);
893 	/* We must be sure this has been written before following HW
894 	 * register write, because this write will make the HW attempts
895 	 * to DMA the just-written data
896 	 */
897 	//wmb();
898 
899 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
900 
901 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
902 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
903 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
904 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
905 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
906 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
907 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
908 		ring->stop_flag = 1;
909 		goto openwifi_tx_early_out_after_lock;
910 	}
911 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
912 
913 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
914 	if (status!=DMA_COMPLETE) {
915 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
916 		goto openwifi_tx_early_out_after_lock;
917 	}
918 
919 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
920 		printk("%s openwifi_tx: WARNING 1 %d %08x %08x %08x %08x\n", sdr_compatible_str, num_byte_pad, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
921 		goto openwifi_tx_early_out_after_lock;
922 	}
923 
924 //-------------------------fire skb DMA to hardware----------------------------------
925 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
926 				 num_dma_byte, DMA_MEM_TO_DEV);
927 
928 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
929 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
930 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
931 		goto openwifi_tx_early_out_after_lock;
932 	}
933 
934 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
935 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
936 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
937 
938 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
939 	tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
940 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
941 	if (!(priv->txd)) {
942 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
943 		goto openwifi_tx_after_dma_mapping;
944 	}
945 
946 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
947 
948 	if (dma_submit_error(priv->tx_cookie)) {
949 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
950 		goto openwifi_tx_after_dma_mapping;
951 	}
952 
953 	// seems everything is ok. let's mark this pkt in bd descriptor ring
954 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
955 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
956 
957 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
958 
959 	dma_async_issue_pending(priv->tx_chan);
960 
961 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) )
962 		printk("%s openwifi_tx: WARNING 2 %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
963 
964 	spin_unlock_irqrestore(&priv->lock, flags);
965 
966 	return;
967 
968 openwifi_tx_after_dma_mapping:
969 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
970 
971 openwifi_tx_early_out_after_lock:
972 	// skb_pull(skb, LEN_PHY_HEADER);
973 	dev_kfree_skb(skb);
974 	spin_unlock_irqrestore(&priv->lock, flags);
975 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
976 	return;
977 
978 openwifi_tx_early_out:
979 	dev_kfree_skb(skb);
980 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
981 }
982 
983 static int openwifi_start(struct ieee80211_hw *dev)
984 {
985 	struct openwifi_priv *priv = dev->priv;
986 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
987 	u32 reg;
988 
989 	for (i=0; i<MAX_NUM_VIF; i++) {
990 		priv->vif[i] = NULL;
991 	}
992 
993 	memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
994 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
995 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
996 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
997 
998 	//turn on radio
999 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
1000 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1001 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1002 	} else {
1003 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1004 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1005 	}
1006 	if (reg == AD9361_RADIO_ON_TX_ATT) {
1007 		priv->rfkill_off = 1;// 0 off, 1 on
1008 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1009 	}
1010 	else
1011 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
1012 
1013 	if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1014 		priv->ctrl_out.index=0x16;
1015 	else
1016 		priv->ctrl_out.index=0x17;
1017 
1018 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1019 	if (ret < 0) {
1020 		printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
1021 	} else {
1022 		printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1023 	}
1024 
1025 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1026 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1027 
1028 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1029 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1030 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1031 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1032 	xpu_api->hw_init(priv->xpu_cfg);
1033 
1034 	agc_gain_delay = 50; //samples
1035 	rssi_half_db_offset = 150; // to be consistent
1036 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
1037 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
1038 
1039 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
1040 	// rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel
1041 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
1042 	xpu_api->XPU_REG_FORCE_IDLE_MISC_write(75); //control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
1043 
1044 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
1045 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
1046 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
1047 
1048 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1049 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1050 
1051 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1052 
1053 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1054 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1055 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1056 
1057 	// setup time schedule of 4 slices
1058 	// slice 0
1059 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1060 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1061 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1062 
1063 	// slice 1
1064 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1065 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1066 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1067 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1068 
1069 	// slice 2
1070 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1071 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1072 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1073 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1074 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1075 
1076 	// slice 3
1077 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1078 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1079 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1080 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1081 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1082 
1083 	// all slice sync rest
1084 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1085 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1086 
1087 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1088 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1089 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1090 
1091 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1092 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1093 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1094 
1095 	if (test_mode==1) {
1096 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1097 		goto normal_out;
1098 	}
1099 
1100 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1101 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1102 		ret = PTR_ERR(priv->rx_chan);
1103 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1104 		goto err_dma;
1105 	}
1106 
1107 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1108 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1109 		ret = PTR_ERR(priv->tx_chan);
1110 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1111 		goto err_dma;
1112 	}
1113 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1114 
1115 	ret = openwifi_init_rx_ring(priv);
1116 	if (ret) {
1117 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1118 		goto err_free_rings;
1119 	}
1120 
1121 	priv->seqno=0;
1122 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1123 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1124 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1125 			goto err_free_rings;
1126 		}
1127 	}
1128 
1129 	if ( (ret = rx_dma_setup(dev)) ) {
1130 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1131 		goto err_free_rings;
1132 	}
1133 
1134 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1135 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1136 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1137 	if (ret) {
1138 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1139 		goto err_free_rings;
1140 	} else {
1141 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1142 	}
1143 
1144 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1145 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1146 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1147 	if (ret) {
1148 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1149 		goto err_free_rings;
1150 	} else {
1151 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1152 	}
1153 
1154 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1155 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1156 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1157 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1158 
1159 	//ieee80211_wake_queue(dev, 0);
1160 
1161 normal_out:
1162 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1163 	return 0;
1164 
1165 err_free_rings:
1166 	openwifi_free_rx_ring(priv);
1167 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1168 		openwifi_free_tx_ring(priv, i);
1169 
1170 err_dma:
1171 	ret = -1;
1172 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1173 	return ret;
1174 }
1175 
1176 static void openwifi_stop(struct ieee80211_hw *dev)
1177 {
1178 	struct openwifi_priv *priv = dev->priv;
1179 	u32 reg, reg1;
1180 	int i;
1181 
1182 	if (test_mode==1){
1183 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1184 		goto normal_out;
1185 	}
1186 
1187 	//turn off radio
1188 	#if 1
1189 	ad9361_tx_mute(priv->ad9361_phy, 1);
1190 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1191 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1192 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1193 		priv->rfkill_off = 0;// 0 off, 1 on
1194 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1195 	}
1196 	else
1197 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1198 	#endif
1199 
1200 	//ieee80211_stop_queue(dev, 0);
1201 
1202 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1203 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1204 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1205 
1206 	for (i=0; i<MAX_NUM_VIF; i++) {
1207 		priv->vif[i] = NULL;
1208 	}
1209 
1210 	openwifi_free_rx_ring(priv);
1211 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1212 		openwifi_free_tx_ring(priv, i);
1213 
1214 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1215 	dmaengine_terminate_all(priv->rx_chan);
1216 	dma_release_channel(priv->rx_chan);
1217 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1218 	dmaengine_terminate_all(priv->tx_chan);
1219 	dma_release_channel(priv->tx_chan);
1220 
1221 	//priv->rf->stop(dev);
1222 
1223 	free_irq(priv->irq_rx, dev);
1224 	free_irq(priv->irq_tx, dev);
1225 
1226 normal_out:
1227 	printk("%s openwifi_stop\n", sdr_compatible_str);
1228 }
1229 
1230 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1231 			   struct ieee80211_vif *vif)
1232 {
1233 	u32 tsft_low, tsft_high;
1234 
1235 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1236 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1237 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1238 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1239 }
1240 
1241 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1242 {
1243 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1244 	u32 tsft_low  = (tsf&0xffffffff);
1245 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1246 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1247 }
1248 
1249 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1250 {
1251 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1252 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1253 }
1254 
1255 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1256 {
1257 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1258 	return(0);
1259 }
1260 
1261 static void openwifi_beacon_work(struct work_struct *work)
1262 {
1263 	struct openwifi_vif *vif_priv =
1264 		container_of(work, struct openwifi_vif, beacon_work.work);
1265 	struct ieee80211_vif *vif =
1266 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1267 	struct ieee80211_hw *dev = vif_priv->dev;
1268 	struct ieee80211_mgmt *mgmt;
1269 	struct sk_buff *skb;
1270 
1271 	/* don't overflow the tx ring */
1272 	if (ieee80211_queue_stopped(dev, 0))
1273 		goto resched;
1274 
1275 	/* grab a fresh beacon */
1276 	skb = ieee80211_beacon_get(dev, vif);
1277 	if (!skb)
1278 		goto resched;
1279 
1280 	/*
1281 	 * update beacon timestamp w/ TSF value
1282 	 * TODO: make hardware update beacon timestamp
1283 	 */
1284 	mgmt = (struct ieee80211_mgmt *)skb->data;
1285 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1286 
1287 	/* TODO: use actual beacon queue */
1288 	skb_set_queue_mapping(skb, 0);
1289 	openwifi_tx(dev, NULL, skb);
1290 
1291 resched:
1292 	/*
1293 	 * schedule next beacon
1294 	 * TODO: use hardware support for beacon timing
1295 	 */
1296 	schedule_delayed_work(&vif_priv->beacon_work,
1297 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1298 }
1299 
1300 static int openwifi_add_interface(struct ieee80211_hw *dev,
1301 				 struct ieee80211_vif *vif)
1302 {
1303 	int i;
1304 	struct openwifi_priv *priv = dev->priv;
1305 	struct openwifi_vif *vif_priv;
1306 
1307 	switch (vif->type) {
1308 	case NL80211_IFTYPE_AP:
1309 	case NL80211_IFTYPE_STATION:
1310 	case NL80211_IFTYPE_ADHOC:
1311 	case NL80211_IFTYPE_MONITOR:
1312 	case NL80211_IFTYPE_MESH_POINT:
1313 		break;
1314 	default:
1315 		return -EOPNOTSUPP;
1316 	}
1317 	// let's support more than 1 interface
1318 	for (i=0; i<MAX_NUM_VIF; i++) {
1319 		if (priv->vif[i] == NULL)
1320 			break;
1321 	}
1322 
1323 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1324 
1325 	if (i==MAX_NUM_VIF)
1326 		return -EBUSY;
1327 
1328 	priv->vif[i] = vif;
1329 
1330 	/* Initialize driver private area */
1331 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1332 	vif_priv->idx = i;
1333 
1334 	vif_priv->dev = dev;
1335 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1336 	vif_priv->enable_beacon = false;
1337 
1338 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1339 
1340 	return 0;
1341 }
1342 
1343 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1344 				     struct ieee80211_vif *vif)
1345 {
1346 	struct openwifi_vif *vif_priv;
1347 	struct openwifi_priv *priv = dev->priv;
1348 
1349 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1350 	priv->vif[vif_priv->idx] = NULL;
1351 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1352 }
1353 
1354 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1355 {
1356 	struct openwifi_priv *priv = dev->priv;
1357 	struct ieee80211_conf *conf = &dev->conf;
1358 
1359 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1360 		priv->rf->set_chan(dev, conf);
1361 	else
1362 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1363 
1364 	return 0;
1365 }
1366 
1367 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1368 				     struct ieee80211_vif *vif,
1369 				     struct ieee80211_bss_conf *info,
1370 				     u32 changed)
1371 {
1372 	struct openwifi_priv *priv = dev->priv;
1373 	struct openwifi_vif *vif_priv;
1374 	u32 bssid_low, bssid_high;
1375 
1376 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1377 
1378 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1379 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1380 	if (changed & BSS_CHANGED_BSSID) {
1381 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1382 		// write new bssid to our HW, and do not change bssid filter
1383 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1384 		bssid_low = ( *( (u32*)(info->bssid) ) );
1385 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1386 
1387 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1388 		//bssid_high = (bssid_high|bssid_filter_high);
1389 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1390 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1391 	}
1392 
1393 	if (changed & BSS_CHANGED_BEACON_INT) {
1394 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1395 	}
1396 
1397 	if (changed & BSS_CHANGED_TXPOWER)
1398 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1399 
1400 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1401 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1402 
1403 	if (changed & BSS_CHANGED_BASIC_RATES)
1404 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1405 
1406 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1407 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1408 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1409 		if (info->use_short_slot && priv->use_short_slot==false) {
1410 			priv->use_short_slot=true;
1411 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1412 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1413 			priv->use_short_slot=false;
1414 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1415 		}
1416 	}
1417 
1418 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1419 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1420 		vif_priv->enable_beacon = info->enable_beacon;
1421 	}
1422 
1423 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1424 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1425 		if (vif_priv->enable_beacon)
1426 			schedule_work(&vif_priv->beacon_work.work);
1427 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1428 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1429 	}
1430 }
1431 // helper function
1432 u32 log2val(u32 val){
1433 	u32 ret_val = 0 ;
1434 	while(val>1){
1435 		val = val >> 1 ;
1436 		ret_val ++ ;
1437 	}
1438 	return ret_val ;
1439 }
1440 
1441 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1442 	      const struct ieee80211_tx_queue_params *params)
1443 {
1444 	u32 reg_val, cw_min_exp, cw_max_exp;
1445 
1446 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1447 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1448 
1449 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1450 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1451 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1452 	switch(queue){
1453 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1454 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1455 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1456 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1457 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1458 	}
1459 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1460 	return(0);
1461 }
1462 
1463 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1464 				     struct netdev_hw_addr_list *mc_list)
1465 {
1466 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1467 	return netdev_hw_addr_list_count(mc_list);
1468 }
1469 
1470 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1471 				     unsigned int changed_flags,
1472 				     unsigned int *total_flags,
1473 				     u64 multicast)
1474 {
1475 	u32 filter_flag;
1476 
1477 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1478 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1479 
1480 	filter_flag = (*total_flags);
1481 
1482 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1483 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1484 
1485 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1486 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1487 		filter_flag = (filter_flag|MONITOR_ALL);
1488 	else
1489 		filter_flag = (filter_flag&(~MONITOR_ALL));
1490 
1491 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1492 		filter_flag = (filter_flag|MY_BEACON);
1493 
1494 	filter_flag = (filter_flag|FIF_PSPOLL);
1495 
1496 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1497 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1498 
1499 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1500 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1501 }
1502 
1503 static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
1504 {
1505 	struct openwifi_priv *priv = hw->priv;
1506 	struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
1507 	struct sk_buff *skb;
1508 	int err;
1509 	u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx, tsft_high, tsft_low;
1510 
1511 	err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
1512 	if (err)
1513 		return err;
1514 
1515 	if (!tb[OPENWIFI_ATTR_CMD])
1516 		return -EINVAL;
1517 
1518 	switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
1519 	case OPENWIFI_CMD_SET_GAP:
1520 		if (!tb[OPENWIFI_ATTR_GAP])
1521 			return -EINVAL;
1522 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
1523 		printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
1524 		xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
1525 		return 0;
1526 	case OPENWIFI_CMD_GET_GAP:
1527 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1528 		if (!skb)
1529 			return -ENOMEM;
1530 		tmp = xpu_api->XPU_REG_CSMA_CFG_read();
1531 		if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
1532 			goto nla_put_failure;
1533 		return cfg80211_testmode_reply(skb);
1534 	case OPENWIFI_CMD_SET_SLICE_IDX:
1535 		if (!tb[OPENWIFI_ATTR_SLICE_IDX])
1536 			return -EINVAL;
1537 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_IDX]);
1538 		printk("%s set openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1539 		if (tmp == MAX_NUM_HW_QUEUE) {
1540 			printk("%s set openwifi slice_idx reset all queue counter.\n", sdr_compatible_str);
1541 			xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1542 			xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1543 		} else {
1544 			priv->slice_idx = tmp;
1545 		}
1546 		return 0;
1547 	case OPENWIFI_CMD_GET_SLICE_IDX:
1548 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1549 		if (!skb)
1550 			return -ENOMEM;
1551 		tmp = priv->slice_idx;
1552 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_IDX, tmp))
1553 			goto nla_put_failure;
1554 		printk("%s get openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1555 		return cfg80211_testmode_reply(skb);
1556 	case OPENWIFI_CMD_SET_ADDR:
1557 		if (!tb[OPENWIFI_ATTR_ADDR])
1558 			return -EINVAL;
1559 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR]);
1560 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1561 			printk("%s set openwifi slice_target_mac_addr(low32) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1562 		} else {
1563 			printk("%s set openwifi slice_target_mac_addr(low32) in hex: %08x to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1564 			priv->dest_mac_addr_queue_map[priv->slice_idx] = reverse32(tmp);
1565 		}
1566 		return 0;
1567 	case OPENWIFI_CMD_GET_ADDR:
1568 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1569 		if (!skb)
1570 			return -ENOMEM;
1571 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1572 			tmp = -1;
1573 		} else {
1574 			tmp = reverse32(priv->dest_mac_addr_queue_map[priv->slice_idx]);
1575 		}
1576 		if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR, tmp))
1577 			goto nla_put_failure;
1578 		printk("%s get openwifi slice_target_mac_addr(low32) in hex: %08x of slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1579 		return cfg80211_testmode_reply(skb);
1580 
1581 	case OPENWIFI_CMD_SET_SLICE_TOTAL:
1582 		if (!tb[OPENWIFI_ATTR_SLICE_TOTAL])
1583 			return -EINVAL;
1584 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL]);
1585 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1586 			printk("%s set SLICE_TOTAL(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1587 		} else {
1588 			printk("%s set SLICE_TOTAL(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1589 			xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((priv->slice_idx<<20)|tmp);
1590 		}
1591 		return 0;
1592 	case OPENWIFI_CMD_GET_SLICE_TOTAL:
1593 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1594 		if (!skb)
1595 			return -ENOMEM;
1596 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL_read());
1597 		printk("%s get SLICE_TOTAL(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1598 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL, tmp))
1599 			goto nla_put_failure;
1600 		return cfg80211_testmode_reply(skb);
1601 
1602 	case OPENWIFI_CMD_SET_SLICE_START:
1603 		if (!tb[OPENWIFI_ATTR_SLICE_START])
1604 			return -EINVAL;
1605 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START]);
1606 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1607 			printk("%s set SLICE_START(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1608 		} else {
1609 			printk("%s set SLICE_START(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1610 			xpu_api->XPU_REG_SLICE_COUNT_START_write((priv->slice_idx<<20)|tmp);
1611 		}
1612 		return 0;
1613 	case OPENWIFI_CMD_GET_SLICE_START:
1614 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1615 		if (!skb)
1616 			return -ENOMEM;
1617 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_START_read());
1618 		printk("%s get SLICE_START(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1619 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START, tmp))
1620 			goto nla_put_failure;
1621 		return cfg80211_testmode_reply(skb);
1622 
1623 	case OPENWIFI_CMD_SET_SLICE_END:
1624 		if (!tb[OPENWIFI_ATTR_SLICE_END])
1625 			return -EINVAL;
1626 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END]);
1627 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1628 			printk("%s set SLICE_END(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1629 		} else {
1630 			printk("%s set SLICE_END(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1631 			xpu_api->XPU_REG_SLICE_COUNT_END_write((priv->slice_idx<<20)|tmp);
1632 		}
1633 		return 0;
1634 	case OPENWIFI_CMD_GET_SLICE_END:
1635 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1636 		if (!skb)
1637 			return -ENOMEM;
1638 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_END_read());
1639 		printk("%s get SLICE_END(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1640 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END, tmp))
1641 			goto nla_put_failure;
1642 		return cfg80211_testmode_reply(skb);
1643 
1644 	// case OPENWIFI_CMD_SET_SLICE_TOTAL1:
1645 	// 	if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
1646 	// 		return -EINVAL;
1647 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
1648 	// 	printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
1649 	// 	// xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
1650 	// 	return 0;
1651 	// case OPENWIFI_CMD_GET_SLICE_TOTAL1:
1652 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1653 	// 	if (!skb)
1654 	// 		return -ENOMEM;
1655 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
1656 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
1657 	// 		goto nla_put_failure;
1658 	// 	return cfg80211_testmode_reply(skb);
1659 
1660 	// case OPENWIFI_CMD_SET_SLICE_START1:
1661 	// 	if (!tb[OPENWIFI_ATTR_SLICE_START1])
1662 	// 		return -EINVAL;
1663 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
1664 	// 	printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
1665 	// 	// xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
1666 	// 	return 0;
1667 	// case OPENWIFI_CMD_GET_SLICE_START1:
1668 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1669 	// 	if (!skb)
1670 	// 		return -ENOMEM;
1671 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
1672 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
1673 	// 		goto nla_put_failure;
1674 	// 	return cfg80211_testmode_reply(skb);
1675 
1676 	// case OPENWIFI_CMD_SET_SLICE_END1:
1677 	// 	if (!tb[OPENWIFI_ATTR_SLICE_END1])
1678 	// 		return -EINVAL;
1679 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
1680 	// 	printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
1681 	// 	// xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
1682 	// 	return 0;
1683 	// case OPENWIFI_CMD_GET_SLICE_END1:
1684 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1685 	// 	if (!skb)
1686 	// 		return -ENOMEM;
1687 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
1688 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
1689 	// 		goto nla_put_failure;
1690 	// 	return cfg80211_testmode_reply(skb);
1691 
1692 	case OPENWIFI_CMD_SET_RSSI_TH:
1693 		if (!tb[OPENWIFI_ATTR_RSSI_TH])
1694 			return -EINVAL;
1695 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
1696 		// printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
1697 		// xpu_api->XPU_REG_LBT_TH_write(tmp);
1698 		// return 0;
1699 		printk("%s WARNING Please use command: sdrctl dev sdr0 set reg drv_xpu 0 reg_value! (1~2047, 0 means AUTO)!\n", sdr_compatible_str);
1700 		return -EOPNOTSUPP;
1701 	case OPENWIFI_CMD_GET_RSSI_TH:
1702 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1703 		if (!skb)
1704 			return -ENOMEM;
1705 		tmp = xpu_api->XPU_REG_LBT_TH_read();
1706 		if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
1707 			goto nla_put_failure;
1708 		return cfg80211_testmode_reply(skb);
1709 
1710 	case OPENWIFI_CMD_SET_TSF:
1711 		printk("openwifi_set_tsf_1");
1712 		if ( (!tb[OPENWIFI_ATTR_HIGH_TSF]) || (!tb[OPENWIFI_ATTR_LOW_TSF]) )
1713 				return -EINVAL;
1714 		printk("openwifi_set_tsf_2");
1715 		tsft_high = nla_get_u32(tb[OPENWIFI_ATTR_HIGH_TSF]);
1716 		tsft_low  = nla_get_u32(tb[OPENWIFI_ATTR_LOW_TSF]);
1717 		xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1718 		printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1719 		return 0;
1720 
1721 	case REG_CMD_SET:
1722 		if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
1723 			return -EINVAL;
1724 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1725 		reg_val  = nla_get_u32(tb[REG_ATTR_VAL]);
1726 		reg_cat = ((reg_addr>>16)&0xFFFF);
1727 		reg_addr = (reg_addr&0xFFFF);
1728 		reg_addr_idx = (reg_addr>>2);
1729 		printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
1730 		if (reg_cat==1)
1731 			printk("%s WARNING reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1732 		else if (reg_cat==2)
1733 			rx_intf_api->reg_write(reg_addr,reg_val);
1734 		else if (reg_cat==3)
1735 			tx_intf_api->reg_write(reg_addr,reg_val);
1736 		else if (reg_cat==4)
1737 			openofdm_rx_api->reg_write(reg_addr,reg_val);
1738 		else if (reg_cat==5)
1739 			openofdm_tx_api->reg_write(reg_addr,reg_val);
1740 		else if (reg_cat==6)
1741 			xpu_api->reg_write(reg_addr,reg_val);
1742 		else if (reg_cat==7) {
1743 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1744 				priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
1745 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1746 					if (reg_val==0)
1747 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1748 					else
1749 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1750 
1751 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1752 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1753 				}
1754 			} else
1755 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1756 		}
1757 		else if (reg_cat==8) {
1758 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1759 				priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
1760 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1761 					if (reg_val==0) {
1762 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1763 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
1764 					} else {
1765 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
1766 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
1767 					}
1768 
1769 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1770 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1771 				}
1772 			} else
1773 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1774 		}
1775 		else if (reg_cat==9) {
1776 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1777 				priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
1778 				if (reg_addr_idx==DRV_XPU_REG_IDX_LBT_TH) {
1779 					if (reg_val) {
1780 						xpu_api->XPU_REG_LBT_TH_write(reg_val);
1781 						printk("%s override FPGA LBT threshold to %d. The last_auto_fpga_lbt_th %d\n", sdr_compatible_str, reg_val, priv->last_auto_fpga_lbt_th);
1782 					} else {
1783 						xpu_api->XPU_REG_LBT_TH_write(priv->last_auto_fpga_lbt_th);
1784 						printk("%s Restore last_auto_fpga_lbt_th %d to FPGA. ad9361_rf_set_channel will take control\n", sdr_compatible_str, priv->last_auto_fpga_lbt_th);
1785 					}
1786 				}
1787 			} else
1788 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1789 		}
1790 		else
1791 			printk("%s WARNING reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1792 
1793 		return 0;
1794 	case REG_CMD_GET:
1795 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1796 		if (!skb)
1797 			return -ENOMEM;
1798 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1799 		reg_cat = ((reg_addr>>16)&0xFFFF);
1800 		reg_addr = (reg_addr&0xFFFF);
1801 		reg_addr_idx = (reg_addr>>2);
1802 		printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
1803 		if (reg_cat==1) {
1804 			printk("%s WARNING reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1805 			tmp = 0xFFFFFFFF;
1806 		}
1807 		else if (reg_cat==2)
1808 			tmp = rx_intf_api->reg_read(reg_addr);
1809 		else if (reg_cat==3)
1810 			tmp = tx_intf_api->reg_read(reg_addr);
1811 		else if (reg_cat==4)
1812 			tmp = openofdm_rx_api->reg_read(reg_addr);
1813 		else if (reg_cat==5)
1814 			tmp = openofdm_tx_api->reg_read(reg_addr);
1815 		else if (reg_cat==6)
1816 			tmp = xpu_api->reg_read(reg_addr);
1817 		else if (reg_cat==7) {
1818 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1819 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1820 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1821 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1822 
1823 					if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1824 						priv->drv_rx_reg_val[reg_addr_idx]=0;
1825 					else if	(priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
1826 						priv->drv_rx_reg_val[reg_addr_idx]=1;
1827 				}
1828 				tmp = priv->drv_rx_reg_val[reg_addr_idx];
1829 			} else
1830 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1831 		}
1832 		else if (reg_cat==8) {
1833 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1834 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1835 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1836 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1837 					if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
1838 						priv->drv_tx_reg_val[reg_addr_idx]=0;
1839 					else if	(priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
1840 						priv->drv_tx_reg_val[reg_addr_idx]=1;
1841 				}
1842 				tmp = priv->drv_tx_reg_val[reg_addr_idx];
1843 			} else
1844 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1845 		}
1846 		else if (reg_cat==9) {
1847 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1848 				tmp = priv->drv_xpu_reg_val[reg_addr_idx];
1849 			else
1850 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1851 		}
1852 		else
1853 			printk("%s WARNING reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1854 
1855 		if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
1856 			goto nla_put_failure;
1857 		return cfg80211_testmode_reply(skb);
1858 
1859 	default:
1860 		return -EOPNOTSUPP;
1861 	}
1862 
1863  nla_put_failure:
1864 	dev_kfree_skb(skb);
1865 	return -ENOBUFS;
1866 }
1867 
1868 static const struct ieee80211_ops openwifi_ops = {
1869 	.tx			       = openwifi_tx,
1870 	.start			   = openwifi_start,
1871 	.stop			   = openwifi_stop,
1872 	.add_interface	   = openwifi_add_interface,
1873 	.remove_interface  = openwifi_remove_interface,
1874 	.config			   = openwifi_config,
1875 	.bss_info_changed  = openwifi_bss_info_changed,
1876 	.conf_tx		   = openwifi_conf_tx,
1877 	.prepare_multicast = openwifi_prepare_multicast,
1878 	.configure_filter  = openwifi_configure_filter,
1879 	.rfkill_poll	   = openwifi_rfkill_poll,
1880 	.get_tsf		   = openwifi_get_tsf,
1881 	.set_tsf		   = openwifi_set_tsf,
1882 	.reset_tsf		   = openwifi_reset_tsf,
1883 	.set_rts_threshold = openwifi_set_rts_threshold,
1884 	.testmode_cmd	   = openwifi_testmode_cmd,
1885 };
1886 
1887 static const struct of_device_id openwifi_dev_of_ids[] = {
1888 	{ .compatible = "sdr,sdr", },
1889 	{}
1890 };
1891 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1892 
1893 static int custom_match_spi_dev(struct device *dev, void *data)
1894 {
1895     const char *name = data;
1896 
1897 	bool ret = sysfs_streq(name, dev->of_node->name);
1898 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1899 	return ret;
1900 }
1901 
1902 static int custom_match_platform_dev(struct device *dev, void *data)
1903 {
1904 	struct platform_device *plat_dev = to_platform_device(dev);
1905 	const char *name = data;
1906 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1907 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1908 
1909 	if (match_flag) {
1910 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1911 	}
1912 	return(match_flag);
1913 }
1914 
1915 static int openwifi_dev_probe(struct platform_device *pdev)
1916 {
1917 	struct ieee80211_hw *dev;
1918 	struct openwifi_priv *priv;
1919 	int err=1, rand_val;
1920 	const char *chip_name, *fpga_model;
1921 	u32 reg;//, reg1;
1922 
1923 	struct device_node *np = pdev->dev.of_node;
1924 
1925 	struct device *tmp_dev;
1926 	struct platform_device *tmp_pdev;
1927 	struct iio_dev *tmp_indio_dev;
1928 	// struct gpio_leds_priv *tmp_led_priv;
1929 
1930 	printk("\n");
1931 
1932 	if (np) {
1933 		const struct of_device_id *match;
1934 
1935 		match = of_match_node(openwifi_dev_of_ids, np);
1936 		if (match) {
1937 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1938 			err = 0;
1939 		}
1940 	}
1941 
1942 	if (err)
1943 		return err;
1944 
1945 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1946 	if (!dev) {
1947 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1948 		err = -ENOMEM;
1949 		goto err_free_dev;
1950 	}
1951 
1952 	priv = dev->priv;
1953 	priv->pdev = pdev;
1954 
1955 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1956 	if(err < 0) {
1957 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1958 		priv->fpga_type = SMALL_FPGA;
1959 	} else {
1960 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1961 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1962 			priv->fpga_type = LARGE_FPGA;
1963 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1964 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1965 			priv->fpga_type = SMALL_FPGA;
1966 	}
1967 
1968 	// //-------------find ad9361-phy driver for lo/channel control---------------
1969 	priv->actual_rx_lo = 0;
1970 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1971 	if (tmp_dev == NULL) {
1972 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1973 		err = -ENOMEM;
1974 		goto err_free_dev;
1975 	}
1976 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1977 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1978 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1979 		err = -ENOMEM;
1980 		goto err_free_dev;
1981 	}
1982 
1983 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1984 	if (!(priv->ad9361_phy)) {
1985 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1986 		err = -ENOMEM;
1987 		goto err_free_dev;
1988 	}
1989 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1990 
1991 	priv->ctrl_out.en_mask=0xFF;
1992 	priv->ctrl_out.index=0x16;
1993 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1994 	if (err < 0) {
1995 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
1996 	} else {
1997 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1998 	}
1999 
2000 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
2001 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
2002 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
2003 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
2004 
2005 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
2006 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
2007 	if (!tmp_dev) {
2008 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
2009 		err = -ENOMEM;
2010 		goto err_free_dev;
2011 	}
2012 
2013 	tmp_pdev = to_platform_device(tmp_dev);
2014 	if (!tmp_pdev) {
2015 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
2016 		err = -ENOMEM;
2017 		goto err_free_dev;
2018 	}
2019 
2020 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
2021 	if (!tmp_indio_dev) {
2022 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
2023 		err = -ENOMEM;
2024 		goto err_free_dev;
2025 	}
2026 
2027 	priv->dds_st = iio_priv(tmp_indio_dev);
2028 	if (!(priv->dds_st)) {
2029 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
2030 		err = -ENOMEM;
2031 		goto err_free_dev;
2032 	}
2033 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
2034 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
2035 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
2036 
2037 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
2038 	// turn off radio by muting tx
2039 	// ad9361_tx_mute(priv->ad9361_phy, 1);
2040 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2041 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2042 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2043 	// 	priv->rfkill_off = 0;// 0 off, 1 on
2044 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2045 	// }
2046 	// else
2047 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2048 
2049 	priv->last_auto_fpga_lbt_th = 134;//just to avoid uninitialized
2050 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
2051 
2052 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2053 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2054 
2055 	priv->xpu_cfg = XPU_NORMAL;
2056 
2057 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2058 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2059 
2060 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2061 	if (priv->rf_bw == 20000000) {
2062 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2063 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2064 		//priv->rx_freq_offset_to_lo_MHz = 0;
2065 		//priv->tx_freq_offset_to_lo_MHz = 0;
2066 	} else if (priv->rf_bw == 40000000) {
2067 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2068 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2069 
2070 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2071 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2072 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2073 		// // try another antenna option
2074 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2075 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2076 
2077 		#if 0
2078 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2079 			priv->rx_freq_offset_to_lo_MHz = -10;
2080 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2081 			priv->rx_freq_offset_to_lo_MHz = 10;
2082 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2083 			priv->rx_freq_offset_to_lo_MHz = 0;
2084 		} else {
2085 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2086 		}
2087 		#endif
2088 	} else {
2089 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2090 	}
2091 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
2092 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
2093 	printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
2094 
2095 	//let's by default turn radio on when probing
2096 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
2097 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2098 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2099 	} else {
2100 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2101 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2102 	}
2103 	if (reg == AD9361_RADIO_ON_TX_ATT) {
2104 		priv->rfkill_off = 1;// 0 off, 1 on
2105 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2106 	} else
2107 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
2108 
2109 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2110 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2111 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2112 
2113 	// //set ad9361 in certain mode
2114 	#if 0
2115 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2116 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2117 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2118 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2119 
2120 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2121 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2122 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2123 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2124 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2125 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2126 	#endif
2127 
2128 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2129 
2130 	SET_IEEE80211_DEV(dev, &pdev->dev);
2131 	platform_set_drvdata(pdev, dev);
2132 
2133 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2134 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2135 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2136 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2137 
2138 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2139 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2140 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2141 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2142 
2143 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2144 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2145 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2146 
2147 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2148 	priv->band_2GHz.channels = priv->channels_2GHz;
2149 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2150 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2151 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2152 	priv->band_2GHz.ht_cap.ht_supported = true;
2153 	priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2154 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2155 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2156 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2157 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2158 
2159 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2160 	priv->band_5GHz.channels = priv->channels_5GHz;
2161 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2162 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2163 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2164 	priv->band_5GHz.ht_cap.ht_supported = true;
2165 	priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2166 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2167 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2168 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2169 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2170 
2171 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2172 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2173 
2174 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
2175 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2176 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
2177 
2178 	dev->vif_data_size = sizeof(struct openwifi_vif);
2179 	dev->wiphy->interface_modes =
2180 			BIT(NL80211_IFTYPE_MONITOR)|
2181 			BIT(NL80211_IFTYPE_P2P_GO) |
2182 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2183 			BIT(NL80211_IFTYPE_AP) |
2184 			BIT(NL80211_IFTYPE_STATION) |
2185 			BIT(NL80211_IFTYPE_ADHOC) |
2186 			BIT(NL80211_IFTYPE_MESH_POINT) |
2187 			BIT(NL80211_IFTYPE_OCB);
2188 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2189 	dev->wiphy->n_iface_combinations = 1;
2190 
2191 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2192 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2193 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2194 
2195 	chip_name = "ZYNQ";
2196 
2197 	/* we declare to MAC80211 all the queues except for beacon queue
2198 	 * that will be eventually handled by DRV.
2199 	 * TX rings are arranged in such a way that lower is the IDX,
2200 	 * higher is the priority, in order to achieve direct mapping
2201 	 * with mac80211, however the beacon queue is an exception and it
2202 	 * is mapped on the highst tx ring IDX.
2203 	 */
2204 	dev->queues = MAX_NUM_HW_QUEUE;
2205 	//dev->queues = 1;
2206 
2207 	ieee80211_hw_set(dev, SIGNAL_DBM);
2208 
2209 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2210 
2211 	priv->rf = &ad9361_rf_ops;
2212 
2213 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2214 	priv->slice_idx = 0xFFFFFFFF;
2215 
2216 	sg_init_table(&(priv->tx_sg), 1);
2217 
2218 	get_random_bytes(&rand_val, sizeof(rand_val));
2219     rand_val%=250;
2220 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2221 	priv->mac_addr[5]=rand_val+1;
2222 	//priv->mac_addr[5]=0x11;
2223 	if (!is_valid_ether_addr(priv->mac_addr)) {
2224 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2225 		eth_random_addr(priv->mac_addr);
2226 	} else {
2227 		printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2228 	}
2229 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2230 
2231 	spin_lock_init(&priv->lock);
2232 
2233 	err = ieee80211_register_hw(dev);
2234 	if (err) {
2235 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2236 		goto err_free_dev;
2237 	} else {
2238 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2239 	}
2240 
2241 	// // //--------------------hook leds (not complete yet)--------------------------------
2242 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2243 	// if (!tmp_dev) {
2244 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2245 	// 	err = -ENOMEM;
2246 	// 	goto err_free_dev;
2247 	// }
2248 
2249 	// tmp_pdev = to_platform_device(tmp_dev);
2250 	// if (!tmp_pdev) {
2251 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2252 	// 	err = -ENOMEM;
2253 	// 	goto err_free_dev;
2254 	// }
2255 
2256 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2257 	// if (!tmp_led_priv) {
2258 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2259 	// 	err = -ENOMEM;
2260 	// 	goto err_free_dev;
2261 	// }
2262 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2263 	// if (tmp_led_priv->num_leds!=4){
2264 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2265 	// 	err = -ENOMEM;
2266 	// 	goto err_free_dev;
2267 	// }
2268 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2269 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2270 	// priv->num_led = tmp_led_priv->num_leds;
2271 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2272 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2273 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2274 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2275 
2276 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2277 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2278 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2279 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2280 
2281 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2282 		   priv->mac_addr, chip_name, priv->rf->name);
2283 
2284 	openwifi_rfkill_init(dev);
2285 	return 0;
2286 
2287  err_free_dev:
2288 	ieee80211_free_hw(dev);
2289 
2290 	return err;
2291 }
2292 
2293 static int openwifi_dev_remove(struct platform_device *pdev)
2294 {
2295 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2296 
2297 	if (!dev) {
2298 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2299 		return(-1);
2300 	}
2301 
2302 	openwifi_rfkill_exit(dev);
2303 	ieee80211_unregister_hw(dev);
2304 	ieee80211_free_hw(dev);
2305 	return(0);
2306 }
2307 
2308 static struct platform_driver openwifi_dev_driver = {
2309 	.driver = {
2310 		.name = "sdr,sdr",
2311 		.owner = THIS_MODULE,
2312 		.of_match_table = openwifi_dev_of_ids,
2313 	},
2314 	.probe = openwifi_dev_probe,
2315 	.remove = openwifi_dev_remove,
2316 };
2317 
2318 module_platform_driver(openwifi_dev_driver);
2319