Lines Matching full:cos
44 {0xbf70090b, 0, 1, 0}, // x = 0x1.33333p13, cos(x) = -0x1.e01216p-1 (RZ)
45 {0x3f4ea5d2, 1, 0, 0}, // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ)
46 {0x3f08aebe, 1, 0, 1}, // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ)
47 {0x3f7f14bb, 1, 0, 0}, // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ)
48 {0x3f78142e, 1, 0, 1}, // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ)
49 {0x3f08a21c, 1, 0, 0}, // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ)
73 // cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x).
92 // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
93 // cos(x) = cos((k + y)*pi/32)
94 // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
95 // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed
96 // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
109 // sin(x) ~ x, cos(x) ~ 1
115 // |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2.
116 // So the correctly rounded values of sin(x) and cos(x) are:
121 // cos(x) = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD,
126 // cos(x) = fma(x*0.5f, -x, 1)
184 // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
187 // cos(x) = cos((k + y)*pi/32)
188 // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)