Lines Matching full:sin
35 {0xbeb1fa5d, 0, 1, 0}, // x = 0x1.33333p13, sin(x) = -0x1.63f4bap-2 (RZ)
36 {0xbf171adf, 0, 1, 1}, // x = 0x1.64a032p43, sin(x) = -0x1.2e35bep-1 (RZ)
37 {0xbf587521, 0, 1, 1}, // x = 0x1.4555p51, sin(x) = -0x1.b0ea42p-1 (RZ)
38 {0x3dad60f6, 1, 0, 1}, // x = 0x1.3170fp63, sin(x) = 0x1.5ac1ecp-4 (RZ)
39 {0xbe7cc1e0, 0, 1, 1}, // x = 0x1.2b9622p67, sin(x) = -0x1.f983cp-3 (RZ)
40 {0xbf587d1b, 0, 1, 1}, // x = 0x1.ddebdep120, sin(x) = -0x1.b0fa36p-1 (RZ)
72 // sin((k + y + 64*i) * pi/32) = sin(x + i * 2pi) = sin(x), and
91 // sin(x) = sin((k + y)*pi/32)
92 // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
94 // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
95 // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed
96 // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
109 // sin(x) ~ x, cos(x) ~ 1
111 // |sin(x) - x| / |sin(x)| < |x^3| / (6|x|)
116 // So the correctly rounded values of sin(x) and cos(x) are:
117 // sin(x) = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
125 // sin(x) = fma(x, -2^-25, x),
183 // sin(x) = sin((k + y)*pi/32)
184 // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
188 // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)