/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/ |
H A D | graph_fuser.cpp | 587 at::ArrayRef<Value*> broadcast_tensors(value_list inputs) { in broadcast_tensors() function 593 auto* output_list = g->insert(aten::broadcast_tensors, {input_list}); in broadcast_tensors() 600 // output_list = broadcast_tensors(input_list) in broadcast_tensors() 616 auto new_tensors = broadcast_tensors(std::move(tensors)); in insertExplicitBroadcast() 651 // x', y', z' = broadcast_tensors([x, y, z]) 684 // operations around broadcast_tensors + chunk nodes. Let f, g, h be fusible 690 // becomes (with the broadcast_tensors + chunk approach): 692 // x', y' = broadcast_tensors([x, y]) 698 // The broadcast_tensors node makes it harder to move f into the resulting
|
H A D | guard_elimination.cpp | 439 case aten::broadcast_tensors: { in removableGuard()
|
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/functional/ |
H A D | loss.h | 118 std::vector<torch::Tensor> broadcast_tensors = in mse_loss() local 119 torch::broadcast_tensors({input, target}); in mse_loss() 120 auto expanded_input = broadcast_tensors[0]; in mse_loss() 121 auto expanded_target = broadcast_tensors[1]; in mse_loss() 363 torch::broadcast_tensors({input, target}); 435 torch::broadcast_tensors({input, target});
|
/aosp_15_r20/external/pytorch/torch/ |
H A D | functional.py | 26 "broadcast_tensors", 47 def broadcast_tensors(*tensors): function 48 r"""broadcast_tensors(*tensors) -> List of Tensors 66 >>> a, b = torch.broadcast_tensors(x, y) 75 return handle_torch_function(broadcast_tensors, tensors, *tensors) 76 return _VF.broadcast_tensors(tensors) # type: ignore[attr-defined] 82 Similar to :func:`broadcast_tensors` but for shapes. 85 ``torch.broadcast_tensors(*map(torch.empty, shapes))[0].shape`` 151 tensors = broadcast_tensors(*tensors)
|
/aosp_15_r20/external/pytorch/torch/distributions/ |
H A D | utils.py | 54 return torch.broadcast_tensors(*new_values) 55 return torch.broadcast_tensors(*values)
|
H A D | categorical.py | 141 value, log_pmf = torch.broadcast_tensors(value, self.logits)
|
H A D | lowrank_multivariate_normal.py | 113 loc_, self.cov_factor, cov_diag_ = torch.broadcast_tensors(
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/ |
H A D | nccl_ops_test.py | 186 broadcast_tensors = _NcclBroadcast(single_reduce_tensors, devices) 187 return all_reduce_tensors + broadcast_tensors
|
/aosp_15_r20/external/pytorch/torch/_numpy/ |
H A D | _funcs_impl.py | 719 return torch.broadcast_tensors(*args) 738 output = torch.broadcast_tensors(*output) 851 a1_t, a2_t = torch.broadcast_tensors(a1, a2) 918 indices, values = torch.broadcast_tensors(indices, values) 932 choices = torch.stack(torch.broadcast_tensors(*choices))
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_view_ops.py | 1608 y0, y1, y2 = torch.broadcast_tensors(x0, x1, x2) 1618 expected = torch.broadcast_tensors(x0)[0].shape 1624 expected = torch.broadcast_tensors(x0, x1)[0].shape 1631 res2 = torch.broadcast_tensors(*map(torch.empty, integral_inputs))[0].shape 1675 res2 = torch.broadcast_tensors(*map(torch.empty, s0))[0].shape
|
/aosp_15_r20/external/pytorch/functorch/op_analysis/ |
H A D | public_api | 169 broadcast_tensors
|
H A D | annotated_ops | 62 broadcast_tensors, view/reshape
|
/aosp_15_r20/external/pytorch/test/mobile/model_test/ |
H A D | coverage.yaml | 117 - aten::broadcast_tensors 764 aten::broadcast_tensors: 1
|
H A D | model_ops.yaml | 85 aten::broadcast_tensors: 4
|
H A D | math_ops.py | 324 torch.broadcast_tensors(a),
|
/aosp_15_r20/external/pytorch/torch/_inductor/ |
H A D | lowering.py | 287 for i, x in zip(indices, broadcast_tensors(*[args[i] for i in indices])): 799 for i, x in zip(indices, broadcast_tensors(*[args[i] for i in indices])): 809 @register_lowering(aten.broadcast_tensors, broadcast=False, type_promotion_kind=None) 810 def broadcast_tensors(*inputs): function 812 return broadcast_tensors(*inputs[0]) 3002 for i, x in zip(valid_idxs, broadcast_tensors(*[indices[i] for i in valid_idxs])): 3101 # no guards on output size, all the guards are set in broadcast_tensors 3267 # all guards are set above during broadcast_tensors and expand
|
/aosp_15_r20/external/pytorch/test/export/ |
H A D | testing.py | 125 aten.broadcast_tensors.default,
|
/aosp_15_r20/external/pytorch/docs/source/ |
H A D | masked.rst | 274 broadcast_tensors
|
H A D | torch.rst | 523 broadcast_tensors
|
H A D | conf.py | 651 "broadcast_tensors", 1486 "broadcast_tensors",
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | Sorting.cpp | 28 #include <ATen/ops/broadcast_tensors.h> 312 at::broadcast_tensors({q * last_index, sorted.isnan().any(-1, true)}); in quantile_compute()
|
/aosp_15_r20/external/pytorch/torch/_refs/linalg/ |
H A D | __init__.py | 82 a, b = torch.broadcast_tensors(a, b)
|
/aosp_15_r20/external/executorch/backends/qualcomm/quantizer/ |
H A D | qconfig.py | 39 (broadcast_act_scale, broadcast_weight_scale) = torch.broadcast_tensors(
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | BatchRulesDecompositions.cpp | 80 OP_DECOMPOSE(broadcast_tensors); in TORCH_LIBRARY_IMPL()
|
/aosp_15_r20/external/pytorch/torch/_functorch/ |
H A D | top_operators_github_usage.py | 178 ("broadcast_tensors", 1070),
|