xref: /aosp_15_r20/external/pytorch/torch/distributions/categorical.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2import torch
3from torch import nan
4from torch.distributions import constraints
5from torch.distributions.distribution import Distribution
6from torch.distributions.utils import lazy_property, logits_to_probs, probs_to_logits
7
8
9__all__ = ["Categorical"]
10
11
12class Categorical(Distribution):
13    r"""
14    Creates a categorical distribution parameterized by either :attr:`probs` or
15    :attr:`logits` (but not both).
16
17    .. note::
18        It is equivalent to the distribution that :func:`torch.multinomial`
19        samples from.
20
21    Samples are integers from :math:`\{0, \ldots, K-1\}` where `K` is ``probs.size(-1)``.
22
23    If `probs` is 1-dimensional with length-`K`, each element is the relative probability
24    of sampling the class at that index.
25
26    If `probs` is N-dimensional, the first N-1 dimensions are treated as a batch of
27    relative probability vectors.
28
29    .. note:: The `probs` argument must be non-negative, finite and have a non-zero sum,
30              and it will be normalized to sum to 1 along the last dimension. :attr:`probs`
31              will return this normalized value.
32              The `logits` argument will be interpreted as unnormalized log probabilities
33              and can therefore be any real number. It will likewise be normalized so that
34              the resulting probabilities sum to 1 along the last dimension. :attr:`logits`
35              will return this normalized value.
36
37    See also: :func:`torch.multinomial`
38
39    Example::
40
41        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
42        >>> m = Categorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ]))
43        >>> m.sample()  # equal probability of 0, 1, 2, 3
44        tensor(3)
45
46    Args:
47        probs (Tensor): event probabilities
48        logits (Tensor): event log probabilities (unnormalized)
49    """
50    arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector}
51    has_enumerate_support = True
52
53    def __init__(self, probs=None, logits=None, validate_args=None):
54        if (probs is None) == (logits is None):
55            raise ValueError(
56                "Either `probs` or `logits` must be specified, but not both."
57            )
58        if probs is not None:
59            if probs.dim() < 1:
60                raise ValueError("`probs` parameter must be at least one-dimensional.")
61            self.probs = probs / probs.sum(-1, keepdim=True)
62        else:
63            if logits.dim() < 1:
64                raise ValueError("`logits` parameter must be at least one-dimensional.")
65            # Normalize
66            self.logits = logits - logits.logsumexp(dim=-1, keepdim=True)
67        self._param = self.probs if probs is not None else self.logits
68        self._num_events = self._param.size()[-1]
69        batch_shape = (
70            self._param.size()[:-1] if self._param.ndimension() > 1 else torch.Size()
71        )
72        super().__init__(batch_shape, validate_args=validate_args)
73
74    def expand(self, batch_shape, _instance=None):
75        new = self._get_checked_instance(Categorical, _instance)
76        batch_shape = torch.Size(batch_shape)
77        param_shape = batch_shape + torch.Size((self._num_events,))
78        if "probs" in self.__dict__:
79            new.probs = self.probs.expand(param_shape)
80            new._param = new.probs
81        if "logits" in self.__dict__:
82            new.logits = self.logits.expand(param_shape)
83            new._param = new.logits
84        new._num_events = self._num_events
85        super(Categorical, new).__init__(batch_shape, validate_args=False)
86        new._validate_args = self._validate_args
87        return new
88
89    def _new(self, *args, **kwargs):
90        return self._param.new(*args, **kwargs)
91
92    @constraints.dependent_property(is_discrete=True, event_dim=0)
93    def support(self):
94        return constraints.integer_interval(0, self._num_events - 1)
95
96    @lazy_property
97    def logits(self):
98        return probs_to_logits(self.probs)
99
100    @lazy_property
101    def probs(self):
102        return logits_to_probs(self.logits)
103
104    @property
105    def param_shape(self):
106        return self._param.size()
107
108    @property
109    def mean(self):
110        return torch.full(
111            self._extended_shape(),
112            nan,
113            dtype=self.probs.dtype,
114            device=self.probs.device,
115        )
116
117    @property
118    def mode(self):
119        return self.probs.argmax(axis=-1)
120
121    @property
122    def variance(self):
123        return torch.full(
124            self._extended_shape(),
125            nan,
126            dtype=self.probs.dtype,
127            device=self.probs.device,
128        )
129
130    def sample(self, sample_shape=torch.Size()):
131        if not isinstance(sample_shape, torch.Size):
132            sample_shape = torch.Size(sample_shape)
133        probs_2d = self.probs.reshape(-1, self._num_events)
134        samples_2d = torch.multinomial(probs_2d, sample_shape.numel(), True).T
135        return samples_2d.reshape(self._extended_shape(sample_shape))
136
137    def log_prob(self, value):
138        if self._validate_args:
139            self._validate_sample(value)
140        value = value.long().unsqueeze(-1)
141        value, log_pmf = torch.broadcast_tensors(value, self.logits)
142        value = value[..., :1]
143        return log_pmf.gather(-1, value).squeeze(-1)
144
145    def entropy(self):
146        min_real = torch.finfo(self.logits.dtype).min
147        logits = torch.clamp(self.logits, min=min_real)
148        p_log_p = logits * self.probs
149        return -p_log_p.sum(-1)
150
151    def enumerate_support(self, expand=True):
152        num_events = self._num_events
153        values = torch.arange(num_events, dtype=torch.long, device=self._param.device)
154        values = values.view((-1,) + (1,) * len(self._batch_shape))
155        if expand:
156            values = values.expand((-1,) + self._batch_shape)
157        return values
158