/aosp_15_r20/external/pytorch/aten/src/ATen/test/ |
H A D | memory_format_test.cpp | 13 for (auto memory_format : {at::MemoryFormat::ChannelsLast, at::MemoryFormat::Contiguous}) { in TEST() 20 EXPECT_TRUE(t.suggest_memory_format() == at::MemoryFormat::Contiguous); in TEST() 23 // Ambiguous case where we fallback to Contiguous; in TEST() 25 EXPECT_TRUE(t.suggest_memory_format() == at::MemoryFormat::Contiguous); in TEST() 30 EXPECT_TRUE(t.suggest_memory_format() == at::MemoryFormat::Contiguous); in TEST() 81 sliceStepTwo(t, 1, MemoryFormat::Contiguous); in TEST() 82 sliceStepTwo(t, 2, MemoryFormat::Contiguous); in TEST() 83 sliceStepTwo(t, 3, MemoryFormat::Contiguous); in TEST() 86 sliceStepTwo(t, 2, MemoryFormat::Contiguous); in TEST() 87 sliceStepTwo(t, 3, MemoryFormat::Contiguous); in TEST() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | BucketizationUtils.h | 15 // original values given by raw_*. If an original value is not contiguous, will make a contiguous c… 19 // corresponding raw_* version should be used since it was already contiguous of the right type. 32 …TORCH_WARN_ONCE("torch.searchsorted(): input value tensor is non-contiguous, this will lower the p… in searchsorted_maybe_trim_input_tensors() 33 …"to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous inp… in searchsorted_maybe_trim_input_tensors() 35 trimmed_input = raw_input.contiguous(); in searchsorted_maybe_trim_input_tensors() 38 …TORCH_WARN_ONCE("torch.searchsorted(): boundary tensor is non-contiguous, this will lower the perf… in searchsorted_maybe_trim_input_tensors() 39 …"to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous bou… in searchsorted_maybe_trim_input_tensors() 41 trimmed_boundaries = raw_boundaries.contiguous(); in searchsorted_maybe_trim_input_tensors() 44 …TORCH_WARN_ONCE("torch.searchsorted(): sorter tensor is non-contiguous, this will lower the perfor… in searchsorted_maybe_trim_input_tensors() 45 …"to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous sor… in searchsorted_maybe_trim_input_tensors() [all …]
|
H A D | WeightNorm.cpp | 32 // I assume tensor.contiguous(), view(), norm(), etc. here will dispatch through VariableType. in norm_except_dim() 38 return v.contiguous().view({v.size(0), -1}).norm(pow, 1).view(output_size); in norm_except_dim() 42 return v.contiguous().view({-1, v.size(v.dim() - 1)}).norm(pow, 0).view(output_size); in norm_except_dim() 54 auto w = at::empty_like(v, at::MemoryFormat::Contiguous); in weight_norm_cpu() 71 TORCH_CHECK(saved_v.is_contiguous(), "saved_v must be contiguous"); in weight_norm_backward_cpu() 72 TORCH_CHECK(saved_g.is_contiguous(), "saved_g must be contiguous"); in weight_norm_backward_cpu() 73 TORCH_CHECK(saved_norm.is_contiguous(), "saved_norm must be contiguous"); in weight_norm_backward_cpu() 75 auto grad_v = at::empty_like(saved_v, at::MemoryFormat::Contiguous); in weight_norm_backward_cpu() 76 auto grad_g = at::empty_like(saved_g, at::MemoryFormat::Contiguous); in weight_norm_backward_cpu() 93 auto v = v_in.contiguous(); in _weight_norm() [all …]
|
H A D | NaiveDilatedConvolution.cpp | 536 … memory_format = use_channels_last ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::Contiguous; in slow_conv_dilated2d_cpu() 556 (is_batch ? input.contiguous(memory_format) : input.contiguous().unsqueeze(0)); in slow_conv_dilated2d_cpu() 557 const Tensor weight_ = weight.contiguous(memory_format); in slow_conv_dilated2d_cpu() 558 const Tensor bias_ = (bias.defined() ? bias.contiguous() : undefined); in slow_conv_dilated2d_cpu() 608 (is_batch ? input.contiguous() : input.contiguous().unsqueeze(0)); in slow_conv_dilated3d_cpu() 609 const Tensor weight_ = weight.contiguous(); in slow_conv_dilated3d_cpu() 610 const Tensor bias_ = (bias.defined() ? bias.contiguous() : undefined); in slow_conv_dilated3d_cpu() 640 … memory_format = use_channels_last ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::Contiguous; in slow_conv_dilated2d_backward_cpu() 657 (is_batch ? grad_output.contiguous(memory_format) in slow_conv_dilated2d_backward_cpu() 658 : grad_output.contiguous().unsqueeze(0)); in slow_conv_dilated2d_backward_cpu() [all …]
|
H A D | Convolution.cpp | 444 if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous) { in use_cudnn() 462 …if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous && use_cudnn(i… in use_cudnn_depthwise() 473 …input.ndimension() == 4 && // TODO: 5-D contiguous depthwise is not supported yet, need benchmar… in use_cudnn_depthwise() 487 …input.ndimension() == 4 && // TODO: 5-D contiguous depthwise is not supported yet, need benchmar… in use_cudnn_depthwise() 832 return tensor.narrow(dim, n * g, n).contiguous(memory_format); in subtensor() 1341 input = input.contiguous(); in select_conv_backend() 1416 at::MemoryFormat backend_memory_format = at::MemoryFormat::Contiguous; in determine_backend_memory_format() 1433 …backend_memory_format = (k == 5) ? at::MemoryFormat::Contiguous /*at::MemoryFormat::ChannelsLast3d… in determine_backend_memory_format() 1455 backend_memory_format = at::MemoryFormat::Contiguous; in determine_backend_memory_format() 1505 input = input.contiguous(); in _convolution() [all …]
|
H A D | SegmentReduce.cpp | 136 // data and lengths should be contiguous from the call to .contiguous in segment_reduce_kernel in _segment_reduce_lengths_cpu_kernel() 137 TORCH_CHECK(data.is_contiguous(), "Expected data to be contiguous."); in _segment_reduce_lengths_cpu_kernel() 138 TORCH_CHECK(lengths.is_contiguous(), "Expected lengths to be contiguous."); in _segment_reduce_lengths_cpu_kernel() 162 // data and lengths should be contiguous from the call to .contiguous in segment_reduce_kernel in _segment_reduce_offsets_cpu_kernel() 163 TORCH_CHECK(data.is_contiguous(), "Expected data to be contiguous."); in _segment_reduce_offsets_cpu_kernel() 164 TORCH_CHECK(offsets.is_contiguous(), "Expected offsets to be contiguous."); in _segment_reduce_offsets_cpu_kernel() 409 const auto data_contig = data.contiguous(); in segment_reduce_kernel() 422 const auto offsets_contig = offsets_value.contiguous(); in segment_reduce_kernel() 449 const auto lengths_contig = lengths_value.contiguous(); in segment_reduce_kernel() 501 const auto grad_contig = grad.contiguous(); in _segment_reduce_backward_kernel() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cpu/ |
H A D | AdaptiveMaxPoolKernel.cpp | 23 auto input = input_.contiguous(); in cpu_adaptive_max_pool2d() 24 auto output = output_.contiguous(); in cpu_adaptive_max_pool2d() 25 auto indices = indices_.contiguous(); in cpu_adaptive_max_pool2d() 94 auto input = input_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 95 auto output = output_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 96 auto indices = indices_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 211 auto input = input_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 212 auto output = output_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 213 auto indices = indices_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 346 auto grad_output = grad_output_.contiguous(); in cpu_adaptive_max_pool2d_backward() [all …]
|
H A D | PaddingKernel.cpp | 136 auto input = input_.contiguous(); in cpu_padding() 137 auto output = output_.contiguous(); in cpu_padding() 243 auto input = input_.contiguous(memory_format); in cpu_padding_channels_last() 244 auto output = output_.contiguous(memory_format); in cpu_padding_channels_last() 317 auto grad_output = grad_output_.contiguous(); in cpu_padding_backward() 318 auto grad_input = grad_input_.contiguous(); in cpu_padding_backward() 405 auto grad_input = grad_input_.contiguous(memory_format); in cpu_padding_backward_channels_last() 406 auto grad_output = grad_output_.contiguous(memory_format); in cpu_padding_backward_channels_last() 476 // non-batch mode 4d input will be considered as Contiguous in format of CDHW 478 return input.dim() == 4 ? at::MemoryFormat::Contiguous : input.suggest_memory_format(); in padding_memory_format_3d() [all …]
|
H A D | AdaptiveAvgPoolKernel.cpp | 22 auto input = input_.contiguous(); in cpu_adaptive_avg_pool2d() 23 auto output = output_.contiguous(); in cpu_adaptive_avg_pool2d() 77 auto input = input_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_channels_last() 78 auto output = output_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_channels_last() 164 auto input = input_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_channels_last() 165 auto output = output_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_channels_last() 260 auto grad_output = grad_output_.contiguous(); in cpu_adaptive_avg_pool2d_backward() 261 auto grad_input = grad_input_.contiguous(); in cpu_adaptive_avg_pool2d_backward() 311 auto grad_input = grad_input_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_backward_channels_last() 312 auto grad_output = grad_output_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_backward_channels_last() [all …]
|
H A D | MaxPoolKernel.cpp | 261 auto input = input_.contiguous(); in cpu_max_pool() 262 auto output = output_.contiguous(); in cpu_max_pool() 263 auto indices = indices_.contiguous(); in cpu_max_pool() 391 auto input = input_.contiguous(memory_format); in cpu_max_pool_channels_last() 392 auto output = output_.contiguous(memory_format); in cpu_max_pool_channels_last() 393 auto indices = indices_.contiguous(memory_format); in cpu_max_pool_channels_last() 477 auto grad_output = grad_output_.contiguous(); in cpu_max_pool_backward() 478 auto indices = indices_.contiguous(); in cpu_max_pool_backward() 479 auto grad_input = grad_input_.contiguous(); in cpu_max_pool_backward() 550 auto grad_input = grad_input_.contiguous(memory_format); in cpu_max_pool_backward_channels_last() [all …]
|
H A D | AvgPoolKernel.cpp | 27 auto input = input_.contiguous(); in cpu_avg_pool2d() 28 auto output = output_.contiguous(); in cpu_avg_pool2d() 115 auto input = input_.contiguous(memory_format); in cpu_avg_pool2d_channels_last() 116 auto output = output_.contiguous(memory_format); in cpu_avg_pool2d_channels_last() 229 auto input = input_.contiguous(memory_format); in cpu_avg_pool2d_channels_last() 230 auto output = output_.contiguous(memory_format); in cpu_avg_pool2d_channels_last() 357 auto grad_output = grad_output_.contiguous(); in cpu_avg_pool2d_backward() 358 auto grad_input = grad_input_.contiguous(); in cpu_avg_pool2d_backward() 426 auto grad_input = grad_input_.contiguous(memory_format); in cpu_avg_pool2d_backward_channels_last() 427 auto grad_output = grad_output_.contiguous(memory_format); in cpu_avg_pool2d_backward_channels_last() [all …]
|
/aosp_15_r20/external/executorch/backends/example/example_backend_delegate_passes/ |
H A D | permute_memory_formats_pass.py | 22 after pass: x -> to_dim(channel_last) -> conv -> to_dim_(contiguous) -> out 25 … -> to_dim(channel_last) -> conv -> to_dim_(contiguous) -> to_dim(channel_last) -> conv -> to_dim_… 28 …-> to_dim(channel_last) -> conv -> to_dim_(contiguous) -> to_dim(channel_last) -> linear -> to_dim… 53 … the pattern is conv, x -> conv -> out will become x -> conv -> to_dim(contiguous) -> out when per… 54 …conv -> conv -> out, it will become x -> conv -> to_dim(contiguous) -> conv -> to_dim(contiguous) … 59 … # like, x -> conv -> out will become x -> conv -> to_dim(contiguous) -> out 77 … # like, x -> conv -> conv -> out will become x -> conv -> to_dim(contiguous) -> conv -> out 103 …tern is conv, x -> conv -> to_dim(contiguous) -> out will become x -> to_dim(channel_last) -> conv… 104 …contiguous) -> conv -> to_dim(contiguous) -> out, it will become x -> to_dim(channel_last) -> conv…
|
H A D | merge_to_dim_pass.py | 19 … -> to_dim(channel_last) -> conv -> to_dim_(contiguous) -> to_dim(channel_last) -> conv -> to_dim_… 20 after pass: x -> to_dim(channel_last) -> conv -> conv -> to_dim_(contiguous) -> out 23 … -> to_dim(channel_last) -> conv -> to_dim_(contiguous) -> to_dim(channel_last) -> conv -> to_dim_… 24 … |-------------> to_dim(channel_last) -> conv -> to_dim_(contiguous) -> out 25 … -> to_dim(channel_last) -> conv -> to_dim_(contiguous) -> to_dim(channel_last) -> conv -> to_dim_… 26 … |--------------> to_dim(channel_last) -> conv -> to_dim_(contiguous) -> out 29 … -> to_dim(channel_last) -> conv -> to_dim_(contiguous) -> to_dim(channel_last) -> conv -> to_dim_… 30 y -> to_dim(channel_last) -> conv -> to_dim_(contiguous) ---------| 31 after pass: x -> to_dim(channel_last) -> conv -> conv -> to_dim_(contiguous) -> out
|
/aosp_15_r20/external/cronet/third_party/rust/chromium_crates_io/vendor/bytemuck-1.15.0/src/ |
H A D | contiguous.rs | 20 /// # use bytemuck::Contiguous; 30 /// unsafe impl Contiguous for Foo { 48 /// Precisely, the guarantees you must uphold when implementing `Contiguous` for 65 /// gets a `C` that implements `Contiguous`, it is in the appropriate range. 68 /// `Contiguous::from_integer` and `Contiguous::into_integer`. 78 pub unsafe trait Contiguous: Copy + 'static { trait 82 /// Contiguous is broadly intended for use with fieldless enums, and for 85 /// *unsound* to implement `Contiguous`!). 109 /// `Contiguous` on your type you **must not** override this method. 113 /// We will not panic for any correct implementation of `Contiguous`, but [all …]
|
/aosp_15_r20/external/rust/android-crates-io/crates/bytemuck/src/ |
D | contiguous.rs | 22 /// # use bytemuck::Contiguous; 32 /// unsafe impl Contiguous for Foo { 50 /// Precisely, the guarantees you must uphold when implementing `Contiguous` for 67 /// gets a `C` that implements `Contiguous`, it is in the appropriate range. 70 /// `Contiguous::from_integer` and `Contiguous::into_integer`. 80 pub unsafe trait Contiguous: Copy + 'static { trait 84 /// Contiguous is broadly intended for use with fieldless enums, and for 87 /// *unsound* to implement `Contiguous`!). 111 /// `Contiguous` on your type you **must not** override this method. 115 /// We will not panic for any correct implementation of `Contiguous`, but [all …]
|
/aosp_15_r20/external/python/cpython3/Modules/clinic/ |
D | audioop.c.h | 33 _PyArg_BadArgument("getsample", "argument 1", "contiguous buffer", args[0]); in audioop_getsample() 89 _PyArg_BadArgument("max", "argument 1", "contiguous buffer", args[0]); in audioop_max() 133 _PyArg_BadArgument("minmax", "argument 1", "contiguous buffer", args[0]); in audioop_minmax() 177 _PyArg_BadArgument("avg", "argument 1", "contiguous buffer", args[0]); in audioop_avg() 221 _PyArg_BadArgument("rms", "argument 1", "contiguous buffer", args[0]); in audioop_rms() 266 _PyArg_BadArgument("findfit", "argument 1", "contiguous buffer", args[0]); in audioop_findfit() 273 _PyArg_BadArgument("findfit", "argument 2", "contiguous buffer", args[1]); in audioop_findfit() 318 _PyArg_BadArgument("findfactor", "argument 1", "contiguous buffer", args[0]); in audioop_findfactor() 325 _PyArg_BadArgument("findfactor", "argument 2", "contiguous buffer", args[1]); in audioop_findfactor() 370 _PyArg_BadArgument("findmax", "argument 1", "contiguous buffer", args[0]); in audioop_findmax() [all …]
|
/aosp_15_r20/external/executorch/runtime/core/exec_aten/testing_util/ |
H A D | tensor_factory.h | 30 * sizes, assuming contiguous data. 70 // contiguous style, in where the strides should be sorted from high to low. in check_strides() 247 * or not specificed, the function will return a contiguous tensor based 295 * out. If empty or not specificed, the function will use a contiguous dim 348 * Given data in contiguous memory format, returns a new Tensor with the 352 * @param[in] data The data in contiguous memory format that the Tensor should 378 "Input tensor is not contiguous"); 414 * Returns a new Tensor with the specified shape, containing contiguous 432 * contiguous data will all elements set to `value`. 449 * Returns a new Tensor with the specified shape, containing contiguous data [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/ |
H A D | NaiveDilatedConvolution.cu | 428 (is_batch ? input.contiguous() : input.contiguous().unsqueeze(0)); in slow_conv_dilated2d_cuda() 429 const Tensor weight_ = weight.contiguous(); in slow_conv_dilated2d_cuda() 430 const Tensor bias_ = (bias.defined() ? bias.contiguous() : undefined); in slow_conv_dilated2d_cuda() 474 (is_batch ? grad_output.contiguous() in slow_conv_dilated2d_backward_cuda() 475 : grad_output.contiguous().unsqueeze(0)); in slow_conv_dilated2d_backward_cuda() 477 (is_batch ? input.contiguous() : input.contiguous().unsqueeze(0)); in slow_conv_dilated2d_backward_cuda() 478 const Tensor weight_ = weight.contiguous(); in slow_conv_dilated2d_backward_cuda() 534 (is_batch ? input.contiguous() : input.contiguous().unsqueeze(0)); in slow_conv_dilated3d_cuda() 535 const Tensor weight_ = weight.contiguous(); in slow_conv_dilated3d_cuda() 536 const Tensor bias_ = (bias.defined() ? bias.contiguous() : undefined); in slow_conv_dilated3d_cuda() [all …]
|
H A D | CUDAJitLoops.cuh | 86 bool contiguous, in launch_jitted_unrolled_kernel() argument 101 desc, contiguous, dynamic_casting, scalar_pos); in launch_jitted_unrolled_kernel() 144 desc, /*contiguous=*/true, /*dynamic_casting=*/false, in launch_jitted_vectorized_kernel() 196 bool contiguous = iter.is_contiguous(); in jitted_gpu_kernel_generic() local 200 // - Case 1: no dynamic casting and contiguous in jitted_gpu_kernel_generic() 202 // - Case 3: dynamic casting and contiguous in jitted_gpu_kernel_generic() 207 if (contiguous) { in jitted_gpu_kernel_generic() 208 // Case 1: no dynamic casting and contiguous in jitted_gpu_kernel_generic() 223 storer, contiguous, scalar_pos, scalar_val, extra_args); in jitted_gpu_kernel_generic() 236 if (contiguous) { in jitted_gpu_kernel_generic() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/nested/cuda/ |
H A D | NestedTensorTransformerUtils.cpp | 77 * needing to call contiguous on the nested tensor input. 83 * @return A boolean indicating of contiguous needs to be called for input 161 * (1) get the storage of the contiguous nested tensor 306 q_t = q_t.contiguous(); in sdpa_nested_preprocessing_with_broadcast() 326 // to call contiguous in sdpa_nested_preprocessing_with_broadcast() 329 k_t = k_t.contiguous(); in sdpa_nested_preprocessing_with_broadcast() 332 v_t = v_t.contiguous(); in sdpa_nested_preprocessing_with_broadcast() 426 // to call contiguous in sdpa_nested_preprocessing() 428 q_t = q_t.contiguous(); in sdpa_nested_preprocessing() 431 k_t = k_t.contiguous(); in sdpa_nested_preprocessing() [all …]
|
/aosp_15_r20/external/swiftshader/third_party/llvm-16.0/llvm/lib/Target/AArch64/ |
H A D | AArch64ExpandImm.cpp | 104 /// starts a contiguous sequence of ones if we look at the bits from the LSB 114 /// ends a contiguous sequence of ones if we look at the bits from the LSB 137 /// Check whether the constant contains a sequence of contiguous ones, 139 /// sequence of contiguous ones with an ORR instruction. 148 /// We are also looking for constants like |S|A|B|E| where the contiguous 157 // Try to find the chunks which start/end a contiguous sequence of ones. in trySequenceOfOnes() 173 // Outside of the contiguous sequence of ones everything needs to be zero. in trySequenceOfOnes() 178 // If our contiguous sequence of ones wraps around from the MSB into the LSB, in trySequenceOfOnes() 179 // just swap indices and pretend we are materializing a contiguous sequence in trySequenceOfOnes() 180 // of zeros surrounded by a contiguous sequence of ones. in trySequenceOfOnes() [all …]
|
/aosp_15_r20/external/swiftshader/third_party/llvm-10.0/llvm/lib/Target/AArch64/ |
H A D | AArch64ExpandImm.cpp | 106 /// starts a contiguous sequence of ones if we look at the bits from the LSB 116 /// ends a contiguous sequence of ones if we look at the bits from the LSB 139 /// Check whether the constant contains a sequence of contiguous ones, 141 /// sequence of contiguous ones with an ORR instruction. 150 /// We are also looking for constants like |S|A|B|E| where the contiguous 159 // Try to find the chunks which start/end a contiguous sequence of ones. in trySequenceOfOnes() 175 // Outside of the contiguous sequence of ones everything needs to be zero. in trySequenceOfOnes() 180 // If our contiguous sequence of ones wraps around from the MSB into the LSB, in trySequenceOfOnes() 181 // just swap indices and pretend we are materializing a contiguous sequence in trySequenceOfOnes() 182 // of zeros surrounded by a contiguous sequence of ones. in trySequenceOfOnes() [all …]
|
/aosp_15_r20/external/pytorch/test/nn/ |
H A D | test_pooling.py | 223 input = input.contiguous(memory_format=torch.channels_last).requires_grad_() 227 ref_input = input.detach().clone().contiguous().requires_grad_(True) 228 ref_grad = grad.detach().clone().contiguous() 248 input = input.contiguous(memory_format=torch.channels_last) 254 ref_input = input.detach().clone().contiguous().requires_grad_(True) 255 ref_grad = grad.detach().clone().contiguous() 319 input = input.contiguous(memory_format=torch.channels_last).requires_grad_() 324 ref_input = input.detach().clone().contiguous().requires_grad_(True) 325 ref_grad = grad.detach().clone().contiguous() 344 input = input.contiguous(memory_format=torch.channels_last).requires_grad_() [all …]
|
/aosp_15_r20/external/pytorch/torch/distributed/tensor/ |
H A D | placement_types.py | 75 contiguous: bool = True, 97 if contiguous: 98 tensor_list = [t.contiguous() for t in tensor_list] 124 shard = shard.contiguous() if contiguous else shard 171 tensor, num_chunks, with_padding=True, contiguous=True 204 tensor, num_chunks, with_padding=True, contiguous=True 208 tensor = tensor.contiguous() 242 local_tensor = local_tensor.contiguous() 270 contiguous=False, 314 local_tensor = local_tensor.contiguous() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/cuda/ |
H A D | jiterator.cu | 60 /*contiguous=*/true, /*dynamic_casting=*/false, in launch_jitted_vectorized_kernel_dynamic() 121 void* ic_ptr, void* oc_ptr, void* l_ptr, void* s_ptr, bool contiguous, bool dynamic_casting, in launch_jitted_unrolled_kernel_dynamic() argument 140 ss << contiguous << dynamic_casting; in launch_jitted_unrolled_kernel_dynamic() 155 contiguous, dynamic_casting, in launch_jitted_unrolled_kernel_dynamic() 200 bool contiguous = iter.is_contiguous(); in jitted_gpu_kernel_dynamic_impl() local 204 // - Case 1: no dynamic casting and contiguous in jitted_gpu_kernel_dynamic_impl() 206 // - Case 3: dynamic casting and contiguous in jitted_gpu_kernel_dynamic_impl() 211 if (contiguous) { in jitted_gpu_kernel_dynamic_impl() 212 // Case 1: no dynamic casting and contiguous in jitted_gpu_kernel_dynamic_impl() 231 ic_ptr, oc_ptr, l_ptr, s_ptr, contiguous, dynamic_casting, extra_args, return_by_ref); in jitted_gpu_kernel_dynamic_impl() [all …]
|