xref: /aosp_15_r20/external/pytorch/aten/src/ATen/native/cpu/AdaptiveMaxPoolKernel.cpp (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1 #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
2 #include <ATen/core/Tensor.h>
3 
4 #include <ATen/Dispatch.h>
5 #include <ATen/native/AdaptivePooling.h>
6 #include <ATen/Parallel.h>
7 #include <ATen/cpu/vec/vec.h>
8 #include <ATen/cpu/vec/functional.h>
9 #include <ATen/native/cpu/utils.h>
10 #include <c10/util/irange.h>
11 #include <ATen/OpMathType.h>
12 
13 namespace at::native {
14 
15 namespace {
16 
17 template <typename scalar_t, typename accscalar_t>
cpu_adaptive_max_pool2d(const Tensor & output_,const Tensor & indices_,const Tensor & input_,IntArrayRef output_size)18 void cpu_adaptive_max_pool2d(
19     const Tensor& output_,
20     const Tensor& indices_,
21     const Tensor& input_,
22     IntArrayRef output_size) {
23   auto input = input_.contiguous();
24   auto output = output_.contiguous();
25   auto indices = indices_.contiguous();
26 
27   auto input_data = input.const_data_ptr<scalar_t>();
28   auto output_data = output.data_ptr<scalar_t>();
29   auto indices_data = indices.data_ptr<int64_t>();
30 
31   int64_t ndim = input.ndimension();
32   // treat batch size and channels as one dimension
33   int64_t channels = ndim == 3 ? input.size(0) : input.size(0) * input.size(1);
34   int64_t input_height = input.size(-2);
35   int64_t input_width = input.size(-1);
36   int64_t output_height = output_size[0];
37   int64_t output_width = output_size[1];
38 
39   // parallel on dim of N, C
40   at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
41     for (const auto c : c10::irange(begin, end)) {
42       const scalar_t* input_ptr = input_data + c * input_height * input_width;
43       scalar_t* output_ptr = output_data + c * output_height * output_width;
44       int64_t* indices_ptr = indices_data + c * output_height * output_width;
45 
46       for (const auto oh : c10::irange(output_height)) {
47         int64_t ih0 = start_index(oh, output_height, input_height);
48         int64_t ih1 = end_index(oh, output_height, input_height);
49 
50         for (const auto ow : c10::irange(output_width)) {
51           int64_t iw0 = start_index(ow, output_width, input_width);
52           int64_t iw1 = end_index(ow, output_width, input_width);
53 
54           // compute local max
55           int64_t maxindex = ih0 * input_width + iw0;
56           accscalar_t maxval = -std::numeric_limits<accscalar_t>::infinity();
57           for (int64_t ih = ih0; ih < ih1; ih ++) {
58             for (int64_t iw = iw0; iw < iw1; iw ++) {
59               int64_t index = ih * input_width + iw;
60               scalar_t val = input_ptr[index];
61               if ((val > maxval) || std::isnan(val)) {
62                 maxval = val;
63                 maxindex = index;
64               }
65             }
66           }
67 
68           // set output to local max and store location of max
69           output_ptr[oh * output_width + ow] = maxval;
70           indices_ptr[oh * output_width + ow] = scalar_t(maxindex);
71         }
72       }
73     }
74   });
75 
76   if (!output_.is_contiguous()) {
77     output_.copy_(output);
78   }
79   if (!indices_.is_contiguous()) {
80     indices_.copy_(indices);
81   }
82 }
83 
84 template <typename scalar_t>
85 typename std::enable_if_t<std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void>
cpu_adaptive_max_pool2d_channels_last(const Tensor & output_,const Tensor & indices_,const Tensor & input_,IntArrayRef output_size)86 cpu_adaptive_max_pool2d_channels_last(
87     const Tensor& output_,
88     const Tensor& indices_,
89     const Tensor& input_,
90     IntArrayRef output_size) {
91   TORCH_CHECK(input_.ndimension() == 4,
92               "2d adaptive max pooling with channels last format supports tensors with 4 dims");
93   auto memory_format = at::MemoryFormat::ChannelsLast;
94   auto input = input_.contiguous(memory_format);
95   auto output = output_.contiguous(memory_format);
96   auto indices = indices_.contiguous(memory_format);
97 
98   auto input_data = input.const_data_ptr<scalar_t>();
99   auto output_data = output.data_ptr<scalar_t>();
100   auto indices_data = indices.data_ptr<int64_t>();
101 
102   int64_t nbatch = input.size(0);
103   int64_t channels = input.size(1);
104   int64_t input_height = input.size(2);
105   int64_t input_width = input.size(3);
106   int64_t output_height = output_size[0];
107   int64_t output_width = output_size[1];
108 
109   using Vec = vec::Vectorized<scalar_t>;
110   using integer_t = vec::int_same_size_t<scalar_t>;
111   using iVec = vec::Vectorized<integer_t>;
112   // for the convenience of vectorization, use integer of the same size of scalar_t,
113   //   e.g. int32_t for float, int64_t for double
114   // need to make sure doesn't overflow
115   TORCH_CHECK(input_height * input_width <= std::numeric_limits<integer_t>::max());
116 
117   // parallel on dim of N, H, W
118   at::parallel_for(0, nbatch * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
119     int64_t n = 0;
120     int64_t oh = 0;
121     int64_t ow = 0;
122     data_index_init(begin, n, nbatch, oh, output_height, ow, output_width);
123 
124     int64_t size = channels;
125     int64_t len = size - (size % Vec::size());
126     // temp buffer holding index with integer_t
127     auto index_buffer = std::make_unique<integer_t []>(len);
128 
129     for (const auto i : c10::irange(begin, end)) {
130       int64_t ih0 = start_index(oh, output_height, input_height);
131       int64_t ih1 = end_index(oh, output_height, input_height);
132 
133       int64_t iw0 = start_index(ow, output_width, input_width);
134       int64_t iw1 = end_index(ow, output_width, input_width);
135 
136       scalar_t* out = output_data + i * channels;
137       int64_t* ind = indices_data + i * channels;
138 
139       // Pass I: init out lane
140       iVec index0_vec = iVec(ih0 * input_width + iw0);
141       Vec out_vec = Vec(-std::numeric_limits<scalar_t>::infinity());
142       int64_t d1 = 0;
143       for (; d1 < len; d1 += Vec::size()) {
144         index0_vec.store(index_buffer.get() + d1);
145         out_vec.store(out + d1);
146       }
147       for (; d1 < size; d1++) {
148         ind[d1] = ih0 * input_width + iw0;
149         out[d1] = -std::numeric_limits<scalar_t>::infinity();
150       }
151       // Pass II: compute local max
152       for (int64_t ih = ih0; ih < ih1; ih ++) {
153         for (int64_t iw = iw0; iw < iw1; iw ++) {
154           const scalar_t* in = input_data + n * input_height * input_width * channels +
155               ih * input_width * channels + iw * channels;
156 
157           int64_t d2 = 0;
158           for (; d2 < len; d2 += Vec::size()) {
159             iVec index_vec = iVec(ih * input_width + iw);
160             Vec val_vec = Vec::loadu(in + d2);
161             iVec maxindex_vec = iVec::loadu(index_buffer.get() + d2);
162             Vec maxval_vec = Vec::loadu(out + d2);
163 
164             // true = all ones, false = all zeros
165             Vec mask = (val_vec > maxval_vec) | val_vec.isnan();
166             iVec imask = vec::cast<integer_t>(mask);
167             Vec out_vec = Vec::blendv(maxval_vec, val_vec, mask);
168             iVec ind_vec = iVec::blendv(maxindex_vec, index_vec, imask);
169 
170             out_vec.store(out + d2);
171             ind_vec.store(index_buffer.get() + d2);
172           }
173           for (; d2 < size; d2++) {
174             int64_t index = ih * input_width + iw;
175             scalar_t val = in[d2];
176             int64_t maxindex = ind[d2];
177             scalar_t maxval = out[d2];
178 
179             bool mask = (val > maxval) || std::isnan(val);
180             out[d2] = mask ? val : maxval;
181             ind[d2] = mask ? index : maxindex;
182           }
183         }
184       }
185       // convert indice data type
186       vec::convert<integer_t, int64_t>(index_buffer.get(), ind, len);
187 
188       // move on to next output index
189       data_index_step(n, nbatch, oh, output_height, ow, output_width);
190     }
191   });
192 
193   if (!output_.is_contiguous(memory_format)) {
194     output_.copy_(output);
195   }
196   if (!indices_.is_contiguous(memory_format)) {
197     indices_.copy_(indices);
198   }
199 }
200 
201 template <typename scalar_t>
202 typename std::enable_if_t<!std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void>
cpu_adaptive_max_pool2d_channels_last(const Tensor & output_,const Tensor & indices_,const Tensor & input_,IntArrayRef output_size)203 cpu_adaptive_max_pool2d_channels_last(
204     const Tensor& output_,
205     const Tensor& indices_,
206     const Tensor& input_,
207     IntArrayRef output_size) {
208   TORCH_CHECK(input_.ndimension() == 4,
209               "2d adaptive max pooling with channels last format supports tensors with 4 dims");
210   auto memory_format = at::MemoryFormat::ChannelsLast;
211   auto input = input_.contiguous(memory_format);
212   auto output = output_.contiguous(memory_format);
213   auto indices = indices_.contiguous(memory_format);
214 
215   auto input_data = input.const_data_ptr<scalar_t>();
216   auto output_data = output.data_ptr<scalar_t>();
217   auto indices_data = indices.data_ptr<int64_t>();
218 
219   int64_t nbatch = input.size(0);
220   int64_t channels = input.size(1);
221   int64_t input_height = input.size(2);
222   int64_t input_width = input.size(3);
223   int64_t output_height = output_size[0];
224   int64_t output_width = output_size[1];
225 
226   using bVec = vec::Vectorized<scalar_t>;
227   using fVec = vec::Vectorized<float>;
228   using iVec = vec::Vectorized<int32_t>;
229   // need to make sure doesn't overflow
230   TORCH_CHECK(input_height * input_width <= std::numeric_limits<int32_t>::max());
231 
232   // parallel on dim of N, H, W
233   at::parallel_for(0, nbatch * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
234     int64_t n = 0;
235     int64_t oh = 0;
236     int64_t ow = 0;
237     data_index_init(begin, n, nbatch, oh, output_height, ow, output_width);
238 
239     int64_t size = channels;
240     int64_t len = size - (size % bVec::size());
241     // temp buffer holding index with integer_t
242     auto index_buffer = std::make_unique<int32_t []>(len);
243     // temp buffer holding max value with float
244     auto max_arr = std::make_unique<float []>(size);
245     float* max = max_arr.get();
246 
247     for (const auto i : c10::irange(begin, end)) {
248       int64_t ih0 = start_index(oh, output_height, input_height);
249       int64_t ih1 = end_index(oh, output_height, input_height);
250 
251       int64_t iw0 = start_index(ow, output_width, input_width);
252       int64_t iw1 = end_index(ow, output_width, input_width);
253 
254       scalar_t* out = output_data + i * channels;
255       int64_t* ind = indices_data + i * channels;
256 
257       // Pass I: init out lane
258       iVec index0_ivec = iVec(ih0 * input_width + iw0);
259       fVec max_fvec = fVec(-std::numeric_limits<float>::infinity());
260       int64_t d1 = 0;
261       for (; d1 < len; d1 += fVec::size()) {
262         index0_ivec.store(index_buffer.get() + d1);
263         max_fvec.store(max + d1);
264       }
265       for (; d1 < size; d1++) {
266         ind[d1] = ih0 * input_width + iw0;
267         max[d1] = -std::numeric_limits<float>::infinity();
268       }
269       // Pass II: compute local max
270       for (int64_t ih = ih0; ih < ih1; ih ++) {
271         for (int64_t iw = iw0; iw < iw1; iw ++) {
272           const scalar_t* in = input_data + n * input_height * input_width * channels +
273               ih * input_width * channels + iw * channels;
274 
275           int64_t d2 = 0;
276           for (; d2 < len; d2 += bVec::size()) {
277             iVec index_ivec = iVec(ih * input_width + iw);
278             bVec val_bvec = bVec::loadu(in + d2);
279             auto [val_fvec0, val_fvec1] = convert_to_float<scalar_t>(val_bvec);
280 
281             iVec maxindex_ivec0 = iVec::loadu(index_buffer.get() + d2);
282             iVec maxindex_ivec1 = iVec::loadu(index_buffer.get() + d2 + iVec::size());
283             fVec maxval_fvec0 = fVec::loadu(max + d2);
284             fVec maxval_fvec1 = fVec::loadu(max + d2 + fVec::size());
285 
286             // true = all ones, false = all zeros
287             fVec mask0 = (val_fvec0 > maxval_fvec0) | val_fvec0.isnan();
288             fVec mask1 = (val_fvec1 > maxval_fvec1) | val_fvec1.isnan();
289             iVec imask0 = vec::cast<int32_t>(mask0);
290             iVec imask1 = vec::cast<int32_t>(mask1);
291 
292             fVec max_fvec0 = fVec::blendv(maxval_fvec0, val_fvec0, mask0);
293             fVec max_fvec1 = fVec::blendv(maxval_fvec1, val_fvec1, mask1);
294             iVec ind_ivec0 = iVec::blendv(maxindex_ivec0, index_ivec, imask0);
295             iVec ind_ivec1 = iVec::blendv(maxindex_ivec1, index_ivec, imask1);
296 
297             max_fvec0.store(max + d2);
298             max_fvec1.store(max + d2 + fVec::size());
299             ind_ivec0.store(index_buffer.get() + d2);
300             ind_ivec1.store(index_buffer.get() + d2 + iVec::size());
301           }
302           for (; d2 < size; d2++) {
303             int64_t index = ih * input_width + iw;
304             float val = float(in[d2]);
305             int64_t maxindex = ind[d2];
306             float maxval = max[d2];
307 
308             bool mask = (val > maxval) || std::isnan(val);
309             max[d2] = mask ? val : maxval;
310             ind[d2] = mask ? index : maxindex;
311           }
312         }
313       }
314       // Pass III: convert max values from float to bfloat16/Half
315       int64_t d3 = 0;
316       for (; d3 < len; d3 += bVec::size()) {
317         fVec max_fvec0 = fVec::loadu(max + d3);
318         fVec max_fvec1 = fVec::loadu(max + d3 + fVec::size());
319         bVec max_bvec = convert_from_float<scalar_t>(max_fvec0, max_fvec1);
320         max_bvec.store(out + d3);
321       }
322       for (; d3 < size; d3++) {
323         out[d3] = scalar_t(max[d3]);
324       }
325       // convert indice data type
326       vec::convert<int32_t, int64_t>(index_buffer.get(), ind, len);
327 
328       // move on to next output index
329       data_index_step(n, nbatch, oh, output_height, ow, output_width);
330     }
331   });
332 
333   if (!output_.is_contiguous(memory_format)) {
334     output_.copy_(output);
335   }
336   if (!indices_.is_contiguous(memory_format)) {
337     indices_.copy_(indices);
338   }
339 }
340 
341 template <typename scalar_t>
cpu_adaptive_max_pool2d_backward(const Tensor & grad_input_,const Tensor & grad_output_,const Tensor & indices_)342 void cpu_adaptive_max_pool2d_backward(
343     const Tensor& grad_input_,
344     const Tensor& grad_output_,
345     const Tensor& indices_) {
346   auto grad_output = grad_output_.contiguous();
347   auto indices = indices_.contiguous();
348   auto grad_input = grad_input_.contiguous();
349 
350   auto grad_output_data = grad_output.const_data_ptr<scalar_t>();
351   auto indices_data = indices.const_data_ptr<int64_t>();
352   auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
353 
354   int64_t ndim = grad_output.ndimension();
355   // treat batch size and channels as one dimension
356   int64_t channels = ndim == 3 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
357   int64_t input_height = grad_input.size(-2);
358   int64_t input_width = grad_input.size(-1);
359   int64_t output_height = grad_output.size(-2);
360   int64_t output_width = grad_output.size(-1);
361 
362   // parallel on dim of N, C
363   at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
364     for (const auto c : c10::irange(begin, end)) {
365       scalar_t* grad_input_ptr = grad_input_data + c * input_height * input_width;
366       const scalar_t* grad_output_ptr = grad_output_data + c * output_height * output_width;
367       const int64_t* indices_ptr = indices_data + c * output_height * output_width;
368 
369       for (const auto oh : c10::irange(output_height)) {
370         for (const auto ow : c10::irange(output_width)) {
371           // retrieve position of max
372           int64_t index = oh * output_width + ow;
373           int64_t maxindex = indices_ptr[index];
374 
375           // update gradient
376           grad_input_ptr[maxindex] += grad_output_ptr[index];
377         }
378       }
379     }
380   });
381 
382   if (!grad_input_.is_contiguous()) {
383     grad_input_.copy_(grad_input);
384   }
385 }
386 
387 template <typename scalar_t>
cpu_adaptive_max_pool2d_backward_channels_last(const Tensor & grad_input_,const Tensor & grad_output_,const Tensor & indices_)388 void cpu_adaptive_max_pool2d_backward_channels_last(
389     const Tensor& grad_input_,
390     const Tensor& grad_output_,
391     const Tensor& indices_) {
392   TORCH_CHECK(grad_output_.ndimension() == 4,
393               "2d adaptive max pooling backward with channels last format supports tensors with 4 dims.");
394   auto memory_format = at::MemoryFormat::ChannelsLast;
395   auto grad_input = grad_input_.contiguous(memory_format);
396   auto grad_output = grad_output_.contiguous(memory_format);
397   auto indices = indices_.contiguous(memory_format);
398 
399   auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
400   auto grad_output_data = grad_output.const_data_ptr<scalar_t>();
401   auto indices_data = indices.const_data_ptr<int64_t>();
402 
403   int64_t nbatch = grad_input.size(0);
404   int64_t channels = grad_input.size(1);
405   int64_t input_height = grad_input.size(2);
406   int64_t input_width = grad_input.size(3);
407   int64_t output_height = grad_output.size(2);
408   int64_t output_width = grad_output.size(3);
409 
410   // parallel on dim N
411   at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) {
412     for (const auto n : c10::irange(begin, end)) {
413       scalar_t* grad_input_ptr = grad_input_data + n * input_height * input_width * channels;
414       const scalar_t* grad_output_ptr = grad_output_data + n * output_height * output_width * channels;
415       const int64_t* indices_ptr = indices_data + n * output_height * output_width * channels;
416 
417       for (const auto oh : c10::irange(output_height)) {
418         for (const auto ow : c10::irange(output_width)) {
419           const scalar_t* gout = grad_output_ptr + oh * output_width * channels + ow * channels;
420           const int64_t* ind = indices_ptr + oh * output_width * channels + ow * channels;
421           // TODO: gcc vectorization
422           for (const auto c : c10::irange(channels)) {
423             int64_t maxindex = ind[c];
424             grad_input_ptr[maxindex * channels + c] += gout[c];
425           }
426         }
427       }
428     }
429   });
430 
431   if (!grad_input_.is_contiguous(memory_format)) {
432     grad_input_.copy_(grad_input);
433   }
434 }
435 
adaptive_max_pool2d_kernel_impl(const Tensor & output,const Tensor & indices,const Tensor & input,IntArrayRef output_size)436 void adaptive_max_pool2d_kernel_impl(
437     const Tensor& output,
438     const Tensor& indices,
439     const Tensor& input,
440     IntArrayRef output_size) {
441   switch (input.suggest_memory_format()) {
442     case at::MemoryFormat::Contiguous: {
443       AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_max_pool2d", [&] {
444         using param_t = at::opmath_type<scalar_t>;
445         cpu_adaptive_max_pool2d<scalar_t, /*accscalar_t*/param_t>(output, indices, input, output_size);
446       });
447       break;
448     }
449     case at::MemoryFormat::ChannelsLast: {
450       AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_max_pool2d_channels_last", [&]{
451         cpu_adaptive_max_pool2d_channels_last<scalar_t>(output, indices, input, output_size);
452       });
453       break;
454     }
455     default:
456       TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
457   }
458 }
459 
adaptive_max_pool2d_backward_kernel_impl(const Tensor & grad_input,const Tensor & grad_output,const Tensor & indices)460 void adaptive_max_pool2d_backward_kernel_impl(
461     const Tensor& grad_input,
462     const Tensor& grad_output,
463     const Tensor& indices) {
464   // can't use grad_output memory format to switch here since grad_output might be NC11
465   switch (grad_input.suggest_memory_format()) {
466     case at::MemoryFormat::Contiguous: {
467       AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_max_pool2d_backward", [&] {
468         cpu_adaptive_max_pool2d_backward<scalar_t>(grad_input, grad_output, indices);
469       });
470       break;
471     }
472     case at::MemoryFormat::ChannelsLast: {
473       AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_max_pool2d_backward_channels_last", [&]{
474         cpu_adaptive_max_pool2d_backward_channels_last<scalar_t>(grad_input, grad_output, indices);
475       });
476       break;
477     }
478     default:
479       TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
480   }
481 }
482 
483 template <typename scalar_t, typename accscalar_t>
cpu_adaptive_max_pool3d(const Tensor & output_,const Tensor & indices_,const Tensor & input_,IntArrayRef output_size)484 void cpu_adaptive_max_pool3d(
485     const Tensor& output_,
486     const Tensor& indices_,
487     const Tensor& input_,
488     IntArrayRef output_size) {
489   auto input = input_.contiguous();
490   auto output = output_.contiguous();
491   auto indices = indices_.contiguous();
492 
493   auto input_data = input.data_ptr<scalar_t>();
494   auto output_data = output.data_ptr<scalar_t>();
495   auto indices_data = indices.data_ptr<int64_t>();
496 
497   int64_t ndim = input.ndimension();
498   // treat batch size and channels as one dimension
499   int64_t channels = ndim == 4 ? input.size(0) : input.size(0) * input.size(1);
500   int64_t input_depth = input.size(-3);
501   int64_t input_height = input.size(-2);
502   int64_t input_width = input.size(-1);
503   int64_t output_depth = output_size[0];
504   int64_t output_height = output_size[1];
505   int64_t output_width = output_size[2];
506 
507   // parallel on dim of N, C
508   at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
509     for (const auto c : c10::irange(begin, end)) {
510       scalar_t* input_ptr = input_data + c * input_depth * input_height * input_width;
511       scalar_t* output_ptr = output_data + c * output_depth * output_height * output_width;
512       int64_t* indices_ptr = indices_data + c * output_depth * output_height * output_width;
513 
514       for (const auto od : c10::irange(output_depth)) {
515         int64_t id0 = start_index(od, output_depth, input_depth);
516         int64_t id1 = end_index(od, output_depth, input_depth);
517           for (const auto oh : c10::irange(output_height)) {
518             int64_t ih0 = start_index(oh, output_height, input_height);
519             int64_t ih1 = end_index(oh, output_height, input_height);
520 
521           for (const auto ow : c10::irange(output_width)) {
522             int64_t iw0 = start_index(ow, output_width, input_width);
523             int64_t iw1 = end_index(ow, output_width, input_width);
524 
525             // compute local max
526             int64_t maxindex = id0 * input_height * input_width + ih0 * input_width + iw0;
527             accscalar_t maxval = -std::numeric_limits<accscalar_t>::infinity();
528             for (int64_t id = id0; id < id1; id ++) {
529               for (int64_t ih = ih0; ih < ih1; ih ++) {
530                 for (int64_t iw = iw0; iw < iw1; iw ++) {
531                   int64_t index = id * input_height * input_width + ih * input_width + iw;
532                   scalar_t val = input_ptr[index];
533                   if ((val > maxval) || std::isnan(val)) {
534                     maxval = val;
535                     maxindex = index;
536                   }
537                 }
538               }
539             }
540 
541             // set output to local max and store location of max
542             output_ptr[od * output_height * output_width + oh * output_width + ow] = maxval;
543             indices_ptr[od * output_height * output_width + oh * output_width + ow] = scalar_t(maxindex);
544           }
545         }
546       }
547     }
548   });
549 
550   if (!output_.is_contiguous()) {
551     output_.copy_(output);
552   }
553   if (!indices_.is_contiguous()) {
554     indices_.copy_(indices);
555   }
556 }
557 
558 template <typename scalar_t>
559 typename std::enable_if_t<std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void>
cpu_adaptive_max_pool3d_channels_last(const Tensor & output_,const Tensor & indices_,const Tensor & input_,IntArrayRef output_size)560 cpu_adaptive_max_pool3d_channels_last(
561     const Tensor& output_,
562     const Tensor& indices_,
563     const Tensor& input_,
564     IntArrayRef output_size) {
565   TORCH_CHECK(input_.ndimension() == 5,
566               "3d adaptive max pooling with channels last format supports tensors with 5 dims");
567   auto memory_format = at::MemoryFormat::ChannelsLast3d;
568   auto input = input_.contiguous(memory_format);
569   auto output = output_.contiguous(memory_format);
570   auto indices = indices_.contiguous(memory_format);
571 
572   auto input_data = input.data_ptr<scalar_t>();
573   auto output_data = output.data_ptr<scalar_t>();
574   auto indices_data = indices.data_ptr<int64_t>();
575 
576   int64_t nbatch = input.size(0);
577   int64_t channels = input.size(1);
578   int64_t input_depth = input.size(2);
579   int64_t input_height = input.size(3);
580   int64_t input_width = input.size(4);
581   int64_t output_depth = output_size[0];
582   int64_t output_height = output_size[1];
583   int64_t output_width = output_size[2];
584 
585   using Vec = vec::Vectorized<scalar_t>;
586   using integer_t = vec::int_same_size_t<scalar_t>;
587   using iVec = vec::Vectorized<integer_t>;
588   // for the convience of vectorization, use integer of the same size of scalar_t,
589   //   e.g. int32_t for float, int64_t for double
590   // need to make sure doesn't overflow
591   TORCH_CHECK(input_height * input_width <= std::numeric_limits<integer_t>::max());
592 
593   // parallel on dim of N, H, W
594   at::parallel_for(0, nbatch * output_depth * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
595     int64_t n = 0;
596     int64_t od = 0;
597     int64_t oh = 0;
598     int64_t ow = 0;
599     data_index_init(begin, n, nbatch, od, output_depth, oh, output_height, ow, output_width);
600 
601     int64_t size = channels;
602     int64_t len = size - (size % Vec::size());
603     // temp buffer holding index with integer_t
604     auto index_buffer = std::make_unique<integer_t []>(len);
605 
606     for (const auto i : c10::irange(begin, end)) {
607       int64_t id0 = start_index(od, output_depth, input_depth);
608       int64_t id1 = end_index(od, output_depth, input_depth);
609 
610       int64_t ih0 = start_index(oh, output_height, input_height);
611       int64_t ih1 = end_index(oh, output_height, input_height);
612 
613       int64_t iw0 = start_index(ow, output_width, input_width);
614       int64_t iw1 = end_index(ow, output_width, input_width);
615 
616       scalar_t* out = output_data + i * channels;
617       int64_t* ind = indices_data + i * channels;
618 
619       // Pass I: init out lane
620       iVec index0_vec = iVec(id0 * input_height * input_width + ih0 * input_width + iw0);
621       Vec out_vec = Vec(-std::numeric_limits<scalar_t>::infinity());
622       int64_t d1 = 0;
623       for (; d1 < len; d1 += Vec::size()) {
624         index0_vec.store(index_buffer.get() + d1);
625         out_vec.store(out + d1);
626       }
627       for (; d1 < size; d1++) {
628         ind[d1] = id0 * input_height * input_width + ih0 * input_width + iw0;
629         out[d1] = -std::numeric_limits<scalar_t>::infinity();
630       }
631       // Pass II: compute local max
632       for (int64_t id = id0; id < id1; id ++) {
633         for (int64_t ih = ih0; ih < ih1; ih ++) {
634           for (int64_t iw = iw0; iw < iw1; iw ++) {
635             scalar_t* in = input_data + n * input_depth * input_height * input_width * channels +
636                 id * input_height * input_width * channels + ih * input_width * channels + iw * channels;
637 
638             int64_t d2 = 0;
639             for (; d2 < len; d2 += Vec::size()) {
640               iVec index_vec = iVec(id * input_height * input_width + ih * input_width + iw);
641               Vec val_vec = Vec::loadu(in + d2);
642               iVec maxindex_vec = iVec::loadu(index_buffer.get() + d2);
643               Vec maxval_vec = Vec::loadu(out + d2);
644 
645               // true = all ones, false = all zeros
646               Vec mask = (val_vec > maxval_vec) | val_vec.isnan();
647               iVec imask = vec::cast<integer_t>(mask);
648               Vec out_vec = Vec::blendv(maxval_vec, val_vec, mask);
649               iVec ind_vec = iVec::blendv(maxindex_vec, index_vec, imask);
650 
651               out_vec.store(out + d2);
652               ind_vec.store(index_buffer.get() + d2);
653             }
654             for (; d2 < size; d2++) {
655               int64_t index = id * input_height * input_width + ih * input_width + iw;
656               scalar_t val = in[d2];
657               int64_t maxindex = ind[d2];
658               scalar_t maxval = out[d2];
659 
660               bool mask = (val > maxval) || std::isnan(val);
661               out[d2] = mask ? val : maxval;
662               ind[d2] = mask ? index : maxindex;
663             }
664           }
665         }
666       }
667       // convert indice data type
668       vec::convert<integer_t, int64_t>(index_buffer.get(), ind, len);
669 
670       // move on to next output index
671       data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width);
672     }
673   });
674 
675   if (!output_.is_contiguous(memory_format)) {
676     output_.copy_(output);
677   }
678   if (!indices_.is_contiguous(memory_format)) {
679     indices_.copy_(indices);
680   }
681 }
682 
683 template <typename scalar_t>
684 typename std::enable_if_t<!std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void>
cpu_adaptive_max_pool3d_channels_last(const Tensor & output_,const Tensor & indices_,const Tensor & input_,IntArrayRef output_size)685 cpu_adaptive_max_pool3d_channels_last(
686     const Tensor& output_,
687     const Tensor& indices_,
688     const Tensor& input_,
689     IntArrayRef output_size) {
690   TORCH_CHECK(input_.ndimension() == 5,
691               "3d adaptive max pooling with channels last format supports tensors with 5 dims");
692   auto memory_format = at::MemoryFormat::ChannelsLast3d;
693   auto input = input_.contiguous(memory_format);
694   auto output = output_.contiguous(memory_format);
695   auto indices = indices_.contiguous(memory_format);
696 
697   auto input_data = input.data_ptr<BFloat16>();
698   auto output_data = output.data_ptr<BFloat16>();
699   auto indices_data = indices.data_ptr<int64_t>();
700 
701   int64_t nbatch = input.size(0);
702   int64_t channels = input.size(1);
703   int64_t input_depth = input.size(2);
704   int64_t input_height = input.size(3);
705   int64_t input_width = input.size(4);
706   int64_t output_depth = output_size[0];
707   int64_t output_height = output_size[1];
708   int64_t output_width = output_size[2];
709 
710   using bVec = vec::Vectorized<BFloat16>;
711   using fVec = vec::Vectorized<float>;
712   using iVec = vec::Vectorized<int32_t>;
713   // need to make sure doesn't overflow
714   TORCH_CHECK(input_height * input_width <= std::numeric_limits<int32_t>::max());
715 
716   // parallel on dim of N, H, W
717   at::parallel_for(0, nbatch * output_depth * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
718     int64_t n = 0;
719     int64_t od = 0;
720     int64_t oh = 0;
721     int64_t ow = 0;
722     data_index_init(begin, n, nbatch, od, output_depth, oh, output_height, ow, output_width);
723 
724     int64_t size = channels;
725     int64_t len = size - (size % bVec::size());
726     // temp buffer holding index with integer_t
727     auto index_buffer = std::make_unique<int32_t []>(len);
728     // temp buffer holding max value with float
729     auto max_arr = std::make_unique<float []>(size);
730     float* max = max_arr.get();
731 
732     for (const auto i : c10::irange(begin, end)) {
733       int64_t id0 = start_index(od, output_depth, input_depth);
734       int64_t id1 = end_index(od, output_depth, input_depth);
735 
736       int64_t ih0 = start_index(oh, output_height, input_height);
737       int64_t ih1 = end_index(oh, output_height, input_height);
738 
739       int64_t iw0 = start_index(ow, output_width, input_width);
740       int64_t iw1 = end_index(ow, output_width, input_width);
741 
742       BFloat16* out = output_data + i * channels;
743       int64_t* ind = indices_data + i * channels;
744 
745       // Pass I: init out lane
746       iVec index0_ivec = iVec(id0 * input_height * input_width + ih0 * input_width + iw0);
747       fVec max_fvec = fVec(-std::numeric_limits<float>::infinity());
748       int64_t d1 = 0;
749       for (; d1 < len; d1 += fVec::size()) {
750         index0_ivec.store(index_buffer.get() + d1);
751         max_fvec.store(max + d1);
752       }
753       for (; d1 < size; d1++) {
754         ind[d1] = id0 * input_height * input_width + ih0 * input_width + iw0;
755         max[d1] = -std::numeric_limits<float>::infinity();
756       }
757       // Pass II: compute local max
758       for (int64_t id = id0; id < id1; id ++) {
759         for (int64_t ih = ih0; ih < ih1; ih ++) {
760           for (int64_t iw = iw0; iw < iw1; iw ++) {
761             BFloat16* in = input_data + n * input_depth * input_height * input_width * channels +
762                 id * input_height * input_width * channels + ih * input_width * channels + iw * channels;
763 
764             int64_t d2 = 0;
765             for (; d2 < len; d2 += bVec::size()) {
766               iVec index_ivec = iVec(id * input_height * input_width + ih * input_width + iw);
767               bVec val_bvec = bVec::loadu(in + d2);
768               auto [val_fvec0, val_fvec1] = convert_bfloat16_float(val_bvec);
769 
770               iVec maxindex_ivec0 = iVec::loadu(index_buffer.get() + d2);
771               iVec maxindex_ivec1 = iVec::loadu(index_buffer.get() + d2 + iVec::size());
772               fVec maxval_fvec0 = fVec::loadu(max + d2);
773               fVec maxval_fvec1 = fVec::loadu(max + d2 + fVec::size());
774 
775               // true = all ones, false = all zeros
776               fVec mask0 = (val_fvec0 > maxval_fvec0) | val_fvec0.isnan();
777               fVec mask1 = (val_fvec1 > maxval_fvec1) | val_fvec1.isnan();
778               iVec imask0 = vec::cast<int32_t>(mask0);
779               iVec imask1 = vec::cast<int32_t>(mask1);
780 
781               fVec max_fvec0 = fVec::blendv(maxval_fvec0, val_fvec0, mask0);
782               fVec max_fvec1 = fVec::blendv(maxval_fvec1, val_fvec1, mask1);
783               iVec ind_ivec0 = iVec::blendv(maxindex_ivec0, index_ivec, imask0);
784               iVec ind_ivec1 = iVec::blendv(maxindex_ivec1, index_ivec, imask1);
785 
786               max_fvec0.store(max + d2);
787               max_fvec1.store(max + d2 + fVec::size());
788               ind_ivec0.store(index_buffer.get() + d2);
789               ind_ivec1.store(index_buffer.get() + d2 + iVec::size());
790             }
791             for (; d2 < size; d2++) {
792               int64_t index = id * input_height * input_width + ih * input_width + iw;
793               float val = float(in[d2]);
794               int64_t maxindex = ind[d2];
795               float maxval = max[d2];
796 
797               bool mask = (val > maxval) || std::isnan(val);
798               max[d2] = mask ? val : maxval;
799               ind[d2] = mask ? index : maxindex;
800             }
801           }
802         }
803       }
804       // Pass III: convert max values from float to bfloat16
805       int64_t d3 = 0;
806       for (; d3 < len; d3 += bVec::size()) {
807         fVec max_fvec0 = fVec::loadu(max + d3);
808         fVec max_fvec1 = fVec::loadu(max + d3 + fVec::size());
809         bVec max_bvec = convert_float_bfloat16(max_fvec0, max_fvec1);
810         max_bvec.store(out + d3);
811       }
812       for (; d3 < size; d3++) {
813         out[d3] = BFloat16(max[d3]);
814       }
815       // convert indice data type
816       vec::convert<int32_t, int64_t>(index_buffer.get(), ind, len);
817 
818       // move on to next output index
819       data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width);
820     }
821   });
822 
823   if (!output_.is_contiguous(memory_format)) {
824     output_.copy_(output);
825   }
826   if (!indices_.is_contiguous(memory_format)) {
827     indices_.copy_(indices);
828   }
829 }
830 
831 template <typename scalar_t>
cpu_adaptive_max_pool3d_backward(const Tensor & grad_input_,const Tensor & grad_output_,const Tensor & indices_)832 void cpu_adaptive_max_pool3d_backward(
833     const Tensor& grad_input_,
834     const Tensor& grad_output_,
835     const Tensor& indices_) {
836   auto grad_output = grad_output_.contiguous();
837   auto indices = indices_.contiguous();
838   auto grad_input = grad_input_.contiguous();
839 
840   auto grad_output_data = grad_output.data_ptr<scalar_t>();
841   auto indices_data = indices.data_ptr<int64_t>();
842   auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
843 
844   int64_t ndim = grad_output.ndimension();
845   // treat batch size and channels as one dimension
846   int64_t channels = ndim == 3 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
847   int64_t input_depth = grad_input.size(-3);
848   int64_t input_height = grad_input.size(-2);
849   int64_t input_width = grad_input.size(-1);
850   int64_t output_depth = grad_output.size(-3);
851   int64_t output_height = grad_output.size(-2);
852   int64_t output_width = grad_output.size(-1);
853 
854   // parallel on dim of N, C
855   at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
856     for (const auto c : c10::irange(begin, end)) {
857       scalar_t* grad_input_ptr = grad_input_data + c * input_depth * input_height * input_width;
858       scalar_t* grad_output_ptr = grad_output_data + c * output_depth * output_height * output_width;
859       int64_t* indices_ptr = indices_data + c * output_depth * output_height * output_width;
860 
861       for (const auto od : c10::irange(output_depth)) {
862         for (const auto oh : c10::irange(output_height)) {
863           for (const auto ow : c10::irange(output_width)) {
864             // retrieve position of max
865             int64_t index = od * output_height * output_width + oh * output_width + ow;
866             int64_t maxindex = indices_ptr[index];
867 
868             // update gradient
869             grad_input_ptr[maxindex] += grad_output_ptr[index];
870           }
871         }
872       }
873     }
874   });
875 
876   if (!grad_input_.is_contiguous()) {
877     grad_input_.copy_(grad_input);
878   }
879 }
880 
881 template <typename scalar_t>
cpu_adaptive_max_pool3d_backward_channels_last(const Tensor & grad_input_,const Tensor & grad_output_,const Tensor & indices_)882 void cpu_adaptive_max_pool3d_backward_channels_last(
883     const Tensor& grad_input_,
884     const Tensor& grad_output_,
885     const Tensor& indices_) {
886   TORCH_CHECK(grad_output_.ndimension() == 5,
887               "3d adaptive max pooling backward with channels last format supports tensors with 5 dims.");
888   auto memory_format = at::MemoryFormat::ChannelsLast3d;
889   auto grad_input = grad_input_.contiguous(memory_format);
890   auto grad_output = grad_output_.contiguous(memory_format);
891   auto indices = indices_.contiguous(memory_format);
892 
893   auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
894   auto grad_output_data = grad_output.data_ptr<scalar_t>();
895   auto indices_data = indices.data_ptr<int64_t>();
896 
897   int64_t nbatch = grad_input.size(0);
898   int64_t channels = grad_input.size(1);
899   int64_t input_depth = grad_input.size(2);
900   int64_t input_height = grad_input.size(3);
901   int64_t input_width = grad_input.size(4);
902   int64_t output_depth = grad_output.size(2);
903   int64_t output_height = grad_output.size(3);
904   int64_t output_width = grad_output.size(4);
905 
906   // parallel on dim N
907   at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) {
908     for (const auto n : c10::irange(begin, end)) {
909       scalar_t* grad_input_ptr = grad_input_data + n * input_depth * input_height * input_width * channels;
910       scalar_t* grad_output_ptr = grad_output_data + n * output_depth * output_height * output_width * channels;
911       int64_t* indices_ptr = indices_data + n * output_depth * output_height * output_width * channels;
912 
913       for (const auto od : c10::irange(output_depth)) {
914         for (const auto oh : c10::irange(output_height)) {
915           for (const auto ow : c10::irange(output_width)) {
916             scalar_t* gout = grad_output_ptr + od * output_height * output_width * channels + oh * output_width * channels + ow * channels;
917             int64_t* ind = indices_ptr + od * output_height * output_width * channels + oh * output_width * channels + ow * channels;
918             // TODO: gcc vectorization
919             for (const auto c : c10::irange(channels)) {
920               int64_t maxindex = ind[c];
921               grad_input_ptr[maxindex * channels + c] += gout[c];
922             }
923           }
924         }
925       }
926     }
927   });
928 
929   if (!grad_input_.is_contiguous(memory_format)) {
930     grad_input_.copy_(grad_input);
931   }
932 }
933 
adaptive_max_pool3d_kernel_impl(const Tensor & output,const Tensor & indices,const Tensor & input,IntArrayRef output_size)934 void adaptive_max_pool3d_kernel_impl(
935     const Tensor& output,
936     const Tensor& indices,
937     const Tensor& input,
938     IntArrayRef output_size) {
939   switch (input.suggest_memory_format()) {
940     case at::MemoryFormat::Contiguous: {
941       AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_max_pool3d", [&] {
942         using param_t = at::opmath_type<scalar_t>;
943         cpu_adaptive_max_pool3d<scalar_t, /*accscalar_t*/param_t>(output, indices, input, output_size);
944       });
945       break;
946     }
947     case at::MemoryFormat::ChannelsLast3d: {
948       AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_max_pool3d_channels_last", [&]{
949         cpu_adaptive_max_pool3d_channels_last<scalar_t>(output, indices, input, output_size);
950       });
951       break;
952     }
953     default:
954       TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
955   }
956 }
957 
adaptive_max_pool3d_backward_kernel_impl(const Tensor & grad_input,const Tensor & grad_output,const Tensor & indices)958 void adaptive_max_pool3d_backward_kernel_impl(
959     const Tensor& grad_input,
960     const Tensor& grad_output,
961     const Tensor& indices) {
962   // can't use grad_output memory format to switch here since grad_output might be NC11
963   switch (grad_input.suggest_memory_format()) {
964     case at::MemoryFormat::Contiguous: {
965       AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_max_pool3d_backward", [&] {
966         cpu_adaptive_max_pool3d_backward<scalar_t>(grad_input, grad_output, indices);
967       });
968       break;
969     }
970     case at::MemoryFormat::ChannelsLast3d: {
971       AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_max_pool3d_backward_channels_last", [&]{
972         cpu_adaptive_max_pool3d_backward_channels_last<scalar_t>(grad_input, grad_output, indices);
973       });
974       break;
975     }
976     default:
977       TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
978   }
979 }
980 
981 } // anonymous namespace
982 
983 REGISTER_DISPATCH(adaptive_max_pool2d_kernel, &adaptive_max_pool2d_kernel_impl);
984 REGISTER_DISPATCH(adaptive_max_pool2d_backward_kernel, &adaptive_max_pool2d_backward_kernel_impl);
985 REGISTER_DISPATCH(adaptive_max_pool3d_kernel, &adaptive_max_pool3d_kernel_impl);
986 REGISTER_DISPATCH(adaptive_max_pool3d_backward_kernel, &adaptive_max_pool3d_backward_kernel_impl);
987 
988 } // at::native
989