/aosp_15_r20/external/sdv/vsomeip/third_party/boost/numeric/odeint/include/boost/numeric/odeint/algebra/ |
D | array_algebra.hpp | 36 //template< typename T , size_t dim , class Op > 38 size_t dim, class Op > 39 static void for_each1( Array< T, dim > &s1, Op op ) in for_each1() 41 for( size_t i=0 ; i<dim ; ++i ) in for_each1() 46 size_t dim, class Op > 47 static void for_each2( Array< T, dim > &s1, const Array< T, dim > &s2, in for_each2() 50 for( size_t i=0 ; i<dim ; ++i ) in for_each2() 55 size_t dim, class Op > 56 static void for_each3( Array< T , dim > &s1 , in for_each3() 57 const Array< T , dim > &s2 , in for_each3() [all …]
|
/aosp_15_r20/external/eigen/Eigen/src/Geometry/ |
H A D | Transform.h | 24 Dim = Transform::Dim, enumerator 42 int Dim, 58 int Dim, 95 * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, 97 * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. 98 * - #Projective: the transformation is stored as a (Dim+1)^2 matrix 129 * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. 136 * \b Translation t (Dim)x(1): 142 * \b Rotation R (Dim)x(Dim): 148 * \b Linear \b Matrix L (Dim)x(Dim): [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | ReduceOps.cpp | 193 TORCH_META_FUNC2(all, dim)(const Tensor& self, int64_t dim, bool keepdim) { in TORCH_META_FUNC2() argument 194 allany_meta(*this, "all", self, dim, keepdim); in TORCH_META_FUNC2() 197 TORCH_META_FUNC2(all, dims)(const Tensor& self, OptionalIntArrayRef dim, bool keepdim) { in TORCH_META_FUNC2() 198 allany_meta(*this, "all", self, dim, keepdim); in TORCH_META_FUNC2() 205 TORCH_META_FUNC2(any, dim)(const Tensor& self, int64_t dim, bool keepdim) { in TORCH_META_FUNC2() argument 206 allany_meta(*this, "any", self, dim, keepdim); in TORCH_META_FUNC2() 209 TORCH_META_FUNC2(any, dims)(const Tensor& self, OptionalIntArrayRef dim, bool keepdim) { in TORCH_META_FUNC2() 210 allany_meta(*this, "any", self, dim, keepdim); in TORCH_META_FUNC2() 220 const std::optional<int64_t>& dim) { in check_argmax_argmin() argument 221 if (dim.has_value()) { in check_argmax_argmin() [all …]
|
H A D | SpectralOps.cpp | 162 IntArrayRef dim, int64_t norm, bool onesided) { in fft_r2c_maybe_out() argument 167 return at::_fft_r2c_outf(input, dim, norm, onesided, out_mut); in fft_r2c_maybe_out() 169 return at::_fft_r2c(input, dim, norm, onesided); in fft_r2c_maybe_out() 174 IntArrayRef dim, int64_t norm, SymInt last_dim_size) { in fft_c2r_maybe_out() argument 181 return at::_fft_c2r_symint_outf(input, dim, norm, last_dim_size, out_mut); in fft_c2r_maybe_out() 183 return at::_fft_c2r_symint(input, dim, norm, last_dim_size); in fft_c2r_maybe_out() 188 IntArrayRef dim, int64_t norm, bool forward) { in fft_c2c_maybe_out() argument 193 return at::_fft_c2c_outf(input, dim, norm, forward, out_mut); in fft_c2c_maybe_out() 195 return at::_fft_c2c(input, dim, norm, forward); in fft_c2c_maybe_out() 206 const auto input_dim = input.dim(); in fft_c2r() [all …]
|
H A D | TensorAdvancedIndexing.cpp | 159 (const Tensor & self, int64_t dim, const Tensor & index, bool sparse_grad) { in TORCH_META_FUNC() 161 int64_t wrapped_dim = at::maybe_wrap_dim(dim, self.dim()); in TORCH_META_FUNC() 191 int64_t dim, in scatter_meta_impl() argument 195 int64_t wrapped_dim = at::maybe_wrap_dim(dim, self.dim()); in scatter_meta_impl() 216 (const Tensor& self, int64_t dim, const Tensor& index, const Tensor& src) { in TORCH_META_FUNC2() 217 scatter_meta_impl(*this, self, dim, index, src); in TORCH_META_FUNC2() 221 (const Tensor& self, int64_t dim, const Tensor& index, const Scalar& value) { in TORCH_META_FUNC2() 222 scatter_meta_impl(*this, self, dim, index); in TORCH_META_FUNC2() 227 int64_t dim, in TORCH_META_FUNC2() 235 scatter_meta_impl(*this, self, dim, index, src, reduce); in TORCH_META_FUNC2() [all …]
|
H A D | Sorting.cpp | 56 int64_t dim = maybe_wrap_dim(dim_, self.dim(), /*wrap_scalar=*/true); in TORCH_META_FUNC() local 58 k >= 0 && k <= (self.dim() > 0 ? self.size(dim) : 1), in TORCH_META_FUNC() 60 int64_t sliceSize = self.dim() == 0 ? 1 : self.size(dim); in TORCH_META_FUNC() 63 // Build the output size, which is the dim being selected set to in TORCH_META_FUNC() 67 topKSize[dim] = k; in TORCH_META_FUNC() 74 (const Tensor& self, std::optional<bool> stable, int64_t dim, bool descending) { in TORCH_META_FUNC2() 75 maybe_wrap_dim(dim, self.dim()); in TORCH_META_FUNC2() 95 void _fill_indices(const TensorBase &indices, int64_t dim) { in _fill_indices() argument 96 auto ndim = indices.dim(); in _fill_indices() 97 assert(0 <= dim && dim < ndim); in _fill_indices() [all …]
|
H A D | TensorShape.cpp | 223 t.dim() > 0, in cat_check_no_zero_dim() 244 TORCH_PRECOMPUTE_META_FUNC(cat)(const ITensorListRef& tensors, int64_t dim) { in TORCH_PRECOMPUTE_META_FUNC() 252 dim = at::legacy_cat_wrap_dim(dim, materialized); in TORCH_PRECOMPUTE_META_FUNC() 303 dim <= materialized[valid].get().dim(), "torch.cat(): dimension ", dim, "out of range"); in TORCH_PRECOMPUTE_META_FUNC() 307 // except in the dimension 'dim'. in TORCH_PRECOMPUTE_META_FUNC() 313 at::native::check_cat_shape_except_dim(materialized[valid], t, dim, i); in TORCH_PRECOMPUTE_META_FUNC() 314 size_at_dim += t.size(dim); in TORCH_PRECOMPUTE_META_FUNC() 326 sizes[dim] = size_at_dim; in TORCH_PRECOMPUTE_META_FUNC() 342 .set_dim(dim) in TORCH_PRECOMPUTE_META_FUNC() 357 TORCH_CHECK(shape_tensor.dim() == 1); in _reshape_from_tensor() [all …]
|
H A D | Integration.cpp | 32 Tensor do_trapezoid(const Tensor& y, const Tensor& dx, int64_t dim) { in do_trapezoid() argument 33 Tensor left = y.slice(dim, 0, -1); in do_trapezoid() 34 Tensor right = y.slice(dim, 1); in do_trapezoid() 37 return ((left + right) * dx).sum(dim) / 2.; in do_trapezoid() 42 Tensor do_trapezoid(const Tensor& y, double dx, int64_t dim) { in do_trapezoid() argument 43 return (y.sum(dim) - (y.select(dim, 0) + y.select(dim, -1)) * (0.5)) * dx; in do_trapezoid() 46 Tensor zeros_like_except(const Tensor& y, int64_t dim) { in zeros_like_except() argument 48 dim = maybe_wrap_dim(dim, y.dim()); in zeros_like_except() 49 sizes.erase(sizes.begin() + dim); in zeros_like_except() 53 Tensor do_cumulative_trapezoid(const Tensor& y, const Tensor& dx, int64_t dim) { in do_cumulative_trapezoid() argument [all …]
|
/aosp_15_r20/external/pytorch/torch/export/ |
H A D | dynamic_shapes.py | 34 "Dim", 56 Metaclass for :func:`Dim` types. 68 return f"Dim('{name}')" 70 return f"Dim('{name}', max={max_})" 72 return f"Dim('{name}', min={min_})" 73 return f"Dim('{name}', min={min_}, max={max_})" 76 # e.g., dim + 1 88 # e.g., dim - 1 103 # e.g., dim * 2 125 Meta class for static :func:`Dim` types. [all …]
|
/aosp_15_r20/external/pytorch/torch/_refs/ |
H A D | fft.py | 120 dim: int, 126 dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),) 127 last_dim_size = n if n is not None else 2 * (input.shape[dim] - 1) 139 output = prims.fft_c2r(input, dim=dims, last_dim_size=last_dim_size) 147 dim: int, 158 dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),) 159 dim_size = n if n is not None else input.shape[dim] 167 ret = prims.fft_r2c(input, dim=dims, onesided=onesided) 176 dim: int, 185 dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),) [all …]
|
/aosp_15_r20/external/executorch/kernels/portable/cpu/util/ |
H A D | copy_ops_util.cpp | 76 int64_t dim, in check_cat_args() argument 107 tensor_is_rank(tensors[ref_i], tensors[i].dim())); in check_cat_args() 109 for (size_t d = 0; d < tensors[i].dim(); ++d) { in check_cat_args() 110 if (d != dim) { in check_cat_args() 117 // Ensure dim is in range. in check_cat_args() 119 tensors[ref_i].numel() == 0 || tensors[ref_i].dim() > dim); in check_cat_args() 120 ET_LOG_AND_RETURN_IF_FALSE(dim >= 0); in check_cat_args() 127 int64_t dim, in get_cat_out_target_size() argument 132 // calculate out dim in get_cat_out_target_size() 137 cat_dim_size += tensors[i].size(dim); in get_cat_out_target_size() [all …]
|
H A D | index_util.cpp | 17 int64_t dim, in check_gather_args() argument 22 ET_LOG_AND_RETURN_IF_FALSE(tensor_has_dim(in, dim)); in check_gather_args() 33 // Normalize dim to non-negative value in check_gather_args() 34 if (dim < 0) { in check_gather_args() 35 dim += nonzero_dim(in); in check_gather_args() 39 if (d != dim) { in check_gather_args() 42 …d of index should be smaller than the size of that dimension of input if dimension %zd != dim %zd", in check_gather_args() 45 (size_t)dim); in check_gather_args() 51 index_data[i] >= 0 && index_data[i] < nonempty_size(in, dim), in check_gather_args() 53 (size_t)dim, in check_gather_args() [all …]
|
H A D | reduce_util.h | 52 // Compute innermost dim from dim list in apply_on_flat_ix_with_dim_mask_and_base() 53 size_t inner_dim = in.dim() - 1; in apply_on_flat_ix_with_dim_mask_and_base() 60 // Only the dims that are in the dim list are relevant. in apply_on_flat_ix_with_dim_mask_and_base() 62 for (int64_t d = 0; d < in.dim(); d++) { in apply_on_flat_ix_with_dim_mask_and_base() 93 // the index of the next innermost dimension from the dim list by 1. in apply_on_flat_ix_with_dim_mask_and_base() 98 // curr_dim will be the dim from the dim list we are currently updating in apply_on_flat_ix_with_dim_mask_and_base() 115 // Decrease current dim in apply_on_flat_ix_with_dim_mask_and_base() 118 // Stop if curr_dim is in the dim list in apply_on_flat_ix_with_dim_mask_and_base() 122 // Keep decreasing if curr_dim is not in the dim list in apply_on_flat_ix_with_dim_mask_and_base() 152 const size_t dim, [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/grappler/costs/graph_properties_testdata/ |
H A D | large_graph.pbtxt.html | 115 dim { 137 dim { 186 name: "ExpandDims/dim" 211 input: "ExpandDims/dim" 239 dim { 247 name: "ExpandDims_1/dim" 272 input: "ExpandDims_1/dim" 302 dim { 310 name: "ExpandDims_2/dim" 335 input: "ExpandDims_2/dim" [all …]
|
/aosp_15_r20/external/pytorch/test/inductor/ |
H A D | test_split_cat_fx_passes.py | 39 return [torch.relu(s) for s in torch.split(x, 2, dim=1)] 43 torch.relu(s) for s in torch.split(x, split_size_or_sections=2, dim=1) 49 for s in torch.split(tensor=x, split_size_or_sections=2, dim=-1) 53 return [torch.relu(s) for s in torch.split(x, [16, 16], dim=1)] 65 return [torch.relu(s) for s in x.split(2, dim=1)] 68 return [torch.relu(s) for s in x.split(split_size=2, dim=1)] 77 return [torch.relu(s) for s in x.split([16, 16], dim=-1)] 126 return [torch.split(s, 2, dim=1) for s in torch.split(x, 2, dim=1)] 130 torch.split(s, split_size_or_sections=2, dim=1) 131 for s in torch.split(x, split_size_or_sections=2, dim=1) [all …]
|
/aosp_15_r20/external/pytorch/torch/_refs/linalg/ |
H A D | __init__.py | 14 Dim, 73 def cross(a: Tensor, b: Tensor, dim: int = -1): 79 a.size(dim) == 3 and b.size(dim) == 3, 80 … lambda: f"linalg.cross: inputs dim {dim} must have length 3, got {a.size(dim)} and {b.size(dim)}", 83 dim = utils.canonicalize_dim(a.ndim, dim) 85 return a.index_select(dim, (idx + 1) % 3) * b.index_select( 86 dim, (idx + 2) % 3 87 ) - a.index_select(dim, (idx + 2) % 3) * b.index_select(dim, (idx + 1) % 3) 105 dim: Optional[DimsType] = None, 115 if isinstance(dim, Dim): [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
H A D | sharding_util_ops.cc | 80 for (int dim = 0; dim < expected_rank; ++dim) { in GetAndValidateAttributes() local 81 if (paddings[dim] < 0) { in GetAndValidateAttributes() 83 "'padding' must be all non-negative, but got ", paddings[dim], in GetAndValidateAttributes() 84 " at index ", dim, "."); in GetAndValidateAttributes() 86 if (paddings[dim] > 0) { in GetAndValidateAttributes() 108 auto divisor = [&](const int dim) { in GetSliceIndices() argument 110 for (int i = num_partitions.size() - 1; i > dim; --i) { in GetSliceIndices() 116 for (int dim = num_partitions.size() - 1; dim > 0; --dim) { in GetSliceIndices() local 117 slice_indices[dim] = in GetSliceIndices() 118 ((index / divisor(dim)) % num_partitions[dim]) * slice_shape[dim]; in GetSliceIndices() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/profiler/internal/testdata/ |
H A D | graph.pbtxt | 9 dim { 12 dim { 15 dim { 18 dim { 37 dim { 40 dim { 43 dim { 46 dim { 71 dim { 89 dim { [all …]
|
/aosp_15_r20/external/executorch/runtime/core/exec_aten/util/ |
H A D | tensor_util.h | 42 #define ET_CHECK_VALID_DIM(DIM, UPPER_BOUND) \ argument 44 DIM >= -static_cast<int64_t>(UPPER_BOUND) && \ 45 DIM < static_cast<int64_t>(UPPER_BOUND), \ 46 "dim %" PRId64 " must be within range [-%zd, %zd)", \ 47 DIM, \ 51 #define ET_CHECK_NON_ZERO_DIM_SIZE(DIM, T) \ argument 52 const size_t udim = ET_NORMALIZE_IX(DIM, T.dim()); \ 54 T.size(udim) != 0, "Expected dim %zd to have non-zero size.", udim); 67 const size_t a_dim__ = (a__).dim(); \ 68 const size_t b_dim__ = (b__).dim(); \ [all …]
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_reductions.py | 61 def _rand_shape(dim, min_size, max_size): argument 63 for i in range(dim): 67 def _reduced_shape(shape, dim=None, keepdim=False): argument 68 """Computes the expected reduced shape given dim and keepdim 72 dim : The dimensions to reduce 79 if dim is None: 83 dim = dim if isinstance(dim, Sequence) else [dim] 84 dim = {i if i >= 0 else len(shape) + i for i in dim} 88 if i not in dim: 102 """Tests output shape for input with ndim and dim and keepdim kwargs""" [all …]
|
/aosp_15_r20/frameworks/base/media/mca/filterpacks/native/base/ |
H A D | vec_types.h | 23 template < class T, int dim> 26 T data[dim]; 28 VecBase<T,dim>& operator = (const VecBase<T, dim> &x) { 29 memcpy(data, x.data, sizeof(T)*dim); 42 for (int i = 0; i < dim; ++i) in Length() 48 template < class T, int dim> 49 class Vec : public VecBase<T,dim> { 52 Vec<T,dim>& operator = (const Vec<T, dim> &x) { 53 memcpy(this->data, x.data, sizeof(T)*dim); 58 template <class T, int dim> [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cpu/ |
H A D | ScatterGatherKernel.cpp | 103 int64_t dim, int64_t index_dim_size, in operator ()() 114 " is out of bounds for dimension ", dim, in operator ()() 130 int64_t dim, int64_t index_dim_size, in operator ()() 141 " is out of bounds for dimension ", dim, in operator ()() 165 void operator()(const Tensor& self, int64_t dim, in operator ()() 176 // `dim` is traversed in the kernel, in operator ()() 177 // that is why index.stride(dim) = 0 and index.size(dim) = 1. in operator ()() 178 // Also, index.size(dim) = 1 makes sure that TensorIterator.DimCounter in operator ()() 179 // has the following form : (i_1,..., i_{dim-1}, 0, i_{dim+1},...,i_n). in operator ()() 180 index_sizes[dim] = 1; in operator ()() [all …]
|
/aosp_15_r20/external/pytorch/torch/distributed/tensor/ |
H A D | placement_types.py | 34 def is_shard(self, dim: Optional[int] = None) -> bool: 36 if dim is not None and is_shard_instance: 37 return cast(Shard, self).dim == dim 51 The ``Shard(dim)`` placement describes the DTensor sharding on tensor dimension 52 ``dim`` over a corresponding ``DeviceMesh`` dimension, where each rank on the 54 ``Shard(dim)`` placement follows the ``torch.chunk(dim)`` semantic, where the 60 dim (int): The tensor dimension that describes the DTensor is sharded over its 67 dim: int 87 self.dim <= tensor.ndim 88 ), f"Sharding dim {self.dim} greater than tensor ndim {tensor.ndim}" [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/xla/service/spmd/ |
H A D | spmd_partitioner_util.cc | 88 if (shape.dimensions(i) % sharding.tile_assignment().dim(i) != 0) { in EvenlyPartitions() 174 if (sharding.tile_assignment().dim(i) == 1 || in MakePartitionOffsets() 213 i, shard_shape.dimensions(i) * sharding.tile_assignment().dim(i)); in GetPaddedShapeForUnevenPartitioning() 235 gid *= partial_sharding.tile_assignment().dim(i); in PartialReplicateReshardCompatibleSharding() 248 for (int64_t dim = 0; dim < rank; dim++) { in PartialReplicateReshardCompatibleSharding() local 249 int64_t partial_tile_size = partial_sharding.tile_assignment().dim(dim); in PartialReplicateReshardCompatibleSharding() 250 int64_t target_tile_size = target_sharding.tile_assignment().dim(dim); in PartialReplicateReshardCompatibleSharding() 257 expand_tile_dims_indices[dim] = num_expand_dims++; in PartialReplicateReshardCompatibleSharding() 289 for (int64_t dim = 0; dim < rank; dim++) { in PartialReplicateReshardCompatibleSharding() local 290 perm.emplace_back(dim); in PartialReplicateReshardCompatibleSharding() [all …]
|
/aosp_15_r20/external/mesa3d/src/amd/common/ |
H A D | ac_nir_lower_image_opcodes_cdna.c | 31 static unsigned get_coord_components(enum glsl_sampler_dim dim, bool is_array) in get_coord_components() argument 33 switch (dim) { in get_coord_components() 50 enum glsl_sampler_dim dim, bool is_array, in lower_image_coords() argument 53 unsigned num_coord_components = get_coord_components(dim, is_array); in lower_image_coords() 64 if (dim == GLSL_SAMPLER_DIM_1D && is_array) { in lower_image_coords() 112 enum gl_access_qualifier access, enum glsl_sampler_dim dim, in emulated_image_load() argument 119 lower_image_coords(b, desc, coord, dim, is_array, in emulated_image_load() 128 enum glsl_sampler_dim dim, bool is_array) in emulated_image_store() argument 133 lower_image_coords(b, desc, coord, dim, is_array, true), in emulated_image_store() 139 /* Return the width, height, or depth for dim=0,1,2. */ [all …]
|