1 #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
2 #include <ATen/core/Tensor.h>
3 #include <ATen/Config.h>
4 #include <ATen/TensorSubclassLikeUtils.h>
5 #include <ATen/detail/CUDAHooksInterface.h>
6 #include <ATen/native/SpectralOpsUtils.h>
7 #include <ATen/TensorIterator.h>
8 #include <ATen/TensorOperators.h>
9 #include <ATen/WrapDimUtils.h>
10 #include <c10/util/irange.h>
11
12 #ifndef AT_PER_OPERATOR_HEADERS
13 #include <ATen/Functions.h>
14 #include <ATen/NativeFunctions.h>
15 #else
16 #include <ATen/ops/_cufft_clear_plan_cache_native.h>
17 #include <ATen/ops/_cufft_get_plan_cache_max_size_native.h>
18 #include <ATen/ops/_cufft_get_plan_cache_size_native.h>
19 #include <ATen/ops/_cufft_set_plan_cache_max_size_native.h>
20 #include <ATen/ops/_fft_c2c.h>
21 #include <ATen/ops/_fft_c2r.h>
22 #include <ATen/ops/_fft_r2c.h>
23 #include <ATen/ops/arange.h>
24 #include <ATen/ops/arange_native.h>
25 #include <ATen/ops/conj.h>
26 #include <ATen/ops/conj_physical.h>
27 #include <ATen/ops/constant_pad_nd.h>
28 #include <ATen/ops/empty.h>
29 #include <ATen/ops/fft_fft2_native.h>
30 #include <ATen/ops/fft_fft_native.h>
31 #include <ATen/ops/fft_fftfreq_native.h>
32 #include <ATen/ops/fft_fftn_native.h>
33 #include <ATen/ops/fft_fftshift_native.h>
34 #include <ATen/ops/fft_hfft2_native.h>
35 #include <ATen/ops/fft_hfft_native.h>
36 #include <ATen/ops/fft_hfftn_native.h>
37 #include <ATen/ops/fft_ifft2_native.h>
38 #include <ATen/ops/fft_ifft_native.h>
39 #include <ATen/ops/fft_ifftn_native.h>
40 #include <ATen/ops/fft_ifftshift_native.h>
41 #include <ATen/ops/fft_ihfft2_native.h>
42 #include <ATen/ops/fft_ihfft_native.h>
43 #include <ATen/ops/fft_ihfftn_native.h>
44 #include <ATen/ops/fft_irfft2_native.h>
45 #include <ATen/ops/fft_irfft_native.h>
46 #include <ATen/ops/fft_irfftn_native.h>
47 #include <ATen/ops/fft_rfft2_native.h>
48 #include <ATen/ops/fft_rfft_native.h>
49 #include <ATen/ops/fft_rfftfreq_native.h>
50 #include <ATen/ops/fft_rfftn_native.h>
51 #include <ATen/ops/istft_native.h>
52 #include <ATen/ops/ones.h>
53 #include <ATen/ops/pad.h>
54 #include <ATen/ops/roll.h>
55 #include <ATen/ops/stft.h>
56 #include <ATen/ops/stft_native.h>
57 #include <ATen/ops/unfold_backward.h>
58 #include <ATen/ops/view_as_complex.h>
59 #include <ATen/ops/view_as_real.h>
60 #include <ATen/ops/zeros.h>
61 #include <ATen/ops/zeros_like_ops.h>
62 #endif
63
64 #include <algorithm>
65
66 namespace at::native {
67
68 namespace {
69
70 // Promote inputs to FFT functions
71 // * Integers are promoted to the default floating type
72 // * If require_complex=True, all types are promoted to complex
73 // * Raises an error for half-precision dtypes to allow future support
promote_type_fft(ScalarType type,bool require_complex,Device device)74 ScalarType promote_type_fft(ScalarType type, bool require_complex, Device device) {
75 if (at::isComplexType(type)) {
76 return type;
77 }
78 // Promote integral to default float type
79 if (!at::isFloatingType(type)) {
80 type = c10::typeMetaToScalarType(c10::get_default_dtype());
81 }
82
83 const bool maybe_support_half = (
84 // Only CUDA supports half precision, but since meta tensors don't have a
85 // device we err on the side of accepting it
86 device.is_cuda() || device.is_meta()
87 );
88 if (maybe_support_half) {
89 TORCH_CHECK(type == kHalf || type == kFloat || type == kDouble, "Unsupported dtype ", type);
90 } else {
91 TORCH_CHECK(type == kFloat || type == kDouble, "Unsupported dtype ", type);
92 }
93
94 if (!require_complex) {
95 return type;
96 }
97
98 // Promote to complex
99 switch (type) {
100 case kHalf: return kComplexHalf;
101 case kFloat: return kComplexFloat;
102 case kDouble: return kComplexDouble;
103 default: TORCH_INTERNAL_ASSERT(false, "Unhandled dtype");
104 }
105 }
106
107 // Promote a tensor's dtype according to promote_type_fft
promote_tensor_fft(const Tensor & t,bool require_complex=false)108 Tensor promote_tensor_fft(const Tensor& t, bool require_complex=false) {
109 auto cur_type = t.scalar_type();
110 auto new_type = promote_type_fft(cur_type, require_complex, t.device());
111 return (cur_type == new_type) ? t : t.to(new_type);
112 }
113
114 // Convert NumPy compatible normalization mode string to enum values
115 // NOTE: NumPy's normalization modes have direction-specific meanings. For example,
116 // "forward" translates to `by_n` for a forward transform and `none` for backward.
norm_from_string(std::optional<c10::string_view> norm,bool forward)117 fft_norm_mode norm_from_string(std::optional<c10::string_view> norm, bool forward) {
118 if (!norm || *norm == "backward") {
119 return forward ? fft_norm_mode::none : fft_norm_mode::by_n;
120 }
121
122 if (*norm == "forward") {
123 return forward ? fft_norm_mode::by_n : fft_norm_mode::none;
124 }
125
126 if (*norm == "ortho") {
127 return fft_norm_mode::by_root_n;
128 }
129
130 TORCH_CHECK(false, "Invalid normalization mode: \"", *norm, "\"")
131 }
132
133 // Fixes the shape of x such that x.size(dims[i]) == sizes[i],
134 // either by zero-padding, or by slicing x starting from 0.
resize_fft_input(Tensor x,IntArrayRef dims,SymIntArrayRef sizes)135 Tensor resize_fft_input(Tensor x, IntArrayRef dims, SymIntArrayRef sizes) {
136 TORCH_INTERNAL_ASSERT(dims.size() == sizes.size());
137 bool must_copy = false;
138 auto x_sizes = x.sym_sizes();
139 SymDimVector pad_amount(x_sizes.size() * 2);
140 for (const auto i : c10::irange(dims.size())) {
141 if (sizes[i] == -1) {
142 continue;
143 }
144
145 if (x_sizes[dims[i]] < sizes[i]) {
146 must_copy = true;
147 auto pad_idx = pad_amount.size() - 2 * dims[i] - 1;
148 pad_amount[pad_idx] = sizes[i] - x_sizes[dims[i]];
149 }
150
151 if (x_sizes[dims[i]] > sizes[i]) {
152 x = x.slice_symint(dims[i], 0, sizes[i]);
153 }
154 }
155
156 // Only call pad if necessary since pad copies the entire tensor
157 return must_copy ? at::constant_pad_nd_symint(x, pad_amount) : x;
158 }
159
fft_r2c_maybe_out(c10::string_view fname,const Tensor & out,const Tensor & input,IntArrayRef dim,int64_t norm,bool onesided)160 Tensor fft_r2c_maybe_out(
161 c10::string_view fname, const Tensor& out, const Tensor& input,
162 IntArrayRef dim, int64_t norm, bool onesided) {
163 if (out.defined()) {
164 TORCH_CHECK(out.is_complex(), fname,
165 " expects a complex output tensor, but got ", out.scalar_type());
166 auto out_mut = out;
167 return at::_fft_r2c_outf(input, dim, norm, onesided, out_mut);
168 }
169 return at::_fft_r2c(input, dim, norm, onesided);
170 }
171
fft_c2r_maybe_out(c10::string_view fname,const Tensor & out,const Tensor & input,IntArrayRef dim,int64_t norm,SymInt last_dim_size)172 Tensor fft_c2r_maybe_out(
173 c10::string_view fname, const Tensor& out, const Tensor& input,
174 IntArrayRef dim, int64_t norm, SymInt last_dim_size) {
175 // Support out argument if defined, otherwise call functional
176 // variant so autograd works properly.
177 if (out.defined()) {
178 TORCH_CHECK(out.is_floating_point(), fname,
179 " expects a floating point output tensor, but got ", out.scalar_type());
180 auto out_mut = out;
181 return at::_fft_c2r_symint_outf(input, dim, norm, last_dim_size, out_mut);
182 }
183 return at::_fft_c2r_symint(input, dim, norm, last_dim_size);
184 }
185
fft_c2c_maybe_out(c10::string_view fname,const Tensor & out,const Tensor & input,IntArrayRef dim,int64_t norm,bool forward)186 Tensor fft_c2c_maybe_out(
187 c10::string_view fname, const Tensor& out, const Tensor& input,
188 IntArrayRef dim, int64_t norm, bool forward) {
189 if (out.defined()) {
190 TORCH_CHECK(out.is_complex(), fname,
191 " expects a complex output tensor, but got ", out.scalar_type());
192 auto out_mut = out;
193 return at::_fft_c2c_outf(input, dim, norm, forward, out_mut);
194 }
195 return at::_fft_c2c(input, dim, norm, forward);
196 }
197
198 // Complex to real FFT
fft_c2r(c10::string_view function_name,Tensor out,Tensor input,std::optional<SymInt> n_opt,int64_t unwrapped_dim,std::optional<c10::string_view> norm_str,bool forward)199 Tensor fft_c2r(c10::string_view function_name,
200 Tensor out, Tensor input, std::optional<SymInt> n_opt,
201 int64_t unwrapped_dim, std::optional<c10::string_view> norm_str,
202 bool forward) {
203 TORCH_CHECK(!out.defined() || out.is_floating_point(), function_name,
204 " expects a floating point output tensor, but got ", out.scalar_type());
205 input = promote_tensor_fft(input, /*require_complex=*/true);
206 const auto input_dim = input.dim();
207 const auto dim = maybe_wrap_dim(unwrapped_dim, input_dim, /*wrap_scalar=*/false);
208 const auto n = n_opt.value_or(2*(input.sym_sizes()[dim] - 1));
209 TORCH_CHECK(n >= 1, "Invalid number of data points (", n, ") specified");
210 if (n_opt) {
211 input = resize_fft_input(input, dim, n/2 + 1);
212 }
213 const auto norm = norm_from_string(norm_str, forward);
214 if (forward) {
215 // FIXME: _fft does not support complex_output=false with inverse=false
216 input = input.conj();
217 }
218 return fft_c2r_maybe_out(
219 function_name, out, input, dim, static_cast<int64_t>(norm), n);
220 }
221
222 // Real to complex FFT
fft_r2c(c10::string_view function_name,Tensor out,Tensor input,std::optional<SymInt> n_opt,int64_t unwrapped_dim,std::optional<c10::string_view> norm_str,bool forward,bool onesided)223 Tensor fft_r2c(c10::string_view function_name,
224 Tensor out, Tensor input, std::optional<SymInt> n_opt,
225 int64_t unwrapped_dim, std::optional<c10::string_view> norm_str,
226 bool forward, bool onesided) {
227 TORCH_CHECK(!input.is_complex(), function_name,
228 " expects a real input tensor, but got ", input.scalar_type());
229 TORCH_CHECK(!out.defined() || out.is_complex(), function_name,
230 " expects a complex output tensor, but got ", out.scalar_type());
231 input = promote_tensor_fft(input);
232 const auto input_dim = input.dim();
233 const auto dim = maybe_wrap_dim(unwrapped_dim, input_dim, /*wrap_scalar=*/false);
234 const auto n = n_opt.value_or(input.sym_sizes()[dim]);
235 TORCH_CHECK(n >= 1, "Invalid number of data points (", n, ") specified");
236 if (n_opt) {
237 input = resize_fft_input(input, dim, n);
238 }
239
240 const auto norm = norm_from_string(norm_str, forward);
241
242 Tensor ret;
243 if (out.defined() && forward) {
244 ret = at::_fft_r2c_out(out, input, dim, static_cast<int64_t>(norm), onesided);
245 } else {
246 ret = at::_fft_r2c(input, dim, static_cast<int64_t>(norm), onesided);
247 }
248
249 if (!forward) {
250 // FIXME: _fft_r2c doesn't support native r2c IFFT
251 return out.defined() ? at::conj_physical_out(out, ret) : ret.conj();
252 } else {
253 return ret;
254 }
255 }
256
257 // Complex to complex FFT
fft_c2c(c10::string_view function_name,Tensor out,Tensor input,std::optional<SymInt> n_opt,int64_t unwrapped_dim,std::optional<c10::string_view> norm_str,bool forward)258 Tensor fft_c2c(c10::string_view function_name,
259 Tensor out, Tensor input, std::optional<SymInt> n_opt,
260 int64_t unwrapped_dim, std::optional<c10::string_view> norm_str,
261 bool forward) {
262 TORCH_CHECK(input.is_complex(), function_name,
263 " expects a complex input tensor, but got ", input.scalar_type());
264 const auto input_dim = input.dim();
265 const auto dim = maybe_wrap_dim(unwrapped_dim, input_dim, /*wrap_scalar=*/false);
266 const auto n = n_opt.value_or(input.sym_sizes()[dim]);
267 TORCH_CHECK(n >= 1, "Invalid number of data points (", n, ") specified");
268 if (n_opt) {
269 input = resize_fft_input(input, dim, n);
270 }
271 const auto norm = static_cast<int64_t>(norm_from_string(norm_str, forward));
272 return fft_c2c_maybe_out(function_name, out, input, dim, norm, forward);
273 }
274
275 // Dimensions to transform, and the signal shape in those dimensions
276 struct ShapeAndDims {
277 SymDimVector shape;
278 DimVector dim;
279 };
280
281 // Pre-process n-dimensional fft's `s` and `dim` arguments.
282 // Wraps dimensions and applies defaulting behavior.
283 // Also checks transform dims are unique and transform shape is non-empty.
canonicalize_fft_shape_and_dim_args(Tensor input,at::OptionalSymIntArrayRef shape,at::OptionalIntArrayRef dim)284 ShapeAndDims canonicalize_fft_shape_and_dim_args(
285 Tensor input, at::OptionalSymIntArrayRef shape, at::OptionalIntArrayRef dim) {
286 const int64_t input_dim = input.dim();
287 const SymIntArrayRef input_sizes = input.sym_sizes();
288 ShapeAndDims ret;
289
290 if (dim) {
291 ret.dim.resize(dim->size());
292 std::copy(dim->begin(), dim->end(), ret.dim.begin());
293 maybe_wrap_dims(ret.dim, input_dim, /*wrap_scalars=*/false);
294
295 // Check dims are unique
296 DimVector copy = ret.dim;
297 std::sort(copy.begin(), copy.end());
298 auto duplicate = std::adjacent_find(copy.begin(), copy.end());
299 TORCH_CHECK(duplicate == copy.end(), "FFT dims must be unique");
300 }
301
302 if (shape) {
303 // Has shape, may have dim
304 TORCH_CHECK(!dim ||
305 dim->size() == shape->size(),
306 "When given, dim and shape arguments must have the same length");
307 TORCH_CHECK(static_cast<int64_t>(shape->size()) <= input_dim,
308 "Got shape with ", shape->size(), " values but input tensor "
309 "only has ", input_dim, " dimensions.");
310 const int64_t transform_ndim = shape->size();
311 // If shape is given, dims defaults to the last shape.size() dimensions
312 if (!dim) {
313 ret.dim.resize(transform_ndim);
314 std::iota(ret.dim.begin(), ret.dim.end(), input_dim - transform_ndim);
315 }
316
317 // Translate shape of -1 to the default length
318 ret.shape.resize(transform_ndim);
319 for (const auto i : c10::irange(transform_ndim)) {
320 const auto n = (*shape)[i];
321 ret.shape[i] = n == -1 ? input_sizes[ret.dim[i]] : n;
322 }
323 } else if (!dim) {
324 // No shape, no dim
325 ret.dim.resize(input_dim);
326 std::iota(ret.dim.begin(), ret.dim.end(), int64_t{0});
327 ret.shape.resize(input_dim);
328 std::copy(input_sizes.begin(), input_sizes.end(), ret.shape.begin());
329 } else {
330 // No shape, has dim
331 ret.shape.resize(ret.dim.size());
332 for (const auto i : c10::irange(ret.dim.size())) {
333 ret.shape[i] = input_sizes[ret.dim[i]];
334 }
335 }
336
337 for (const auto & shape : ret.shape) {
338 TORCH_CHECK(shape > 0,
339 "Invalid number of data points (", shape, ") specified");
340 }
341
342 return ret;
343 }
344
345 // Complex to complex n-dimensional fft
fftn_c2c(c10::string_view function_name,Tensor out,const Tensor & input,SymIntArrayRef shape,IntArrayRef dim,std::optional<c10::string_view> norm_str,bool forward)346 Tensor fftn_c2c(
347 c10::string_view function_name,
348 Tensor out, const Tensor& input, SymIntArrayRef shape,
349 IntArrayRef dim, std::optional<c10::string_view> norm_str, bool forward) {
350 TORCH_CHECK(input.is_complex(), function_name, " expects a complex input tensor, but got", input.scalar_type());
351 Tensor x = resize_fft_input(input, dim, shape);
352 const auto norm = static_cast<int64_t>(norm_from_string(norm_str, forward));
353 constexpr c10::string_view fname = "fftn";
354 return fft_c2c_maybe_out(fname, out, x, dim, norm, forward);
355 }
356
357 } // namespace (anonymous)
358
359 // torch.fft.fft, analogous to NumPy's numpy.fft.fft
fft_fft_symint(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm)360 Tensor fft_fft_symint(const Tensor& self, std::optional<SymInt> n, int64_t dim,
361 std::optional<c10::string_view> norm) {
362 return self.is_complex() ?
363 fft_c2c("fft", {}, self, n, dim, norm, /*forward=*/true) :
364 fft_r2c("fft", {}, self, n, dim, norm, /*forward=*/true, /*onesided=*/false);
365 }
366
fft_fft_symint_out(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm,Tensor & out)367 Tensor& fft_fft_symint_out(const Tensor& self, std::optional<SymInt> n,
368 int64_t dim, std::optional<c10::string_view> norm, Tensor& out) {
369 if (self.is_complex()) {
370 fft_c2c("fft", out, self, n, dim, norm, /*forward=*/true);
371 } else {
372 fft_r2c("fft", out, self, n, dim, norm, /*forward=*/true, /*onesided=*/false);
373 }
374 return out;
375 }
376
fft_ifft_symint(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm)377 Tensor fft_ifft_symint(const Tensor& self, std::optional<SymInt> n, int64_t dim,
378 std::optional<c10::string_view> norm) {
379 return self.is_complex() ?
380 fft_c2c("ifft", {}, self, n, dim, norm, /*forward=*/false) :
381 fft_r2c("ifft", {}, self, n, dim, norm, /*forward=*/false, /*onesided=*/false);
382 }
383
fft_ifft_symint_out(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm,Tensor & out)384 Tensor& fft_ifft_symint_out(const Tensor& self, std::optional<SymInt> n,
385 int64_t dim, std::optional<c10::string_view> norm, Tensor& out) {
386 if (self.is_complex()) {
387 fft_c2c("ifft", out, self, n, dim, norm, /*forward=*/false);
388 } else {
389 fft_r2c("ifft", out, self, n, dim, norm, /*forward=*/false, /*onesided=*/false);
390 }
391 return out;
392 }
393
fft_rfft_symint(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm)394 Tensor fft_rfft_symint(const Tensor& self, std::optional<SymInt> n, int64_t dim,
395 std::optional<c10::string_view> norm) {
396 return fft_r2c("rfft", {}, self, n, dim, norm, /*forward=*/true, /*onesided=*/true);
397 }
398
fft_rfft_symint_out(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm,Tensor & out)399 Tensor& fft_rfft_symint_out(const Tensor& self, std::optional<SymInt> n,
400 int64_t dim, std::optional<c10::string_view> norm, Tensor& out) {
401 fft_r2c("rfft", out, self, n, dim, norm, /*forward=*/true, /*onesided=*/true);
402 return out;
403 }
404
fft_irfft_symint(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm)405 Tensor fft_irfft_symint(const Tensor& self, std::optional<SymInt> n, int64_t dim,
406 std::optional<c10::string_view> norm) {
407 return fft_c2r("irfft", {}, self, n, dim, norm, /*forward=*/false);
408 }
409
fft_irfft_symint_out(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm,Tensor & out)410 Tensor& fft_irfft_symint_out(const Tensor& self, std::optional<SymInt> n,
411 int64_t dim, std::optional<c10::string_view> norm, Tensor& out) {
412 fft_c2r("irfft", out, self, n, dim, norm, /*forward=*/false);
413 return out;
414 }
415
fft_hfft_symint(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm)416 Tensor fft_hfft_symint(const Tensor& self, std::optional<SymInt> n, int64_t dim,
417 std::optional<c10::string_view> norm) {
418 return fft_c2r("hfft", {}, self, n, dim, norm, /*forward=*/true);
419 }
420
fft_hfft_symint_out(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm,Tensor & out)421 Tensor& fft_hfft_symint_out(const Tensor& self, std::optional<SymInt> n,
422 int64_t dim, std::optional<c10::string_view> norm, Tensor& out) {
423 fft_c2r("hfft", out, self, n, dim, norm, /*forward=*/true);
424 return out;
425 }
426
fft_ihfft_symint(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm)427 Tensor fft_ihfft_symint(const Tensor& self, std::optional<SymInt> n, int64_t dim,
428 std::optional<c10::string_view> norm) {
429 return fft_r2c("ihfft", {}, self, n, dim, norm, /*forward=*/false, /*onesided=*/true);
430 }
431
fft_ihfft_symint_out(const Tensor & self,std::optional<SymInt> n,int64_t dim,std::optional<c10::string_view> norm,Tensor & out)432 Tensor& fft_ihfft_symint_out(const Tensor& self, std::optional<SymInt> n,
433 int64_t dim, std::optional<c10::string_view> norm, Tensor& out) {
434 fft_r2c("ihfft", out, self, n, dim, norm, /*forward=*/false, /*onesided=*/true);
435 return out;
436 }
437
fft_fftn_symint(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm)438 Tensor fft_fftn_symint(const Tensor& self, at::OptionalSymIntArrayRef s,
439 at::OptionalIntArrayRef dim,
440 std::optional<c10::string_view> norm) {
441 auto desc = canonicalize_fft_shape_and_dim_args(self, s, dim);
442 // TODO: For real input, perform rfftn then mirror with conjugate symmetry
443 Tensor input = promote_tensor_fft(self, /*require_complex=*/true);
444 return fftn_c2c("fftn", {}, input, desc.shape, desc.dim, norm, /*forward=*/true);
445 }
446
fft_fftn_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm,Tensor & out)447 Tensor& fft_fftn_symint_out(const Tensor& self,
448 at::OptionalSymIntArrayRef s,
449 at::OptionalIntArrayRef dim,
450 std::optional<c10::string_view> norm, Tensor& out) {
451 auto desc = canonicalize_fft_shape_and_dim_args(self, s, dim);
452 // TODO: For real input, perform rfftn then mirror with conjugate symmetry
453 Tensor input = promote_tensor_fft(self, /*require_complex=*/true);
454 fftn_c2c("fftn", out, input, desc.shape, desc.dim, norm, /*forward=*/true);
455 return out;
456 }
457
fft_ifftn_symint(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm)458 Tensor fft_ifftn_symint(const Tensor& self, at::OptionalSymIntArrayRef s,
459 at::OptionalIntArrayRef dim,
460 std::optional<c10::string_view> norm) {
461 auto desc = canonicalize_fft_shape_and_dim_args(self, s, dim);
462 Tensor input = promote_tensor_fft(self, /*require_complex=*/true);
463 return fftn_c2c("ifftn", {}, input, desc.shape, desc.dim, norm, /*forward=*/false);
464 }
465
fft_ifftn_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm,Tensor & out)466 Tensor& fft_ifftn_symint_out(const Tensor& self,
467 at::OptionalSymIntArrayRef s,
468 at::OptionalIntArrayRef dim,
469 std::optional<c10::string_view> norm, Tensor& out) {
470 auto desc = canonicalize_fft_shape_and_dim_args(self, s, dim);
471 Tensor input = promote_tensor_fft(self, /*require_complex=*/true);
472 fftn_c2c("ifftn", out, input, desc.shape, desc.dim, norm, /*forward=*/false);
473 return out;
474 }
475
fft_rfftn_impl(Tensor out,const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,const std::optional<c10::string_view> & norm_str)476 static Tensor fft_rfftn_impl(Tensor out, const Tensor& self,
477 at::OptionalSymIntArrayRef s,
478 at::OptionalIntArrayRef dim,
479 const std::optional<c10::string_view>& norm_str) {
480 TORCH_CHECK(!self.is_complex(), "rfftn expects a real-valued input tensor, but got ", self.scalar_type());
481 auto desc = canonicalize_fft_shape_and_dim_args(self, s, dim);
482 TORCH_CHECK(!desc.shape.empty(), "rfftn must transform at least one axis");
483 Tensor input = promote_tensor_fft(self, /*require_complex=*/false);
484 Tensor x = resize_fft_input(input, desc.dim, desc.shape);
485 const auto norm = static_cast<int64_t>(norm_from_string(norm_str, /*forward=*/true));
486 constexpr c10::string_view fname = "rfftn";
487 return fft_r2c_maybe_out(fname, out, x, desc.dim, norm, /*onesided=*/true);
488 }
489
fft_rfftn_symint(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm_str)490 Tensor fft_rfftn_symint(const Tensor& self, at::OptionalSymIntArrayRef s,
491 at::OptionalIntArrayRef dim,
492 std::optional<c10::string_view> norm_str) {
493 return fft_rfftn_impl({}, self, s, dim, norm_str);
494 }
495
fft_rfftn_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm_str,Tensor & out)496 Tensor& fft_rfftn_symint_out(const Tensor& self,
497 at::OptionalSymIntArrayRef s,
498 at::OptionalIntArrayRef dim,
499 std::optional<c10::string_view> norm_str, Tensor& out) {
500 fft_rfftn_impl(out, self, s, dim, norm_str);
501 return out;
502 }
503
canonicalize_fft_c2r_shape_and_dim_args(c10::string_view fname,const Tensor & self,const at::OptionalSymIntArrayRef & s,const at::OptionalIntArrayRef & dims,SymInt & last_dim_size)504 static ShapeAndDims canonicalize_fft_c2r_shape_and_dim_args(
505 c10::string_view fname, const Tensor& self,
506 const at::OptionalSymIntArrayRef& s,
507 const at::OptionalIntArrayRef& dims,
508 SymInt& last_dim_size) {
509 auto desc = canonicalize_fft_shape_and_dim_args(self, s, dims);
510 TORCH_CHECK(!desc.shape.empty(), fname, " must transform at least one axis");
511
512 // Expected output size of the hermitian-symmetric dimension
513 last_dim_size = [&] {
514 // Fixup default shape handling in the last dimension,
515 if (!s.has_value() || (s->back() == -1)) {
516 const auto last_dim = desc.dim.back();
517 return 2 * (self.sym_sizes()[last_dim] - 1);
518 }
519 return desc.shape.back();
520 }();
521 TORCH_CHECK(last_dim_size >= 1, "Invalid number of data points (", last_dim_size, ") specified");
522
523 // Expected input size of the complex-hermitian data
524 desc.shape.back() = last_dim_size / 2 + 1;
525 return desc;
526 }
527
fft_irfftn_impl(Tensor out,const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,const std::optional<c10::string_view> & norm_str)528 static Tensor fft_irfftn_impl(Tensor out, const Tensor& self,
529 at::OptionalSymIntArrayRef s,
530 at::OptionalIntArrayRef dim,
531 const std::optional<c10::string_view>& norm_str) {
532 SymInt last_dim_size = 0;
533 auto desc = canonicalize_fft_c2r_shape_and_dim_args(
534 "irfftn", self, s, dim, last_dim_size);
535 Tensor input = promote_tensor_fft(self, /*require_complex=*/true);
536 Tensor x = resize_fft_input(input, desc.dim, desc.shape);
537 const auto norm = static_cast<int64_t>(norm_from_string(norm_str, /*forward=*/false));
538 constexpr c10::string_view fname = "irfftn";
539 return fft_c2r_maybe_out(fname, out, x, desc.dim, norm, last_dim_size);
540 }
541
fft_irfftn_symint(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm_str)542 Tensor fft_irfftn_symint(const Tensor& self,
543 at::OptionalSymIntArrayRef s,
544 at::OptionalIntArrayRef dim,
545 std::optional<c10::string_view> norm_str) {
546 return fft_irfftn_impl({}, self, s, dim, norm_str);
547 }
548
fft_irfftn_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm_str,Tensor & out)549 Tensor& fft_irfftn_symint_out(const Tensor& self,
550 at::OptionalSymIntArrayRef s,
551 at::OptionalIntArrayRef dim,
552 std::optional<c10::string_view> norm_str, Tensor& out) {
553 fft_irfftn_impl(out, self, s, dim, norm_str);
554 return out;
555 }
556
fft_hfftn_impl(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm_str,const Tensor & out)557 static Tensor fft_hfftn_impl(
558 const Tensor& self,
559 at::OptionalSymIntArrayRef s,
560 at::OptionalIntArrayRef dim,
561 std::optional<c10::string_view> norm_str,
562 const Tensor& out) {
563 constexpr c10::string_view fname = "hfftn";
564 SymInt last_dim_size = 0;
565 auto desc = canonicalize_fft_c2r_shape_and_dim_args(
566 fname, self, s, dim, last_dim_size);
567 auto input = promote_tensor_fft(self, /*require_complex=*/true);
568 auto x = resize_fft_input(input, desc.dim, desc.shape);
569 const auto norm = static_cast<int64_t>(
570 norm_from_string(norm_str, /*forward=*/true));
571
572 Tensor tmp;
573 if (desc.dim.size() > 1) {
574 auto c2c_dims = IntArrayRef(desc.dim).slice(0, desc.dim.size() - 1);
575 tmp = at::_fft_c2c(x, c2c_dims, norm, /*forward=*/true);
576 } else {
577 tmp = x;
578 }
579
580 const auto last_dim = desc.dim.back();
581 tmp = tmp.conj();
582 return fft_c2r_maybe_out(fname, out, tmp, last_dim, norm, last_dim_size);
583 }
584
fft_hfftn_symint(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm)585 Tensor fft_hfftn_symint(
586 const Tensor& self,
587 at::OptionalSymIntArrayRef s,
588 at::OptionalIntArrayRef dim,
589 std::optional<c10::string_view> norm) {
590 return fft_hfftn_impl(self, s, dim, norm, {});
591 }
592
fft_hfftn_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm,const Tensor & out)593 const Tensor& fft_hfftn_symint_out(
594 const Tensor& self,
595 at::OptionalSymIntArrayRef s,
596 at::OptionalIntArrayRef dim, std::optional<c10::string_view> norm,
597 const Tensor& out) {
598 fft_hfftn_impl(self, s, dim, norm, out);
599 return out;
600 }
601
fft_ihfftn_impl(const Tensor & self,const at::OptionalSymIntArrayRef & s,const at::OptionalIntArrayRef & dim,const std::optional<c10::string_view> & norm_str,const Tensor & out)602 static Tensor fft_ihfftn_impl(
603 const Tensor& self,
604 const at::OptionalSymIntArrayRef& s,
605 const at::OptionalIntArrayRef& dim,
606 const std::optional<c10::string_view>& norm_str,
607 const Tensor& out) {
608 constexpr c10::string_view fname = "ihfftn";
609 auto desc = canonicalize_fft_shape_and_dim_args(self, s, dim);
610 TORCH_CHECK(!desc.shape.empty(), "ihfftn must transform at least one axis");
611 auto input = promote_tensor_fft(self, /*require_complex=*/false);
612 auto x = resize_fft_input(input, desc.dim, desc.shape);
613 const auto norm = static_cast<int64_t>(
614 norm_from_string(norm_str, /*forward=*/false));
615
616 const auto last_dim = desc.dim.back();
617 auto tmp = at::_fft_r2c(x, last_dim, norm, /*onesided=*/true);
618 if (desc.dim.size() == 1) {
619 return out.defined() ? at::conj_physical_out(tmp, out) : tmp.conj();
620 }
621
622 tmp = at::conj_physical(tmp);
623 auto c2c_dims = IntArrayRef(desc.dim).slice(0, desc.dim.size() - 1);
624 return fft_c2c_maybe_out(fname, out, tmp, c2c_dims, norm, /*forward=*/false);
625 }
626
fft_ihfftn_symint(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm)627 Tensor fft_ihfftn_symint(
628 const Tensor& self,
629 at::OptionalSymIntArrayRef s,
630 at::OptionalIntArrayRef dim,
631 std::optional<c10::string_view> norm) {
632 return fft_ihfftn_impl(self, s, dim, norm, {});
633 }
634
fft_ihfftn_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,at::OptionalIntArrayRef dim,std::optional<c10::string_view> norm,const Tensor & out)635 const Tensor& fft_ihfftn_symint_out(
636 const Tensor& self,
637 at::OptionalSymIntArrayRef s,
638 at::OptionalIntArrayRef dim,
639 std::optional<c10::string_view> norm,
640 const Tensor& out) {
641 fft_ihfftn_impl(self, s, dim, norm, out);
642 return out;
643 }
644
fft_fft2_symint(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm)645 Tensor fft_fft2_symint(const Tensor& self, at::OptionalSymIntArrayRef s,
646 IntArrayRef dim, std::optional<c10::string_view> norm) {
647 return native::fft_fftn_symint(self, s, dim, std::move(norm));
648 }
649
fft_fft2_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm,Tensor & out)650 Tensor& fft_fft2_symint_out(const Tensor& self, at::OptionalSymIntArrayRef s,
651 IntArrayRef dim, std::optional<c10::string_view> norm, Tensor& out) {
652 return native::fft_fftn_symint_out(self, s, dim, std::move(norm), out);
653 }
654
fft_ifft2_symint(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm)655 Tensor fft_ifft2_symint(const Tensor& self, at::OptionalSymIntArrayRef s,
656 IntArrayRef dim, std::optional<c10::string_view> norm) {
657 return native::fft_ifftn_symint(self, s, dim, std::move(norm));
658 }
659
fft_ifft2_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm,Tensor & out)660 Tensor& fft_ifft2_symint_out(const Tensor& self, at::OptionalSymIntArrayRef s,
661 IntArrayRef dim, std::optional<c10::string_view> norm, Tensor& out) {
662 return native::fft_ifftn_symint_out(self, s, dim, std::move(norm), out);
663 }
664
fft_rfft2_symint(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm)665 Tensor fft_rfft2_symint(const Tensor& self, at::OptionalSymIntArrayRef s,
666 IntArrayRef dim, std::optional<c10::string_view> norm) {
667 return native::fft_rfftn_symint(self, s, dim, std::move(norm));
668 }
669
fft_rfft2_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm,Tensor & out)670 Tensor& fft_rfft2_symint_out(const Tensor& self, at::OptionalSymIntArrayRef s,
671 IntArrayRef dim, std::optional<c10::string_view> norm, Tensor& out) {
672 return native::fft_rfftn_symint_out(self, s, dim, std::move(norm), out);
673 }
674
fft_irfft2_symint(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm)675 Tensor fft_irfft2_symint(const Tensor& self, at::OptionalSymIntArrayRef s,
676 IntArrayRef dim, std::optional<c10::string_view> norm) {
677 return native::fft_irfftn_symint(self, s, dim, std::move(norm));
678 }
679
fft_irfft2_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm,Tensor & out)680 Tensor& fft_irfft2_symint_out(const Tensor& self, at::OptionalSymIntArrayRef s,
681 IntArrayRef dim, std::optional<c10::string_view> norm, Tensor& out) {
682 return native::fft_irfftn_symint_out(self, s, dim, std::move(norm), out);
683 }
684
fft_hfft2_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm,const Tensor & out)685 const Tensor& fft_hfft2_symint_out(
686 const Tensor& self, at::OptionalSymIntArrayRef s, IntArrayRef dim,
687 std::optional<c10::string_view> norm, const Tensor& out) {
688 return native::fft_hfftn_symint_out(self, s, dim, std::move(norm), out);
689 }
690
fft_hfft2_symint(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm)691 Tensor fft_hfft2_symint(const Tensor& self, at::OptionalSymIntArrayRef s,
692 IntArrayRef dim, std::optional<c10::string_view> norm) {
693 return native::fft_hfftn_symint(self, s, dim, std::move(norm));
694 }
695
fft_ihfft2_symint_out(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm,const Tensor & out)696 const Tensor& fft_ihfft2_symint_out(
697 const Tensor& self, at::OptionalSymIntArrayRef s, IntArrayRef dim,
698 std::optional<c10::string_view> norm, const Tensor& out) {
699 return native::fft_ihfftn_symint_out(self, s, dim, std::move(norm), out);
700 }
701
fft_ihfft2_symint(const Tensor & self,at::OptionalSymIntArrayRef s,IntArrayRef dim,std::optional<c10::string_view> norm)702 Tensor fft_ihfft2_symint(const Tensor& self, at::OptionalSymIntArrayRef s,
703 IntArrayRef dim, std::optional<c10::string_view> norm) {
704 return native::fft_ihfftn_symint(self, s, dim, std::move(norm));
705 }
706
fft_fftfreq_out(int64_t n,double d,Tensor & out)707 Tensor& fft_fftfreq_out(int64_t n, double d, Tensor& out) {
708 ScalarType dtype = out.scalar_type();
709 TORCH_CHECK(at::isFloatingType(dtype) || at::isComplexType(dtype),
710 "fftfreq requires a floating point or complex dtype");
711 // TODO: arange doesn't have complex support
712 at::arange_out(out, n);
713 auto right_slice = out.slice(0, (n + 1) / 2, 0);
714 at::arange_out(right_slice, -(n/2), 0, 1);
715 return out.mul_(1.0 / (n * d)); // Slightly faster than div_(n*d)
716 }
717
fft_fftfreq(int64_t n,double d,std::optional<ScalarType> dtype,std::optional<Layout> layout,std::optional<Device> device,std::optional<bool> pin_memory)718 Tensor fft_fftfreq(int64_t n, double d,
719 std::optional<ScalarType> dtype,
720 std::optional<Layout> layout,
721 std::optional<Device> device,
722 std::optional<bool> pin_memory) {
723 // See [Note: hacky wrapper removal for TensorOptions]
724 TensorOptions options = TensorOptions().dtype(dtype).layout(layout).device(device).pinned_memory(pin_memory);
725
726 auto out = at::empty({n}, options);
727 return native::fft_fftfreq_out(n, d, out);
728 }
729
fft_rfftfreq_out(int64_t n,double d,Tensor & out)730 Tensor& fft_rfftfreq_out(int64_t n, double d, Tensor& out) {
731 ScalarType dtype = out.scalar_type();
732 TORCH_CHECK(at::isFloatingType(dtype) || at::isComplexType(dtype),
733 "rfftfreq requires a floating point or complex dtype");
734 // TODO: arange doesn't have complex support
735 native::arange_out(n/2 + 1, out);
736 return out.mul_(1.0 / (n * d)); // Slightly faster than div_(n*d)
737 }
738
fft_rfftfreq(int64_t n,double d,std::optional<ScalarType> dtype,std::optional<Layout> layout,std::optional<Device> device,std::optional<bool> pin_memory)739 Tensor fft_rfftfreq(int64_t n, double d,
740 std::optional<ScalarType> dtype,
741 std::optional<Layout> layout,
742 std::optional<Device> device,
743 std::optional<bool> pin_memory) {
744 // See [Note: hacky wrapper removal for TensorOptions]
745 TensorOptions options = TensorOptions().dtype(dtype).layout(layout).device(device).pinned_memory(pin_memory);
746
747 auto out = at::empty({n/2 + 1}, options);
748 return native::fft_rfftfreq_out(n, d, out);
749 }
750
751 // If an array dim is specified, wraps them according to self.dim().
752 // Otherwise returns a vector of all dims.
default_alldims(const Tensor & self,at::OptionalIntArrayRef dim_opt)753 static DimVector default_alldims(const Tensor& self, at::OptionalIntArrayRef dim_opt) {
754 DimVector dim;
755 if (dim_opt) {
756 IntArrayRef dim_unwrapped = *dim_opt;
757 dim.resize(dim_unwrapped.size());
758 for (const auto i : c10::irange(dim.size())) {
759 dim[i] = maybe_wrap_dim(dim_unwrapped[i], self.dim(), /*wrap_scalars=*/false);
760 }
761 } else {
762 dim.resize(self.dim());
763 std::iota(dim.begin(), dim.end(), 0);
764 }
765 return dim;
766 }
767
fft_fftshift(const Tensor & x,at::OptionalIntArrayRef dim_opt)768 Tensor fft_fftshift(const Tensor& x, at::OptionalIntArrayRef dim_opt) {
769 auto dim = default_alldims(x, dim_opt);
770
771 SymIntArrayRef x_sizes = x.sym_sizes();
772 SymDimVector shift(dim.size());
773 for (const auto i : c10::irange(dim.size())) {
774 shift[i] = x_sizes[dim[i]] / 2;
775 }
776
777 return at::roll_symint(x, shift, dim);
778 }
779
fft_ifftshift(const Tensor & x,at::OptionalIntArrayRef dim_opt)780 Tensor fft_ifftshift(const Tensor& x, at::OptionalIntArrayRef dim_opt) {
781 auto dim = default_alldims(x, dim_opt);
782
783 SymIntArrayRef x_sizes = x.sym_sizes();
784 SymDimVector shift(dim.size());
785 for (const auto i : c10::irange(dim.size())) {
786 shift[i] = (x_sizes[dim[i]] + 1) / 2;
787 }
788
789 return at::roll_symint(x, shift, dim);
790 }
791
792
793 // We call the following methods via CUDA hooks because they are really only
794 // valid when CUDA is available. See native/cuda/CuFFTPlanCache.h for more details.
_cufft_get_plan_cache_max_size(DeviceIndex device_index)795 int64_t _cufft_get_plan_cache_max_size(DeviceIndex device_index) {
796 return detail::getCUDAHooks().cuFFTGetPlanCacheMaxSize(device_index);
797 }
798
_cufft_set_plan_cache_max_size(DeviceIndex device_index,int64_t max_size)799 void _cufft_set_plan_cache_max_size(DeviceIndex device_index, int64_t max_size) {
800 detail::getCUDAHooks().cuFFTSetPlanCacheMaxSize(device_index, max_size);
801 }
802
_cufft_get_plan_cache_size(DeviceIndex device_index)803 int64_t _cufft_get_plan_cache_size(DeviceIndex device_index) {
804 return detail::getCUDAHooks().cuFFTGetPlanCacheSize(device_index);
805 }
806
_cufft_clear_plan_cache(DeviceIndex device_index)807 void _cufft_clear_plan_cache(DeviceIndex device_index) {
808 detail::getCUDAHooks().cuFFTClearPlanCache(device_index);
809 }
810
811 template <typename Stream, typename T>
write_opt(Stream & SS,const std::optional<T> & value)812 static Stream& write_opt(Stream& SS, const std::optional<T>& value) {
813 if (value) {
814 SS << *value;
815 } else {
816 SS << "None";
817 }
818 return SS;
819 }
820
821 /* Short-time Fourier Transform, for signal analysis.
822 *
823 * This is modeled after librosa but with support for complex time-domain
824 * signals and complex windows.
825 */
stft(const Tensor & self,const int64_t n_fft,const std::optional<int64_t> hop_lengthOpt,const std::optional<int64_t> win_lengthOpt,const std::optional<Tensor> & window_opt,const bool center,c10::string_view mode,const bool normalized,const std::optional<bool> onesidedOpt,const std::optional<bool> return_complexOpt)826 Tensor stft(const Tensor& self, const int64_t n_fft, const std::optional<int64_t> hop_lengthOpt,
827 const std::optional<int64_t> win_lengthOpt, const std::optional<Tensor>& window_opt,
828 const bool center, c10::string_view mode, const bool normalized,
829 const std::optional<bool> onesidedOpt, const std::optional<bool> return_complexOpt) {
830 // See [Note: hacky wrapper removal for optional tensor]
831 c10::MaybeOwned<Tensor> window_maybe_owned = at::borrow_from_optional_tensor(window_opt);
832 const Tensor& window = *window_maybe_owned;
833
834 // Warn if window is not provided
835 if (!window.defined()) {
836 TORCH_WARN_ONCE(
837 "A window was not provided. A rectangular window will be applied,"
838 "which is known to cause spectral leakage. "
839 "Other windows such as torch.hann_window or torch.hamming_window "
840 "can are recommended to reduce spectral leakage."
841 "To suppress this warning and use a rectangular window, explicitly set "
842 "`window=torch.ones(n_fft, device=<device>)`.");
843 }
844
845 #define REPR(SS) \
846 SS << "stft(" << self.toString() << self.sizes() << ", n_fft=" << n_fft \
847 << ", hop_length=" << hop_length << ", win_length=" << win_length \
848 << ", window="; \
849 if (window.defined()) { \
850 SS << window.toString() << "{" << window.sizes() << "}"; \
851 } else { \
852 SS << "None"; \
853 } \
854 SS << ", normalized=" << normalized << ", onesided="; \
855 write_opt(SS, onesidedOpt) << ", return_complex="; \
856 write_opt(SS, return_complexOpt) << ") "
857
858 TORCH_CHECK(!window.defined() || window.device() == self.device(),
859 "stft input and window must be on the same device but got self on ",
860 self.device(), " and window on ", window.device())
861
862 // default_init hop_length and win_length
863 auto hop_length = hop_lengthOpt.value_or(n_fft >> 2);
864 auto win_length = win_lengthOpt.value_or(n_fft);
865 const bool return_complex = return_complexOpt.value_or(
866 self.is_complex() || (window.defined() && window.is_complex()));
867 if (!return_complex) {
868 TORCH_CHECK(return_complexOpt.has_value(),
869 "stft requires the return_complex parameter be given for real inputs, "
870 "and will further require that return_complex=True in a future PyTorch release.");
871
872
873 TORCH_WARN_ONCE(
874 "stft with return_complex=False is deprecated. In a future pytorch "
875 "release, stft will return complex tensors for all inputs, and "
876 "return_complex=False will raise an error.\n"
877 "Note: you can still call torch.view_as_real on the complex output to "
878 "recover the old return format.");
879 }
880
881 if (!at::isFloatingType(self.scalar_type()) && !at::isComplexType(self.scalar_type())) {
882 std::ostringstream ss;
883 REPR(ss) << ": expected a tensor of floating point or complex values";
884 AT_ERROR(ss.str());
885 }
886 if (self.dim() > 2 || self.dim() < 1) {
887 std::ostringstream ss;
888 REPR(ss) << ": expected a 1D or 2D tensor";
889 AT_ERROR(ss.str());
890 }
891 Tensor input = self;
892 if (self.dim() == 1) {
893 input = input.unsqueeze(0);
894 }
895
896 if (center) {
897 const auto input_shape = input.sizes();
898 const auto input_dim = input_shape.size();
899 const auto extra_dims = std::max(size_t{3}, input_dim) - input_dim;
900 const auto pad_amount = n_fft / 2;
901
902 DimVector extended_shape(extra_dims, 1);
903 extended_shape.append(input_shape.begin(), input_shape.end());
904 input = at::pad(input.view(extended_shape), {pad_amount, pad_amount}, mode);
905 input = input.view(IntArrayRef(input.sizes()).slice(extra_dims));
906 }
907
908 int64_t batch = input.size(0);
909 int64_t len = input.size(1);
910 if (n_fft <= 0 || n_fft > len) {
911 std::ostringstream ss;
912 REPR(ss) << ": expected 0 < n_fft < " << len
913 << ", but got n_fft=" << win_length;
914 AT_ERROR(ss.str());
915 }
916 if (hop_length <= 0) {
917 std::ostringstream ss;
918 REPR(ss) << ": expected hop_length > 0, but got hop_length=" << hop_length;
919 AT_ERROR(ss.str());
920 }
921 if (win_length <= 0 || win_length > n_fft) {
922 std::ostringstream ss;
923 REPR(ss) << ": expected 0 < win_length <= n_fft, but got win_length="
924 << win_length;
925 AT_ERROR(ss.str());
926 }
927 if (window.defined() && (window.dim() != 1 || window.size(0) != win_length)) {
928 std::ostringstream ss;
929 REPR(ss) << ": expected a 1D window tensor of size equal to win_length="
930 << win_length << ", but got window with size " << window.sizes();
931 AT_ERROR(ss.str());
932 }
933 #undef REPR
934 auto window_ = window;
935 if (win_length < n_fft) {
936 // pad center
937 auto left = (n_fft - win_length) / 2;
938 if (window.defined()) {
939 window_ = at::zeros({n_fft}, window.options());
940 window_.narrow(0, left, win_length).copy_(window);
941 } else {
942 window_ = at::zeros({n_fft}, self.options());
943 window_.narrow(0, left, win_length).fill_(1);
944 }
945 }
946 int64_t n_frames = 1 + (len - n_fft) / hop_length;
947 // time2col
948 input = input.as_strided(
949 {batch, n_frames, n_fft},
950 {input.stride(0), hop_length * input.stride(1), input.stride(1)}
951 );
952 if (window_.defined()) {
953 input = input.mul(window_);
954 }
955
956 // FFT and transpose to get (batch x fft_size x num_frames)
957 const bool complex_fft = input.is_complex();
958 const auto onesided = onesidedOpt.value_or(!complex_fft);
959
960 const fft_norm_mode norm = normalized ? fft_norm_mode::by_root_n : fft_norm_mode::none;
961 Tensor out;
962 if (complex_fft) {
963 TORCH_CHECK(!onesided, "Cannot have onesided output if window or input is complex");
964 out = at::_fft_c2c(input, input.dim() - 1, static_cast<int64_t>(norm), /*forward=*/true);
965 } else {
966 out = at::_fft_r2c(input, input.dim() - 1, static_cast<int64_t>(norm), onesided);
967 }
968 out.transpose_(1, 2);
969
970 if (self.dim() == 1) {
971 out.squeeze_(0);
972 }
973
974 if (return_complex) {
975 return out;
976 } else {
977 return at::view_as_real(out);
978 }
979 }
980
stft(const Tensor & self,const int64_t n_fft,const std::optional<int64_t> hop_lengthOpt,const std::optional<int64_t> win_lengthOpt,const std::optional<Tensor> & window_opt,const bool normalized,const std::optional<bool> onesidedOpt,const std::optional<bool> return_complexOpt)981 Tensor stft(
982 const Tensor& self, const int64_t n_fft, const std::optional<int64_t> hop_lengthOpt,
983 const std::optional<int64_t> win_lengthOpt, const std::optional<Tensor>& window_opt,
984 const bool normalized,
985 const std::optional<bool> onesidedOpt, const std::optional<bool> return_complexOpt) {
986 return at::stft(
987 self, n_fft, hop_lengthOpt, win_lengthOpt, window_opt,
988 /*center=*/false, /*mode=*/"constant", normalized, onesidedOpt,
989 return_complexOpt);
990 }
991
992 // Create complex tensor from the old style of real tensor with size=(..., 2)
993 // This is to support istft in the transition to requiring complex input.
994 // NOTE: This may return a view of the input tensor, or might clone if necessary
as_complex(const Tensor & self)995 static Tensor as_complex(const Tensor& self) {
996 const bool can_view_as_complex = [&]{
997 auto strides = self.strides();
998 for (const auto i : c10::irange(static_cast<int64_t>(strides.size()) - 1)) {
999 if (strides[i] % 2 != 0) {
1000 return false;
1001 }
1002 }
1003 return strides.back() == 1 && self.storage_offset() % 2 == 0;
1004 }();
1005 return at::view_as_complex(can_view_as_complex ? self : self.clone(MemoryFormat::Contiguous));
1006 }
1007
1008 /* Inverse Short-time Fourier Transform
1009 *
1010 * This is modeled after librosa but with support for complex time-domain
1011 * signals and complex windows.
1012 */
istft(const Tensor & self,const int64_t n_fft,const std::optional<int64_t> hop_lengthOpt,const std::optional<int64_t> win_lengthOpt,const std::optional<Tensor> & window_opt,const bool center,const bool normalized,const std::optional<bool> onesidedOpt,const std::optional<int64_t> lengthOpt,const bool return_complex)1013 Tensor istft(const Tensor& self, const int64_t n_fft, const std::optional<int64_t> hop_lengthOpt,
1014 const std::optional<int64_t> win_lengthOpt, const std::optional<Tensor>& window_opt,
1015 const bool center, const bool normalized, const std::optional<bool> onesidedOpt,
1016 const std::optional<int64_t> lengthOpt, const bool return_complex) {
1017 // See [Note: hacky wrapper removal for optional tensor]
1018 c10::MaybeOwned<Tensor> window_maybe_owned = at::borrow_from_optional_tensor(window_opt);
1019 const Tensor& window = *window_maybe_owned;
1020
1021 // Warn if window is not provided
1022 if (!window.defined()) {
1023 TORCH_WARN_ONCE(
1024 "A window was not provided. A rectangular window will be applied."
1025 "Please provide the same window used by stft to make the inversion "
1026 "lossless."
1027 "To suppress this warning and use a rectangular window, explicitly set "
1028 "`window=torch.ones(n_fft, device=<device>)`.");
1029 }
1030
1031 #define REPR(SS) \
1032 SS << "istft(" << self.toString() << self.sizes() << ", n_fft=" << n_fft \
1033 << ", hop_length=" << hop_length << ", win_length=" << win_length \
1034 << ", window="; \
1035 if (window.defined()) { \
1036 SS << window.toString() << "{" << window.sizes() << "}"; \
1037 } else { \
1038 SS << "None"; \
1039 } \
1040 SS << ", center=" << center << ", normalized=" << normalized << ", onesided="; \
1041 write_opt(SS, onesidedOpt) << ", length="; \
1042 write_opt(SS, lengthOpt) << ", return_complex=" << return_complex << ") "
1043
1044 TORCH_CHECK(!window.defined() || window.device() == self.device(),
1045 "istft input and window must be on the same device but got self on ",
1046 self.device(), " and window on ", window.device())
1047
1048 // default_init hop_length and win_length
1049 const auto hop_length = hop_lengthOpt.value_or(n_fft >> 2);
1050 const auto win_length = win_lengthOpt.value_or(n_fft);
1051
1052 TORCH_CHECK(self.is_complex(),
1053 "istft requires a complex-valued input tensor matching the "
1054 "output from stft with return_complex=True.");
1055 Tensor input = at::view_as_real(self.resolve_conj());
1056 const auto input_dim = input.dim();
1057 const auto n_frames = input.size(-2);
1058 const auto fft_size = input.size(-3);
1059
1060 const auto expected_output_signal_len = n_fft + hop_length * (n_frames - 1);
1061
1062 const auto options = at::device(input.device()).dtype(input.dtype());
1063 if (input.numel() == 0) {
1064 std::ostringstream ss;
1065 REPR(ss) << ": input tensor cannot be empty.";
1066 AT_ERROR(ss.str());
1067 }
1068 if (input_dim != 3 && input_dim != 4) {
1069 std::ostringstream ss;
1070 REPR(ss) << ": expected a tensor with 3 or 4 dimensions, but got " << input_dim;
1071 AT_ERROR(ss.str());
1072 }
1073 if (input.size(-1) != 2) {
1074 std::ostringstream ss;
1075 REPR(ss) << ": expected the last dimension to be 2 (corresponding to real and imaginary parts), but got " << self.size(-1);
1076 AT_ERROR(ss.str());
1077 }
1078
1079 const bool onesided = onesidedOpt.value_or(fft_size != n_fft);
1080 if (onesided) {
1081 if (n_fft / 2 + 1 != fft_size) {
1082 std::ostringstream ss;
1083 REPR(ss) << ": expected the frequency dimension (3rd to the last) of the input tensor to match n_fft / 2 + 1 when onesided=True, but got " << fft_size;
1084 AT_ERROR(ss.str());
1085 }
1086 } else {
1087 if (n_fft != fft_size) {
1088 std::ostringstream ss;
1089 REPR(ss) << ": expected the frequency dimension (3rd to the last) of the input tensor to match n_fft when onesided=False, but got " << fft_size;
1090 AT_ERROR(ss.str());
1091 }
1092 }
1093
1094 if (!(0 < hop_length && hop_length <= win_length)) {
1095 std::ostringstream ss;
1096 REPR(ss) << ": expected 0 < hop_length <= win_length";
1097 AT_ERROR(ss.str());
1098 }
1099
1100 if (!(0 < win_length && win_length <= n_fft)) {
1101 std::ostringstream ss;
1102 REPR(ss) << ": expected 0 < win_length <= n_fft";
1103 AT_ERROR(ss.str());
1104 }
1105 if (window.defined()) {
1106 if (window.dim() != 1 || window.size(0) != win_length) {
1107 std::ostringstream ss;
1108 REPR(ss) << ": Invalid window shape. window has to be 1D and length of `win_length`";
1109 AT_ERROR(ss.str());
1110 }
1111 }
1112
1113 Tensor window_tmp = window.defined() ? window : at::ones({win_length,}, options);
1114 if (win_length != n_fft) {
1115 // center window by padding zeros on right and left side
1116 int64_t left = (n_fft - win_length) / 2;
1117 window_tmp = at::constant_pad_nd(window_tmp, {left, n_fft - win_length - left}, 0);
1118 TORCH_INTERNAL_ASSERT(window_tmp.size(0) == n_fft);
1119 }
1120
1121 if (input_dim == 3) {
1122 input = input.unsqueeze(0);
1123 }
1124
1125 input = as_complex(input.transpose(1, 2)); // size: (channel, n_frames, fft_size)
1126
1127 const fft_norm_mode norm = normalized ? fft_norm_mode::by_root_n : fft_norm_mode::by_n;
1128 if (return_complex) {
1129 TORCH_CHECK(!onesided, "Cannot have onesided output if window or input is complex");
1130 input = at::_fft_c2c(input, input.dim() - 1, static_cast<int64_t>(norm), /*forward=*/false); // size: (channel, n_frames, n_fft)
1131 } else {
1132 TORCH_CHECK(!window.defined() || !window.is_complex(),
1133 "Complex windows are incompatible with return_complex=False");
1134 if (!onesided) {
1135 input = input.slice(-1, 0, n_fft / 2 + 1);
1136 }
1137 input = at::_fft_c2r(input, input.dim() - 1, static_cast<int64_t>(norm), n_fft); // size: (channel, n_frames, n_fft)
1138 }
1139 TORCH_INTERNAL_ASSERT(input.size(2) == n_fft);
1140
1141 Tensor y_tmp = input * window_tmp.view({1, 1, n_fft}); // size: (channel, n_frames, n_fft)
1142
1143 Tensor y = at::unfold_backward(
1144 y_tmp,
1145 /*input_sizes=*/{y_tmp.size(0), expected_output_signal_len},
1146 /*dim=*/1,
1147 /*size=*/n_fft,
1148 /*step=*/hop_length);
1149 window_tmp = window_tmp.pow(2).expand({1, n_frames, n_fft}); // size: (1, n_frames, n_fft)
1150 Tensor window_envelop = at::unfold_backward(
1151 window_tmp,
1152 /*input_sizes=*/{1, expected_output_signal_len},
1153 /*dim=*/1,
1154 /*size=*/n_fft,
1155 /*step=*/hop_length); // size: (1, expected_output_signal_len)
1156
1157 TORCH_INTERNAL_ASSERT(expected_output_signal_len == y.size(1));
1158 TORCH_INTERNAL_ASSERT(expected_output_signal_len == window_envelop.size(1));
1159
1160 // We need to trim the front padding away if centered
1161 const auto start = center ? n_fft / 2 : 0;
1162 const auto end = [&] () -> int64_t {
1163 if (lengthOpt.has_value()) {
1164 return start + *lengthOpt;
1165 }
1166 if (center) {
1167 return -(n_fft / 2);
1168 }
1169 return expected_output_signal_len;
1170 }();
1171
1172 y = y.slice(1, start, end, 1);
1173 window_envelop = window_envelop.slice(1, start, end, 1);
1174 const auto window_envelop_lowest = window_envelop.abs().min().lt(1e-11);
1175 if (at::is_scalar_tensor_true(window_envelop_lowest)) {
1176 std::ostringstream ss;
1177 REPR(ss) << "window overlap add min: " << window_envelop_lowest;
1178 AT_ERROR(ss.str());
1179 }
1180
1181 y = (y / window_envelop); // size: (channel, expected_output_signal_len)
1182 if (input_dim == 3) {
1183 y = y.squeeze(0);
1184 }
1185 // zero padding if the given lengthOpt is longer than expected
1186 if(end > expected_output_signal_len) {
1187 TORCH_WARN_ONCE(
1188 "The length of signal is shorter than the length parameter. Result is being padded with zeros in the tail. "
1189 "Please check your center and hop_length settings."
1190 );
1191 y = at::constant_pad_nd(y, {0, end - expected_output_signal_len}, 0);
1192 }
1193 return y;
1194
1195 #undef REPR
1196 }
1197
_fft_fill_with_conjugate_symmetry_(const Tensor & input,IntArrayRef dim_)1198 void _fft_fill_with_conjugate_symmetry_(const Tensor& input, IntArrayRef dim_) {
1199 const auto input_sizes = input.sizes();
1200 const auto input_strides = input.strides();
1201 TORCH_CHECK(!dim_.empty());
1202 DimVector dim(dim_.begin(), dim_.end());
1203 at::maybe_wrap_dims(dim, input_strides.size(), /*wrap_scalars=*/false);
1204
1205 if (input.numel() == 0 || input_sizes[dim.back()] <= 2) {
1206 return; // No elements need writing
1207 }
1208
1209 // Small dimensions may be treated as batch dims since they don't get mirrored
1210 dim.erase(
1211 std::remove_if(dim.begin(), dim.end(), [&](int64_t dim) {
1212 return (input_sizes[dim] <= 2);
1213 }),
1214 dim.end());
1215
1216 // Use TensorIterator to coalesce batch dimensions
1217 // NOTE: Can't use TensorIterator loops because we need negative strides
1218 auto iter = TensorIteratorConfig()
1219 .add_output(input)
1220 .add_input(input)
1221 .resize_outputs(false)
1222 .declare_static_shape(input_sizes, dim)
1223 .build();
1224
1225 const auto iter_strides = iter.strides(0);
1226 const auto iter_sizes = iter.shape();
1227 const auto ndim = static_cast<int64_t>(iter_strides.size() + dim.size());
1228 DimVector in_strides(ndim), signal_half_sizes(ndim);
1229 // Take coalesced batch dimensions from TensorIterator
1230 std::copy(iter_strides.begin(), iter_strides.end(), in_strides.begin());
1231 std::copy(iter_sizes.begin(), iter_sizes.end(), signal_half_sizes.begin());
1232
1233 // Take transformed dimensions directly from the input
1234 const auto element_size = iter.element_size(0);
1235 for (const auto i : c10::irange(dim.size())) {
1236 // Convert to byte strides to match TensorIterator
1237 in_strides[iter_strides.size() + i] = input_strides[dim[i]] * element_size;
1238 signal_half_sizes[iter_strides.size() + i] = input_sizes[dim[i]];
1239 }
1240
1241 // For the last dimension, use negative strides to perform the mirroring
1242 signal_half_sizes.back() = (input_sizes[dim.back()] - 1) / 2;
1243 auto out_strides = in_strides;
1244 out_strides.back() *= -1;
1245
1246 auto* data_ptr = static_cast<char*>(input.data_ptr());
1247 const auto* in_data = data_ptr + input_strides[dim.back()] * element_size;
1248 auto* out_data = data_ptr + (
1249 input_strides[dim.back()] * (input_sizes[dim.back()] - 1) * element_size);
1250
1251 // Reorder dimensions by stride to maximize data locality
1252 DimVector dim_permute(ndim);
1253 std::iota(dim_permute.begin(), dim_permute.end(), 0);
1254 std::sort(dim_permute.begin(), dim_permute.end(),
1255 [&](auto dim1, auto dim2) {
1256 return in_strides[dim1] < in_strides[dim2];
1257 });
1258
1259 DimVector temp(ndim);
1260 auto apply_permutation = [&] (DimVector & vec) {
1261 // Do permuted index copy into a temporary, then copy back
1262 for (const auto i : c10::irange(ndim)) {
1263 temp[i] = vec[dim_permute[i]];
1264 }
1265 vec = temp;
1266 };
1267 apply_permutation(in_strides);
1268 apply_permutation(out_strides);
1269 apply_permutation(signal_half_sizes);
1270
1271 // Find dims.slice(dims.size() - 1) in the new permuted order.
1272 // These are the dimensions that need explicit Hermitian mirroring
1273 DimVector mirror_dims;
1274 mirror_dims.reserve(dim.size() - 1);
1275 for (const auto i : c10::irange(ndim)) {
1276 if (dim_permute[i] >= static_cast<int64_t>(iter_strides.size()) && // Not a batch dimension
1277 dim_permute[i] != ndim - 1) { // Not the last dim, which is mirrored separately with negative strides
1278 mirror_dims.push_back(i);
1279 }
1280 }
1281 TORCH_INTERNAL_ASSERT(mirror_dims.size() == dim.size() - 1);
1282
1283 // Dispatch to CPU or CUDA kernel to do the actual conjugate mirroring
1284 fft_fill_with_conjugate_symmetry_stub(
1285 input.device().type(), input.scalar_type(),
1286 mirror_dims, signal_half_sizes, in_strides, in_data, out_strides, out_data);
1287 }
1288
1289 DEFINE_DISPATCH(fft_fill_with_conjugate_symmetry_stub);
1290
1291 } // namespace at::native
1292