/aosp_15_r20/external/pytorch/torch/ao/nn/intrinsic/modules/ |
H A D | fused.py | 11 ReLU, 43 r"""This is a sequential container which calls the Conv1d and ReLU modules. 46 def __init__(self, conv, relu): argument 49 and type_before_parametrizations(relu) == ReLU 50 …ct types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(relu)}" 51 super().__init__(conv, relu) 55 r"""This is a sequential container which calls the Conv2d and ReLU modules. 58 def __init__(self, conv, relu): argument 61 and type_before_parametrizations(relu) == ReLU 62 …ct types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(relu)}" [all …]
|
/aosp_15_r20/external/XNNPACK/scripts/ |
H A D | generate-f32-vbinary.sh | 26 ….in -D OP=ADD -D BATCH_TILE=1 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vadd-relu-sc… 27 ….in -D OP=ADD -D BATCH_TILE=2 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vadd-relu-sc… 28 ….in -D OP=ADD -D BATCH_TILE=4 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vadd-relu-sc… 29 ….in -D OP=ADD -D BATCH_TILE=8 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vadd-relu-sc… 30 ….in -D OP=DIV -D BATCH_TILE=1 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vdiv-relu-sc… 31 ….in -D OP=DIV -D BATCH_TILE=2 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vdiv-relu-sc… 32 ….in -D OP=DIV -D BATCH_TILE=4 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vdiv-relu-sc… 33 ….in -D OP=DIV -D BATCH_TILE=8 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vdiv-relu-sc… 34 ….in -D OP=MUL -D BATCH_TILE=1 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vmul-relu-sc… 35 ….in -D OP=MUL -D BATCH_TILE=2 -D WASM=0 -D ACTIVATION=RELU -o src/f32-vbinary/gen/vmul-relu-sc… [all …]
|
H A D | generate-f32-igemm.sh | 14 …igemm/scalar.c.in -D MR=1 -D NR=4 -D WASM=0 -D ACTIVATION=RELU -o src/f32-igemm/gen/1x4-relu-sca… 15 …igemm/scalar.c.in -D MR=2 -D NR=4 -D WASM=0 -D ACTIVATION=RELU -o src/f32-igemm/gen/2x4-relu-sca… 16 …igemm/scalar.c.in -D MR=4 -D NR=2 -D WASM=0 -D ACTIVATION=RELU -o src/f32-igemm/gen/4x2-relu-sca… 17 …igemm/scalar.c.in -D MR=4 -D NR=4 -D WASM=0 -D ACTIVATION=RELU -o src/f32-igemm/gen/4x4-relu-sca… 25 …igemm/scalar.c.in -D MR=1 -D NR=4 -D WASM=1 -D ACTIVATION=RELU -o src/f32-igemm/gen/1x4-relu-was… 26 …igemm/scalar.c.in -D MR=2 -D NR=4 -D WASM=1 -D ACTIVATION=RELU -o src/f32-igemm/gen/2x4-relu-was… 27 …igemm/scalar.c.in -D MR=4 -D NR=2 -D WASM=1 -D ACTIVATION=RELU -o src/f32-igemm/gen/4x2-relu-was… 28 …igemm/scalar.c.in -D MR=4 -D NR=4 -D WASM=1 -D ACTIVATION=RELU -o src/f32-igemm/gen/4x4-relu-was… 61 …splat.c.in -D MR=1 -D NR=8 -D FMA=0 -D ACTIVATION=RELU -o src/f32-igemm/gen/1x8-… 62 …splat.c.in -D MR=3 -D NR=8 -D FMA=0 -D ACTIVATION=RELU -o src/f32-igemm/gen/3x8-… [all …]
|
/aosp_15_r20/external/ComputeLibrary/examples/ |
H A D | graph_inception_v4.cpp | 93 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_1a_3x3/Relu") in do_setup() 105 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2a_3x3/Relu") in do_setup() 117 …ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2b_3x3/Relu"); in do_setup() 217 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_3a/Branch_1/Conv2d_0a_3x3… in get_mixed_3a() 237 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_0/Conv2d_0a_1x1… in get_mixed_4a() 248 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_0/Conv2d_1a_3x3… in get_mixed_4a() 261 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_1/Conv2d_0a_1x1… in get_mixed_4a() 272 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_1/Conv2d_0b_1x7… in get_mixed_4a() 283 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_1/Conv2d_0c_7x1… in get_mixed_4a() 294 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_1/Conv2d_1a_3x3… in get_mixed_4a() [all …]
|
H A D | graph_inception_resnet_v2.cpp | 104 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_1a_3x3/Relu") in do_setup() 117 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2a_3x3/Relu") in do_setup() 130 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2b_3x3/Relu") in do_setup() 145 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_3b_1x1/Relu") in do_setup() 158 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_4a_3x3/Relu") in do_setup() 182 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_7b_1x1/Relu") in do_setup() 233 …LayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_0/Conv2d_1x1/R… in block_mixed_5b() 248 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_1/Conv2d_0a_1x1… in block_mixed_5b() 260 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_1/Conv2d_0b_5x5… in block_mixed_5b() 275 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_2/Conv2d_0a_1x1… in block_mixed_5b() [all …]
|
H A D | graph_inception_v3.cpp | 92 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_1a_3x3/Relu") in do_setup() 105 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2a_3x3/Relu") in do_setup() 119 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2b_3x3/Relu") in do_setup() 135 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_3b_1x1/Relu") in do_setup() 149 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_4a_3x3/Relu") in do_setup() 258 …rInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_0/Conv2d_0a_1… in get_inception_node_A() 274 …ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d" + conv_id… in get_inception_node_A() 288 …ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d" + conv_id… in get_inception_node_A() 304 …rInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0a_1… in get_inception_node_A() 318 …rInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0b_3… in get_inception_node_A() [all …]
|
H A D | graph_inception_resnet_v1.cpp | 120 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_1a_3x3/Relu") in do_setup() 133 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2a_3x3/Relu") in do_setup() 146 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2b_3x3/Relu") in do_setup() 161 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_3b_1x1/Relu") in do_setup() 174 …(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_4a_3x3/Relu") in do_setup() 187 …ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_4b_3x3/Relu"); in do_setup() 268 …ayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1… in block35_repeat() 283 …erInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x… in block35_repeat() 295 …erInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_3x… in block35_repeat() 310 …erInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0a_1x… in block35_repeat() [all …]
|
H A D | graph_vgg19.cpp | 85 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_1/Relu") in do_setup() 92 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_2/Relu") in do_setup() 101 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_1/Relu") in do_setup() 108 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_2/Relu") in do_setup() 117 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_1/Relu") in do_setup() 124 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_2/Relu") in do_setup() 131 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_3/Relu") in do_setup() 138 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_4/Relu") in do_setup() 147 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_1/Relu") in do_setup() 154 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_2/Relu") in do_setup() [all …]
|
H A D | graph_vgg16.cpp | 87 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_1/Relu") in do_setup() 95 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_2/Relu") in do_setup() 104 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_1/Relu") in do_setup() 112 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_2/Relu") in do_setup() 121 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_1/Relu") in do_setup() 129 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_2/Relu") in do_setup() 137 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_3/Relu") in do_setup() 146 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_1/Relu") in do_setup() 154 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_2/Relu") in do_setup() 162 …nLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_3/Relu") in do_setup() [all …]
|
/aosp_15_r20/external/pytorch/torch/ao/quantization/backend_config/ |
H A D | _common_operator_config_utils.py | 153 (op_with_quantized_bop_scalar_variant, nn.ReLU), 154 (op_with_quantized_bop_scalar_variant, F.relu), 155 (op_with_quantized_bop_scalar_variant, torch.relu), 209 # (2) Linear + relu 211 # 2.1 linear module + relu fusion config 212 # linear relu, linear module + relu module 214 BackendPatternConfig((torch.nn.Linear, torch.nn.ReLU)) 219 # linear relu, linear module + functional relu 221 BackendPatternConfig((torch.nn.Linear, torch.nn.functional.relu)) 227 # 2.2 linear module + relu, fused module configs [all …]
|
H A D | executorch.py | 179 # (2) Conv + relu 181 # conv module + relu module 183 BackendPatternConfig((convs.root, nn.ReLU)) 188 # conv module + functional relu 190 BackendPatternConfig((convs.root, F.relu)) 195 # fused conv relu module 204 # conv relu, qat fused module 212 # functional conv + relu module 214 BackendPatternConfig((convs.func, nn.ReLU)) 218 # functional conv + functional relu [all …]
|
H A D | onednn.py | 309 # (2) Conv2d + Add + Relu 315 # relu 318 def _fuse_conv_add_relu_left(is_qat, relu, add_pattern): argument 320 return nni.ConvAddReLU2d(conv, add, relu) 324 relu, add_pattern = pattern 333 relu, add_pattern = pattern 344 # relu 347 def _fuse_conv_bn_add_relu_left(is_qat, relu, add_pattern): argument 351 raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, add, relu)}") 354 return nni.ConvAddReLU2d(fused_conv, add, relu) [all …]
|
/aosp_15_r20/external/pytorch/test/quantization/eager/ |
H A D | test_fuse_eager.py | 51 msg="Fused Conv + BN + Relu first layer") 53 msg="Fused Conv + BN + Relu (skipped BN)") 55 msg="Fused Conv + BN + Relu (skipped Relu)") 63 self.assertEqual(type(model.sub2.relu), torch.nn.ReLU, 64 msg="Non-fused submodule ReLU") 75 self.assertEqual(type(model.sub2.relu), nn.ReLU) 88 self.assertEqual(type(model.sub2.relu), nn.ReLU) 116 msg="Fused Conv + BN + Relu first layer (BN is folded)") 118 msg="Fused Conv + BN + Relu (Conv + folded BN only)") 119 self.assertEqual(type(model.conv1[1]), nn.ReLU, [all …]
|
/aosp_15_r20/external/pytorch/test/fx/ |
H A D | test_source_matcher_utils.py | 32 self.relu = torch.nn.ReLU() 38 x = self.relu(x) 47 gm.graph, [torch.nn.Linear, torch.nn.ReLU] 52 self.assertEqual(len(module_partitions[torch.nn.ReLU]), 1) 57 module_partitions[torch.nn.ReLU][0], 63 module_partitions[torch.nn.ReLU][0], 69 module_partitions[torch.nn.ReLU][0], 88 self.relu = torch.nn.ReLU() 96 return self.maxpool(self.relu(z)) 105 gm.graph, [torch.nn.Conv2d, torch.nn.ReLU, torch.nn.MaxPool2d] [all …]
|
/aosp_15_r20/external/pytorch/test/cpp/tensorexpr/ |
H A D | test_memplanning.cpp | 107 Compute("relu", {M, N}, [&](const ExprHandle& m, const ExprHandle& n) { in TEST() 123 // Intermediate buffers and their liveness ranges: gemm [0, 1], relu [1, 2], in TEST() 139 // relu[i_3, i_4] = (gemm[i_3, i_4])<0.f ? 0.f : (gemm[i_3, i_4]); in TEST() 144 // E[i_5, i_6] = quint8((relu[i_5, i_6]) + (relu[i_5, i_6])); in TEST() 160 # CHECK: Allocate(relu); // dtype=float, dims=[4, 4] in TEST() 162 # CHECK: Free(relu); in TEST() 189 # CHECK: Allocate(relu); // dtype=float, dims=[4, 4] in TEST() 191 # CHECK: Free(relu); in TEST() 219 Compute("relu", {M, N}, [&](const ExprHandle& m, const ExprHandle& n) { in TEST() 235 // Intermediate buffers and their liveness ranges: gemm [0, 1], relu [1, 2], in TEST() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/common_runtime/ |
H A D | quantize_training_test.cc | 82 Relu Identity in TEST_F() 92 Node* relu = test::graph::Relu(g, a); in TEST_F() local 94 Node* m1 = test::graph::Matmul(g, relu, identity, false, false); in TEST_F() 102 Relu Identity in TEST_F() 118 // Quantize_and_dequantize node for relu should have signed_input==false. in TEST_F() 121 FindNode(g, strings::StrCat(relu->name(), "/QuantizeAndDequantizeV2"), in TEST_F() 133 Relu Relu6 in TEST_F() 143 Node* relu = test::graph::Relu(g, a); in TEST_F() local 145 Node* m1 = test::graph::Matmul(g, relu, relu6, false, false); in TEST_F() 153 Relu Relu6 in TEST_F() [all …]
|
/aosp_15_r20/external/pytorch/test/quantization/pt2e/ |
H A D | test_x86inductor_quantizer.py | 100 self.relu = nn.ReLU() 112 tmp += self.relu(x) 118 return tmp + self.relu(x) 121 tmp = self.relu(x) 125 return self.relu(x) + self.conv(x) 160 self.relu = nn.ReLU() 163 self.relu2 = nn.ReLU(inplace=inplace_relu) 173 tmp += self.relu(x) 179 return self.relu2(tmp + self.relu(x)) 182 tmp = self.relu(x) [all …]
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_fx_passes.py | 43 relu = add_6.relu() 45 return add_4, add_6, relu 69 relu_1 = add_2.relu() 72 relu_2 = add_4.relu() 81 relu_1 = add_1.relu() # blocked by this 105 relu = add.relu() 108 return relu, add_1 115 relu = add.relu() 117 relu_1 = add.relu() 118 return relu, relu_1 [all …]
|
/aosp_15_r20/external/pytorch/test/jit/ |
H A D | test_models.py | 53 x = F.relu(F.max_pool2d(self.conv1(x), 2)) 54 x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) 56 x = F.relu(self.fc1(x)) 72 nn.ReLU(True), 76 nn.ReLU(True), 80 nn.ReLU(True), 84 nn.ReLU(True), 177 self.relu = torch.nn.ReLU() 180 y = self.relu(self.in1(self.conv1(X))) 181 y = self.relu(self.in2(self.conv2(y))) [all …]
|
H A D | test_autodiff_subgraph_slicing.py | 185 return torch.nn.functional.linear(x, weight, bias).relu() + 2 243 o1 = torch.relu(o) 245 o2 = torch.relu(o) 250 oo1 = torch.relu(o) 252 oo2 = torch.relu(o) 256 oo1 = torch.relu(o) 258 oo2 = torch.relu(o) 290 return torch.nn.functional.relu(input + bias) 460 # Case 1: aliasing between relu and t 462 # to merge both split_with_sizes in relu in one graph [all …]
|
/aosp_15_r20/external/pytorch/test/quantization/jit/ |
H A D | test_quantize_jit.py | 277 self.relu = torch.nn.ReLU() 282 x = self.relu(x) 285 x = self.relu(x) 574 return F.relu(self.conv(x)) 580 self.relu = torch.nn.ReLU() 583 return self.relu(self.conv(x)) 588 self.relu = torch.nn.ReLU() 594 return self.relu(out) 604 return F.relu(out) 614 # observer for input of conv and output of relu [all …]
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/quantization/ |
H A D | insert_observers.cpp | 444 // Find and mark known patterns such as conv-relu (and others) where 462 // the output value of conv in the conv - relu pattern 464 // the value is the value we want to observe, e.g. output of relu 466 // example, assuming we want to delay conv-relu: 468 // %x2 = relu(%x1) 538 // nn.Linear + nn.ReLU 541 graph(%input, %linear, %relu): 543 %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output) 547 // nn.Linear + F.relu 550 graph(%input, %linear, %relu, %inplace): [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/ |
H A D | gpu_fusion.mlir | 10 %relu = "tf.Relu"(%y#0) : (tensor<8x8x8x8xf32>) -> tensor<8x8x8x8xf32> 11 func.return %relu : tensor<8x8x8x8xf32> 20 %relu = "tf.Relu"(%add) : (tensor<8x8x8x8xf32>) -> tensor<8x8x8x8xf32> 21 func.return %relu : tensor<8x8x8x8xf32> 27 // Relu activation and we only fuse the add. 29 // CHECK-NEXT: %[[relu:[a-z0-9]*]] ={{.*}}Relu"(%[[Y]] 30 // CHECK-NEXT: return %[[relu]] 33 %relu = "tf.Relu"(%add) : (tensor<8x8x8x8xf32>) -> tensor<8x8x8x8xf32> 34 func.return %relu, %add : tensor<8x8x8x8xf32>, tensor<8x8x8x8xf32> 41 // CHECK-NEXT: %[[relu:[a-z0-9]*]] ={{.*}}Relu"(%[[Y]] [all …]
|
/aosp_15_r20/external/pytorch/test/quantization/fx/ |
H A D | test_quantize_fx.py | 251 if relu_callable is torch.nn.ReLU: 252 self.relu = torch.nn.ReLU() 254 self.relu = relu_callable 260 x = self.relu(x) 262 x = self.relu(x) 286 self.relu = nn.ReLU() 297 x = self.relu(x) 300 x = self.relu(x) 303 x = self.relu(x) 322 ns.call_module(nn.ReLU): 0 [all …]
|
/aosp_15_r20/external/pytorch/torch/ao/quantization/ |
H A D | fuser_method_mappings.py | 64 def fuse_conv_bn_relu(is_qat, conv, bn, relu): argument 79 >>> r1 = nn.ReLU(inplace=False) 84 conv.training == bn.training == relu.training 102 return fused_module(conv, bn, relu) 104 raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, relu)}") 114 return fused_module(fused_conv, relu) 116 raise NotImplementedError(f"Cannot fuse eval modules: {(conv, bn, relu)}") 196 (nn.Conv1d, nn.BatchNorm1d, nn.ReLU): fuse_conv_bn_relu, 198 (nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu, 200 (nn.Conv3d, nn.BatchNorm3d, nn.ReLU): fuse_conv_bn_relu, [all …]
|