xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_vgg19.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 /** Example demonstrating how to implement VGG19's network using the Compute Library's graph API */
34 class GraphVGG19Example : public Example
35 {
36 public:
GraphVGG19Example()37     GraphVGG19Example()
38         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "VGG19")
39     {
40     }
do_setup(int argc,char ** argv)41     bool do_setup(int argc, char **argv) override
42     {
43         // Parse arguments
44         cmd_parser.parse(argc, argv);
45         cmd_parser.validate();
46 
47         // Consume common parameters
48         common_params = consume_common_graph_parameters(common_opts);
49 
50         // Return when help menu is requested
51         if(common_params.help)
52         {
53             cmd_parser.print_help(argv[0]);
54             return false;
55         }
56 
57         // Print parameter values
58         std::cout << common_params << std::endl;
59 
60         // Get trainable parameters data path
61         std::string data_path = common_params.data_path;
62 
63         // Create a preprocessor object
64         const std::array<float, 3> mean_rgb{ { 123.68f, 116.779f, 103.939f } };
65         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb);
66 
67         // Create input descriptor
68         const auto        operation_layout = common_params.data_layout;
69         const TensorShape tensor_shape     = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
70         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
71 
72         // Set weights trained layout
73         const DataLayout weights_layout = DataLayout::NCHW;
74 
75         graph << common_params.target
76               << common_params.fast_math_hint
77               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
78               // Layer 1
79               << ConvolutionLayer(
80                   3U, 3U, 64U,
81                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_1_w.npy", weights_layout),
82                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_1_b.npy"),
83                   PadStrideInfo(1, 1, 1, 1))
84               .set_name("conv1_1")
85               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_1/Relu")
86               << ConvolutionLayer(
87                   3U, 3U, 64U,
88                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_2_w.npy", weights_layout),
89                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_2_b.npy"),
90                   PadStrideInfo(1, 1, 1, 1))
91               .set_name("conv1_2")
92               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_2/Relu")
93               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
94               // Layer 2
95               << ConvolutionLayer(
96                   3U, 3U, 128U,
97                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_1_w.npy", weights_layout),
98                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_1_b.npy"),
99                   PadStrideInfo(1, 1, 1, 1))
100               .set_name("conv2_1")
101               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_1/Relu")
102               << ConvolutionLayer(
103                   3U, 3U, 128U,
104                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_2_w.npy", weights_layout),
105                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_2_b.npy"),
106                   PadStrideInfo(1, 1, 1, 1))
107               .set_name("conv2_2")
108               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_2/Relu")
109               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
110               // Layer 3
111               << ConvolutionLayer(
112                   3U, 3U, 256U,
113                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_1_w.npy", weights_layout),
114                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_1_b.npy"),
115                   PadStrideInfo(1, 1, 1, 1))
116               .set_name("conv3_1")
117               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_1/Relu")
118               << ConvolutionLayer(
119                   3U, 3U, 256U,
120                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_2_w.npy", weights_layout),
121                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_2_b.npy"),
122                   PadStrideInfo(1, 1, 1, 1))
123               .set_name("conv3_2")
124               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_2/Relu")
125               << ConvolutionLayer(
126                   3U, 3U, 256U,
127                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_3_w.npy", weights_layout),
128                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_3_b.npy"),
129                   PadStrideInfo(1, 1, 1, 1))
130               .set_name("conv3_3")
131               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_3/Relu")
132               << ConvolutionLayer(
133                   3U, 3U, 256U,
134                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_4_w.npy", weights_layout),
135                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_4_b.npy"),
136                   PadStrideInfo(1, 1, 1, 1))
137               .set_name("conv3_4")
138               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_4/Relu")
139               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool3")
140               // Layer 4
141               << ConvolutionLayer(
142                   3U, 3U, 512U,
143                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_1_w.npy", weights_layout),
144                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_1_b.npy"),
145                   PadStrideInfo(1, 1, 1, 1))
146               .set_name("conv4_1")
147               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_1/Relu")
148               << ConvolutionLayer(
149                   3U, 3U, 512U,
150                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_2_w.npy", weights_layout),
151                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_2_b.npy"),
152                   PadStrideInfo(1, 1, 1, 1))
153               .set_name("conv4_2")
154               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_2/Relu")
155               << ConvolutionLayer(
156                   3U, 3U, 512U,
157                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_3_w.npy", weights_layout),
158                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_3_b.npy"),
159                   PadStrideInfo(1, 1, 1, 1))
160               .set_name("conv4_3")
161               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_3/Relu")
162               << ConvolutionLayer(
163                   3U, 3U, 512U,
164                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_4_w.npy", weights_layout),
165                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_4_b.npy"),
166                   PadStrideInfo(1, 1, 1, 1))
167               .set_name("conv4_4")
168               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_4/Relu")
169               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool4")
170               // Layer 5
171               << ConvolutionLayer(
172                   3U, 3U, 512U,
173                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_1_w.npy", weights_layout),
174                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_1_b.npy"),
175                   PadStrideInfo(1, 1, 1, 1))
176               .set_name("conv5_1")
177               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_1/Relu")
178               << ConvolutionLayer(
179                   3U, 3U, 512U,
180                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_2_w.npy", weights_layout),
181                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_2_b.npy"),
182                   PadStrideInfo(1, 1, 1, 1))
183               .set_name("conv5_2")
184               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_2/Relu")
185               << ConvolutionLayer(
186                   3U, 3U, 512U,
187                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_3_w.npy", weights_layout),
188                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_3_b.npy"),
189                   PadStrideInfo(1, 1, 1, 1))
190               .set_name("conv5_3")
191               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_3/Relu")
192               << ConvolutionLayer(
193                   3U, 3U, 512U,
194                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_4_w.npy", weights_layout),
195                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_4_b.npy"),
196                   PadStrideInfo(1, 1, 1, 1))
197               .set_name("conv5_4")
198               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_4/Relu")
199               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
200               // Layer 6
201               << FullyConnectedLayer(
202                   4096U,
203                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc6_w.npy", weights_layout),
204                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc6_b.npy"))
205               .set_name("fc6")
206               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu")
207               // Layer 7
208               << FullyConnectedLayer(
209                   4096U,
210                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc7_w.npy", weights_layout),
211                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc7_b.npy"))
212               .set_name("fc7")
213               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu_1")
214               // Layer 8
215               << FullyConnectedLayer(
216                   1000U,
217                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc8_w.npy", weights_layout),
218                   get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc8_b.npy"))
219               .set_name("fc8")
220               // Softmax
221               << SoftmaxLayer().set_name("prob")
222               << OutputLayer(get_output_accessor(common_params, 5));
223 
224         // Finalize graph
225         GraphConfig config;
226         config.num_threads        = common_params.threads;
227         config.use_tuner          = common_params.enable_tuner;
228         config.tuner_mode         = common_params.tuner_mode;
229         config.tuner_file         = common_params.tuner_file;
230         config.mlgo_file          = common_params.mlgo_file;
231         config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
232         config.synthetic_type     = common_params.data_type;
233 
234         graph.finalize(common_params.target, config);
235 
236         return true;
237     }
do_run()238     void do_run() override
239     {
240         // Run graph
241         graph.run();
242     }
243 
244 private:
245     CommandLineParser  cmd_parser;
246     CommonGraphOptions common_opts;
247     CommonGraphParams  common_params;
248     Stream             graph;
249 };
250 
251 /** Main program for VGG19
252  *
253  * Model is based on:
254  *      https://arxiv.org/abs/1409.1556
255  *      "Very Deep Convolutional Networks for Large-Scale Image Recognition"
256  *      Karen Simonyan, Andrew Zisserman
257  *
258  * Provenance: www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
259  *
260  * @note To list all the possible arguments execute the binary appended with the --help option
261  *
262  * @param[in] argc Number of arguments
263  * @param[in] argv Arguments
264  */
main(int argc,char ** argv)265 int main(int argc, char **argv)
266 {
267     return arm_compute::utils::run_example<GraphVGG19Example>(argc, argv);
268 }
269