1 // Copyright 2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10 
11 //! Complex numbers.
12 //!
13 //! ## Compatibility
14 //!
15 //! The `num-complex` crate is tested for rustc 1.60 and greater.
16 
17 #![doc(html_root_url = "https://docs.rs/num-complex/0.4")]
18 #![no_std]
19 
20 #[cfg(any(test, feature = "std"))]
21 #[cfg_attr(test, macro_use)]
22 extern crate std;
23 
24 use core::fmt;
25 #[cfg(test)]
26 use core::hash;
27 use core::iter::{Product, Sum};
28 use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
29 use core::str::FromStr;
30 #[cfg(feature = "std")]
31 use std::error::Error;
32 
33 use num_traits::{ConstOne, ConstZero, Inv, MulAdd, Num, One, Pow, Signed, Zero};
34 
35 use num_traits::float::FloatCore;
36 #[cfg(any(feature = "std", feature = "libm"))]
37 use num_traits::float::{Float, FloatConst};
38 
39 mod cast;
40 mod pow;
41 
42 #[cfg(any(feature = "std", feature = "libm"))]
43 mod complex_float;
44 #[cfg(any(feature = "std", feature = "libm"))]
45 pub use crate::complex_float::ComplexFloat;
46 
47 #[cfg(feature = "rand")]
48 mod crand;
49 #[cfg(feature = "rand")]
50 pub use crate::crand::ComplexDistribution;
51 
52 // FIXME #1284: handle complex NaN & infinity etc. This
53 // probably doesn't map to C's _Complex correctly.
54 
55 /// A complex number in Cartesian form.
56 ///
57 /// ## Representation and Foreign Function Interface Compatibility
58 ///
59 /// `Complex<T>` is memory layout compatible with an array `[T; 2]`.
60 ///
61 /// Note that `Complex<F>` where F is a floating point type is **only** memory
62 /// layout compatible with C's complex types, **not** necessarily calling
63 /// convention compatible.  This means that for FFI you can only pass
64 /// `Complex<F>` behind a pointer, not as a value.
65 ///
66 /// ## Examples
67 ///
68 /// Example of extern function declaration.
69 ///
70 /// ```
71 /// use num_complex::Complex;
72 /// use std::os::raw::c_int;
73 ///
74 /// extern "C" {
75 ///     fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>,
76 ///               x: *const Complex<f64>, incx: *const c_int,
77 ///               y: *mut Complex<f64>, incy: *const c_int);
78 /// }
79 /// ```
80 #[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)]
81 #[repr(C)]
82 #[cfg_attr(
83     feature = "rkyv",
84     derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
85 )]
86 #[cfg_attr(feature = "rkyv", archive(as = "Complex<T::Archived>"))]
87 #[cfg_attr(feature = "bytecheck", derive(bytecheck::CheckBytes))]
88 pub struct Complex<T> {
89     /// Real portion of the complex number
90     pub re: T,
91     /// Imaginary portion of the complex number
92     pub im: T,
93 }
94 
95 /// Alias for a [`Complex<f32>`]
96 pub type Complex32 = Complex<f32>;
97 
98 /// Create a new [`Complex<f32>`] with arguments that can convert [`Into<f32>`].
99 ///
100 /// ```
101 /// use num_complex::{c32, Complex32};
102 /// assert_eq!(c32(1u8, 2), Complex32::new(1.0, 2.0));
103 /// ```
104 ///
105 /// Note: ambiguous integer literals in Rust will [default] to `i32`, which does **not** implement
106 /// `Into<f32>`, so a call like `c32(1, 2)` will result in a type error. The example above uses a
107 /// suffixed `1u8` to set its type, and then the `2` can be inferred as the same type.
108 ///
109 /// [default]: https://doc.rust-lang.org/reference/expressions/literal-expr.html#integer-literal-expressions
110 #[inline]
c32<T: Into<f32>>(re: T, im: T) -> Complex32111 pub fn c32<T: Into<f32>>(re: T, im: T) -> Complex32 {
112     Complex::new(re.into(), im.into())
113 }
114 
115 /// Alias for a [`Complex<f64>`]
116 pub type Complex64 = Complex<f64>;
117 
118 /// Create a new [`Complex<f64>`] with arguments that can convert [`Into<f64>`].
119 ///
120 /// ```
121 /// use num_complex::{c64, Complex64};
122 /// assert_eq!(c64(1, 2), Complex64::new(1.0, 2.0));
123 /// ```
124 #[inline]
c64<T: Into<f64>>(re: T, im: T) -> Complex64125 pub fn c64<T: Into<f64>>(re: T, im: T) -> Complex64 {
126     Complex::new(re.into(), im.into())
127 }
128 
129 impl<T> Complex<T> {
130     /// Create a new `Complex`
131     #[inline]
new(re: T, im: T) -> Self132     pub const fn new(re: T, im: T) -> Self {
133         Complex { re, im }
134     }
135 }
136 
137 impl<T: Clone + Num> Complex<T> {
138     /// Returns the imaginary unit.
139     ///
140     /// See also [`Complex::I`].
141     #[inline]
i() -> Self142     pub fn i() -> Self {
143         Self::new(T::zero(), T::one())
144     }
145 
146     /// Returns the square of the norm (since `T` doesn't necessarily
147     /// have a sqrt function), i.e. `re^2 + im^2`.
148     #[inline]
norm_sqr(&self) -> T149     pub fn norm_sqr(&self) -> T {
150         self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
151     }
152 
153     /// Multiplies `self` by the scalar `t`.
154     #[inline]
scale(&self, t: T) -> Self155     pub fn scale(&self, t: T) -> Self {
156         Self::new(self.re.clone() * t.clone(), self.im.clone() * t)
157     }
158 
159     /// Divides `self` by the scalar `t`.
160     #[inline]
unscale(&self, t: T) -> Self161     pub fn unscale(&self, t: T) -> Self {
162         Self::new(self.re.clone() / t.clone(), self.im.clone() / t)
163     }
164 
165     /// Raises `self` to an unsigned integer power.
166     #[inline]
powu(&self, exp: u32) -> Self167     pub fn powu(&self, exp: u32) -> Self {
168         Pow::pow(self, exp)
169     }
170 }
171 
172 impl<T: Clone + Num + Neg<Output = T>> Complex<T> {
173     /// Returns the complex conjugate. i.e. `re - i im`
174     #[inline]
conj(&self) -> Self175     pub fn conj(&self) -> Self {
176         Self::new(self.re.clone(), -self.im.clone())
177     }
178 
179     /// Returns `1/self`
180     #[inline]
inv(&self) -> Self181     pub fn inv(&self) -> Self {
182         let norm_sqr = self.norm_sqr();
183         Self::new(
184             self.re.clone() / norm_sqr.clone(),
185             -self.im.clone() / norm_sqr,
186         )
187     }
188 
189     /// Raises `self` to a signed integer power.
190     #[inline]
powi(&self, exp: i32) -> Self191     pub fn powi(&self, exp: i32) -> Self {
192         Pow::pow(self, exp)
193     }
194 }
195 
196 impl<T: Clone + Signed> Complex<T> {
197     /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin.
198     ///
199     /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry
200     #[inline]
l1_norm(&self) -> T201     pub fn l1_norm(&self) -> T {
202         self.re.abs() + self.im.abs()
203     }
204 }
205 
206 #[cfg(any(feature = "std", feature = "libm"))]
207 impl<T: Float> Complex<T> {
208     /// Create a new Complex with a given phase: `exp(i * phase)`.
209     /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)).
210     #[inline]
cis(phase: T) -> Self211     pub fn cis(phase: T) -> Self {
212         Self::new(phase.cos(), phase.sin())
213     }
214 
215     /// Calculate |self|
216     #[inline]
norm(self) -> T217     pub fn norm(self) -> T {
218         self.re.hypot(self.im)
219     }
220     /// Calculate the principal Arg of self.
221     #[inline]
arg(self) -> T222     pub fn arg(self) -> T {
223         self.im.atan2(self.re)
224     }
225     /// Convert to polar form (r, theta), such that
226     /// `self = r * exp(i * theta)`
227     #[inline]
to_polar(self) -> (T, T)228     pub fn to_polar(self) -> (T, T) {
229         (self.norm(), self.arg())
230     }
231     /// Convert a polar representation into a complex number.
232     #[inline]
from_polar(r: T, theta: T) -> Self233     pub fn from_polar(r: T, theta: T) -> Self {
234         Self::new(r * theta.cos(), r * theta.sin())
235     }
236 
237     /// Computes `e^(self)`, where `e` is the base of the natural logarithm.
238     #[inline]
exp(self) -> Self239     pub fn exp(self) -> Self {
240         // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b)
241 
242         let Complex { re, mut im } = self;
243         // Treat the corner cases +∞, -∞, and NaN
244         if re.is_infinite() {
245             if re < T::zero() {
246                 if !im.is_finite() {
247                     return Self::new(T::zero(), T::zero());
248                 }
249             } else if im == T::zero() || !im.is_finite() {
250                 if im.is_infinite() {
251                     im = T::nan();
252                 }
253                 return Self::new(re, im);
254             }
255         } else if re.is_nan() && im == T::zero() {
256             return self;
257         }
258 
259         Self::from_polar(re.exp(), im)
260     }
261 
262     /// Computes the principal value of natural logarithm of `self`.
263     ///
264     /// This function has one branch cut:
265     ///
266     /// * `(-∞, 0]`, continuous from above.
267     ///
268     /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`.
269     #[inline]
ln(self) -> Self270     pub fn ln(self) -> Self {
271         // formula: ln(z) = ln|z| + i*arg(z)
272         let (r, theta) = self.to_polar();
273         Self::new(r.ln(), theta)
274     }
275 
276     /// Computes the principal value of the square root of `self`.
277     ///
278     /// This function has one branch cut:
279     ///
280     /// * `(-∞, 0)`, continuous from above.
281     ///
282     /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`.
283     #[inline]
sqrt(self) -> Self284     pub fn sqrt(self) -> Self {
285         if self.im.is_zero() {
286             if self.re.is_sign_positive() {
287                 // simple positive real √r, and copy `im` for its sign
288                 Self::new(self.re.sqrt(), self.im)
289             } else {
290                 // √(r e^(iπ)) = √r e^(iπ/2) = i√r
291                 // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r
292                 let re = T::zero();
293                 let im = (-self.re).sqrt();
294                 if self.im.is_sign_positive() {
295                     Self::new(re, im)
296                 } else {
297                     Self::new(re, -im)
298                 }
299             }
300         } else if self.re.is_zero() {
301             // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2)
302             // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2)
303             let one = T::one();
304             let two = one + one;
305             let x = (self.im.abs() / two).sqrt();
306             if self.im.is_sign_positive() {
307                 Self::new(x, x)
308             } else {
309                 Self::new(x, -x)
310             }
311         } else {
312             // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2)
313             let one = T::one();
314             let two = one + one;
315             let (r, theta) = self.to_polar();
316             Self::from_polar(r.sqrt(), theta / two)
317         }
318     }
319 
320     /// Computes the principal value of the cube root of `self`.
321     ///
322     /// This function has one branch cut:
323     ///
324     /// * `(-∞, 0)`, continuous from above.
325     ///
326     /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`.
327     ///
328     /// Note that this does not match the usual result for the cube root of
329     /// negative real numbers. For example, the real cube root of `-8` is `-2`,
330     /// but the principal complex cube root of `-8` is `1 + i√3`.
331     #[inline]
cbrt(self) -> Self332     pub fn cbrt(self) -> Self {
333         if self.im.is_zero() {
334             if self.re.is_sign_positive() {
335                 // simple positive real ∛r, and copy `im` for its sign
336                 Self::new(self.re.cbrt(), self.im)
337             } else {
338                 // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2
339                 // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2
340                 let one = T::one();
341                 let two = one + one;
342                 let three = two + one;
343                 let re = (-self.re).cbrt() / two;
344                 let im = three.sqrt() * re;
345                 if self.im.is_sign_positive() {
346                     Self::new(re, im)
347                 } else {
348                     Self::new(re, -im)
349                 }
350             }
351         } else if self.re.is_zero() {
352             // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2
353             // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2
354             let one = T::one();
355             let two = one + one;
356             let three = two + one;
357             let im = self.im.abs().cbrt() / two;
358             let re = three.sqrt() * im;
359             if self.im.is_sign_positive() {
360                 Self::new(re, im)
361             } else {
362                 Self::new(re, -im)
363             }
364         } else {
365             // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3)
366             let one = T::one();
367             let three = one + one + one;
368             let (r, theta) = self.to_polar();
369             Self::from_polar(r.cbrt(), theta / three)
370         }
371     }
372 
373     /// Raises `self` to a floating point power.
374     #[inline]
powf(self, exp: T) -> Self375     pub fn powf(self, exp: T) -> Self {
376         if exp.is_zero() {
377             return Self::one();
378         }
379         // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
380         // = from_polar(ρ^y, θ y)
381         let (r, theta) = self.to_polar();
382         Self::from_polar(r.powf(exp), theta * exp)
383     }
384 
385     /// Returns the logarithm of `self` with respect to an arbitrary base.
386     #[inline]
log(self, base: T) -> Self387     pub fn log(self, base: T) -> Self {
388         // formula: log_y(x) = log_y(ρ e^(i θ))
389         // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
390         // = log_y(ρ) + i θ / ln(y)
391         let (r, theta) = self.to_polar();
392         Self::new(r.log(base), theta / base.ln())
393     }
394 
395     /// Raises `self` to a complex power.
396     #[inline]
powc(self, exp: Self) -> Self397     pub fn powc(self, exp: Self) -> Self {
398         if exp.is_zero() {
399             return Self::one();
400         }
401         // formula: x^y = exp(y * ln(x))
402         (exp * self.ln()).exp()
403     }
404 
405     /// Raises a floating point number to the complex power `self`.
406     #[inline]
expf(self, base: T) -> Self407     pub fn expf(self, base: T) -> Self {
408         // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
409         // = from_polar(x^a, b ln(x))
410         Self::from_polar(base.powf(self.re), self.im * base.ln())
411     }
412 
413     /// Computes the sine of `self`.
414     #[inline]
sin(self) -> Self415     pub fn sin(self) -> Self {
416         // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b)
417         Self::new(
418             self.re.sin() * self.im.cosh(),
419             self.re.cos() * self.im.sinh(),
420         )
421     }
422 
423     /// Computes the cosine of `self`.
424     #[inline]
cos(self) -> Self425     pub fn cos(self) -> Self {
426         // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b)
427         Self::new(
428             self.re.cos() * self.im.cosh(),
429             -self.re.sin() * self.im.sinh(),
430         )
431     }
432 
433     /// Computes the tangent of `self`.
434     #[inline]
tan(self) -> Self435     pub fn tan(self) -> Self {
436         // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b))
437         let (two_re, two_im) = (self.re + self.re, self.im + self.im);
438         Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh())
439     }
440 
441     /// Computes the principal value of the inverse sine of `self`.
442     ///
443     /// This function has two branch cuts:
444     ///
445     /// * `(-∞, -1)`, continuous from above.
446     /// * `(1, ∞)`, continuous from below.
447     ///
448     /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`.
449     #[inline]
asin(self) -> Self450     pub fn asin(self) -> Self {
451         // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz)
452         let i = Self::i();
453         -i * ((Self::one() - self * self).sqrt() + i * self).ln()
454     }
455 
456     /// Computes the principal value of the inverse cosine of `self`.
457     ///
458     /// This function has two branch cuts:
459     ///
460     /// * `(-∞, -1)`, continuous from above.
461     /// * `(1, ∞)`, continuous from below.
462     ///
463     /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`.
464     #[inline]
acos(self) -> Self465     pub fn acos(self) -> Self {
466         // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z)
467         let i = Self::i();
468         -i * (i * (Self::one() - self * self).sqrt() + self).ln()
469     }
470 
471     /// Computes the principal value of the inverse tangent of `self`.
472     ///
473     /// This function has two branch cuts:
474     ///
475     /// * `(-∞i, -i]`, continuous from the left.
476     /// * `[i, ∞i)`, continuous from the right.
477     ///
478     /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`.
479     #[inline]
atan(self) -> Self480     pub fn atan(self) -> Self {
481         // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i)
482         let i = Self::i();
483         let one = Self::one();
484         let two = one + one;
485         if self == i {
486             return Self::new(T::zero(), T::infinity());
487         } else if self == -i {
488             return Self::new(T::zero(), -T::infinity());
489         }
490         ((one + i * self).ln() - (one - i * self).ln()) / (two * i)
491     }
492 
493     /// Computes the hyperbolic sine of `self`.
494     #[inline]
sinh(self) -> Self495     pub fn sinh(self) -> Self {
496         // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b)
497         Self::new(
498             self.re.sinh() * self.im.cos(),
499             self.re.cosh() * self.im.sin(),
500         )
501     }
502 
503     /// Computes the hyperbolic cosine of `self`.
504     #[inline]
cosh(self) -> Self505     pub fn cosh(self) -> Self {
506         // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b)
507         Self::new(
508             self.re.cosh() * self.im.cos(),
509             self.re.sinh() * self.im.sin(),
510         )
511     }
512 
513     /// Computes the hyperbolic tangent of `self`.
514     #[inline]
tanh(self) -> Self515     pub fn tanh(self) -> Self {
516         // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b))
517         let (two_re, two_im) = (self.re + self.re, self.im + self.im);
518         Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos())
519     }
520 
521     /// Computes the principal value of inverse hyperbolic sine of `self`.
522     ///
523     /// This function has two branch cuts:
524     ///
525     /// * `(-∞i, -i)`, continuous from the left.
526     /// * `(i, ∞i)`, continuous from the right.
527     ///
528     /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`.
529     #[inline]
asinh(self) -> Self530     pub fn asinh(self) -> Self {
531         // formula: arcsinh(z) = ln(z + sqrt(1+z^2))
532         let one = Self::one();
533         (self + (one + self * self).sqrt()).ln()
534     }
535 
536     /// Computes the principal value of inverse hyperbolic cosine of `self`.
537     ///
538     /// This function has one branch cut:
539     ///
540     /// * `(-∞, 1)`, continuous from above.
541     ///
542     /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`.
543     #[inline]
acosh(self) -> Self544     pub fn acosh(self) -> Self {
545         // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2))
546         let one = Self::one();
547         let two = one + one;
548         two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln()
549     }
550 
551     /// Computes the principal value of inverse hyperbolic tangent of `self`.
552     ///
553     /// This function has two branch cuts:
554     ///
555     /// * `(-∞, -1]`, continuous from above.
556     /// * `[1, ∞)`, continuous from below.
557     ///
558     /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`.
559     #[inline]
atanh(self) -> Self560     pub fn atanh(self) -> Self {
561         // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2
562         let one = Self::one();
563         let two = one + one;
564         if self == one {
565             return Self::new(T::infinity(), T::zero());
566         } else if self == -one {
567             return Self::new(-T::infinity(), T::zero());
568         }
569         ((one + self).ln() - (one - self).ln()) / two
570     }
571 
572     /// Returns `1/self` using floating-point operations.
573     ///
574     /// This may be more accurate than the generic `self.inv()` in cases
575     /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0.
576     ///
577     /// # Examples
578     ///
579     /// ```
580     /// use num_complex::Complex64;
581     /// let c = Complex64::new(1e300, 1e300);
582     ///
583     /// // The generic `inv()` will overflow.
584     /// assert!(!c.inv().is_normal());
585     ///
586     /// // But we can do better for `Float` types.
587     /// let inv = c.finv();
588     /// assert!(inv.is_normal());
589     /// println!("{:e}", inv);
590     ///
591     /// let expected = Complex64::new(5e-301, -5e-301);
592     /// assert!((inv - expected).norm() < 1e-315);
593     /// ```
594     #[inline]
finv(self) -> Complex<T>595     pub fn finv(self) -> Complex<T> {
596         let norm = self.norm();
597         self.conj() / norm / norm
598     }
599 
600     /// Returns `self/other` using floating-point operations.
601     ///
602     /// This may be more accurate than the generic `Div` implementation in cases
603     /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0.
604     ///
605     /// # Examples
606     ///
607     /// ```
608     /// use num_complex::Complex64;
609     /// let a = Complex64::new(2.0, 3.0);
610     /// let b = Complex64::new(1e300, 1e300);
611     ///
612     /// // Generic division will overflow.
613     /// assert!(!(a / b).is_normal());
614     ///
615     /// // But we can do better for `Float` types.
616     /// let quotient = a.fdiv(b);
617     /// assert!(quotient.is_normal());
618     /// println!("{:e}", quotient);
619     ///
620     /// let expected = Complex64::new(2.5e-300, 5e-301);
621     /// assert!((quotient - expected).norm() < 1e-315);
622     /// ```
623     #[inline]
fdiv(self, other: Complex<T>) -> Complex<T>624     pub fn fdiv(self, other: Complex<T>) -> Complex<T> {
625         self * other.finv()
626     }
627 }
628 
629 #[cfg(any(feature = "std", feature = "libm"))]
630 impl<T: Float + FloatConst> Complex<T> {
631     /// Computes `2^(self)`.
632     #[inline]
exp2(self) -> Self633     pub fn exp2(self) -> Self {
634         // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2))
635         // = from_polar(2^a, b*log2)
636         Self::from_polar(self.re.exp2(), self.im * T::LN_2())
637     }
638 
639     /// Computes the principal value of log base 2 of `self`.
640     #[inline]
log2(self) -> Self641     pub fn log2(self) -> Self {
642         Self::ln(self) / T::LN_2()
643     }
644 
645     /// Computes the principal value of log base 10 of `self`.
646     #[inline]
log10(self) -> Self647     pub fn log10(self) -> Self {
648         Self::ln(self) / T::LN_10()
649     }
650 }
651 
652 impl<T: FloatCore> Complex<T> {
653     /// Checks if the given complex number is NaN
654     #[inline]
is_nan(self) -> bool655     pub fn is_nan(self) -> bool {
656         self.re.is_nan() || self.im.is_nan()
657     }
658 
659     /// Checks if the given complex number is infinite
660     #[inline]
is_infinite(self) -> bool661     pub fn is_infinite(self) -> bool {
662         !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite())
663     }
664 
665     /// Checks if the given complex number is finite
666     #[inline]
is_finite(self) -> bool667     pub fn is_finite(self) -> bool {
668         self.re.is_finite() && self.im.is_finite()
669     }
670 
671     /// Checks if the given complex number is normal
672     #[inline]
is_normal(self) -> bool673     pub fn is_normal(self) -> bool {
674         self.re.is_normal() && self.im.is_normal()
675     }
676 }
677 
678 // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we
679 // can guarantee it contains no *added* padding. Thus, if `T: Zeroable`,
680 // `Complex<T>` is also `Zeroable`
681 #[cfg(feature = "bytemuck")]
682 unsafe impl<T: bytemuck::Zeroable> bytemuck::Zeroable for Complex<T> {}
683 
684 // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we
685 // can guarantee it contains no *added* padding. Thus, if `T: Pod`,
686 // `Complex<T>` is also `Pod`
687 #[cfg(feature = "bytemuck")]
688 unsafe impl<T: bytemuck::Pod> bytemuck::Pod for Complex<T> {}
689 
690 impl<T: Clone + Num> From<T> for Complex<T> {
691     #[inline]
from(re: T) -> Self692     fn from(re: T) -> Self {
693         Self::new(re, T::zero())
694     }
695 }
696 
697 impl<'a, T: Clone + Num> From<&'a T> for Complex<T> {
698     #[inline]
from(re: &T) -> Self699     fn from(re: &T) -> Self {
700         From::from(re.clone())
701     }
702 }
703 
704 macro_rules! forward_ref_ref_binop {
705     (impl $imp:ident, $method:ident) => {
706         impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> {
707             type Output = Complex<T>;
708 
709             #[inline]
710             fn $method(self, other: &Complex<T>) -> Self::Output {
711                 self.clone().$method(other.clone())
712             }
713         }
714     };
715 }
716 
717 macro_rules! forward_ref_val_binop {
718     (impl $imp:ident, $method:ident) => {
719         impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> {
720             type Output = Complex<T>;
721 
722             #[inline]
723             fn $method(self, other: Complex<T>) -> Self::Output {
724                 self.clone().$method(other)
725             }
726         }
727     };
728 }
729 
730 macro_rules! forward_val_ref_binop {
731     (impl $imp:ident, $method:ident) => {
732         impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> {
733             type Output = Complex<T>;
734 
735             #[inline]
736             fn $method(self, other: &Complex<T>) -> Self::Output {
737                 self.$method(other.clone())
738             }
739         }
740     };
741 }
742 
743 macro_rules! forward_all_binop {
744     (impl $imp:ident, $method:ident) => {
745         forward_ref_ref_binop!(impl $imp, $method);
746         forward_ref_val_binop!(impl $imp, $method);
747         forward_val_ref_binop!(impl $imp, $method);
748     };
749 }
750 
751 // arithmetic
752 forward_all_binop!(impl Add, add);
753 
754 // (a + i b) + (c + i d) == (a + c) + i (b + d)
755 impl<T: Clone + Num> Add<Complex<T>> for Complex<T> {
756     type Output = Self;
757 
758     #[inline]
add(self, other: Self) -> Self::Output759     fn add(self, other: Self) -> Self::Output {
760         Self::Output::new(self.re + other.re, self.im + other.im)
761     }
762 }
763 
764 forward_all_binop!(impl Sub, sub);
765 
766 // (a + i b) - (c + i d) == (a - c) + i (b - d)
767 impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> {
768     type Output = Self;
769 
770     #[inline]
sub(self, other: Self) -> Self::Output771     fn sub(self, other: Self) -> Self::Output {
772         Self::Output::new(self.re - other.re, self.im - other.im)
773     }
774 }
775 
776 forward_all_binop!(impl Mul, mul);
777 
778 // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
779 impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> {
780     type Output = Self;
781 
782     #[inline]
mul(self, other: Self) -> Self::Output783     fn mul(self, other: Self) -> Self::Output {
784         let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone();
785         let im = self.re * other.im + self.im * other.re;
786         Self::Output::new(re, im)
787     }
788 }
789 
790 // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f))
791 impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> {
792     type Output = Complex<T>;
793 
794     #[inline]
mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T>795     fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> {
796         let re = self.re.clone().mul_add(other.re.clone(), add.re)
797             - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust
798         let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im));
799         Complex::new(re, im)
800     }
801 }
802 impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> {
803     type Output = Complex<T>;
804 
805     #[inline]
mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T>806     fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> {
807         self.clone().mul_add(other.clone(), add.clone())
808     }
809 }
810 
811 forward_all_binop!(impl Div, div);
812 
813 // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
814 //   == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
815 impl<T: Clone + Num> Div<Complex<T>> for Complex<T> {
816     type Output = Self;
817 
818     #[inline]
div(self, other: Self) -> Self::Output819     fn div(self, other: Self) -> Self::Output {
820         let norm_sqr = other.norm_sqr();
821         let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone();
822         let im = self.im * other.re - self.re * other.im;
823         Self::Output::new(re / norm_sqr.clone(), im / norm_sqr)
824     }
825 }
826 
827 forward_all_binop!(impl Rem, rem);
828 
829 impl<T: Clone + Num> Complex<T> {
830     /// Find the gaussian integer corresponding to the true ratio rounded towards zero.
div_trunc(&self, divisor: &Self) -> Self831     fn div_trunc(&self, divisor: &Self) -> Self {
832         let Complex { re, im } = self / divisor;
833         Complex::new(re.clone() - re % T::one(), im.clone() - im % T::one())
834     }
835 }
836 
837 impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> {
838     type Output = Self;
839 
840     #[inline]
rem(self, modulus: Self) -> Self::Output841     fn rem(self, modulus: Self) -> Self::Output {
842         let gaussian = self.div_trunc(&modulus);
843         self - modulus * gaussian
844     }
845 }
846 
847 // Op Assign
848 
849 mod opassign {
850     use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
851 
852     use num_traits::{MulAddAssign, NumAssign};
853 
854     use crate::Complex;
855 
856     impl<T: Clone + NumAssign> AddAssign for Complex<T> {
add_assign(&mut self, other: Self)857         fn add_assign(&mut self, other: Self) {
858             self.re += other.re;
859             self.im += other.im;
860         }
861     }
862 
863     impl<T: Clone + NumAssign> SubAssign for Complex<T> {
sub_assign(&mut self, other: Self)864         fn sub_assign(&mut self, other: Self) {
865             self.re -= other.re;
866             self.im -= other.im;
867         }
868     }
869 
870     // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
871     impl<T: Clone + NumAssign> MulAssign for Complex<T> {
mul_assign(&mut self, other: Self)872         fn mul_assign(&mut self, other: Self) {
873             let a = self.re.clone();
874 
875             self.re *= other.re.clone();
876             self.re -= self.im.clone() * other.im.clone();
877 
878             self.im *= other.re;
879             self.im += a * other.im;
880         }
881     }
882 
883     // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f))
884     impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> {
mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>)885         fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) {
886             let a = self.re.clone();
887 
888             self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e)
889             self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d)
890 
891             let mut adf = a;
892             adf.mul_add_assign(other.im, add.im); // (a*d + f)
893             self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f))
894         }
895     }
896 
897     impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>>
898         for Complex<T>
899     {
mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>)900         fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) {
901             self.mul_add_assign(other.clone(), add.clone());
902         }
903     }
904 
905     // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
906     //   == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
907     impl<T: Clone + NumAssign> DivAssign for Complex<T> {
div_assign(&mut self, other: Self)908         fn div_assign(&mut self, other: Self) {
909             let a = self.re.clone();
910             let norm_sqr = other.norm_sqr();
911 
912             self.re *= other.re.clone();
913             self.re += self.im.clone() * other.im.clone();
914             self.re /= norm_sqr.clone();
915 
916             self.im *= other.re;
917             self.im -= a * other.im;
918             self.im /= norm_sqr;
919         }
920     }
921 
922     impl<T: Clone + NumAssign> RemAssign for Complex<T> {
rem_assign(&mut self, modulus: Self)923         fn rem_assign(&mut self, modulus: Self) {
924             let gaussian = self.div_trunc(&modulus);
925             *self -= modulus * gaussian;
926         }
927     }
928 
929     impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> {
add_assign(&mut self, other: T)930         fn add_assign(&mut self, other: T) {
931             self.re += other;
932         }
933     }
934 
935     impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> {
sub_assign(&mut self, other: T)936         fn sub_assign(&mut self, other: T) {
937             self.re -= other;
938         }
939     }
940 
941     impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> {
mul_assign(&mut self, other: T)942         fn mul_assign(&mut self, other: T) {
943             self.re *= other.clone();
944             self.im *= other;
945         }
946     }
947 
948     impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> {
div_assign(&mut self, other: T)949         fn div_assign(&mut self, other: T) {
950             self.re /= other.clone();
951             self.im /= other;
952         }
953     }
954 
955     impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> {
rem_assign(&mut self, other: T)956         fn rem_assign(&mut self, other: T) {
957             self.re %= other.clone();
958             self.im %= other;
959         }
960     }
961 
962     macro_rules! forward_op_assign {
963         (impl $imp:ident, $method:ident) => {
964             impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> {
965                 #[inline]
966                 fn $method(&mut self, other: &Self) {
967                     self.$method(other.clone())
968                 }
969             }
970             impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> {
971                 #[inline]
972                 fn $method(&mut self, other: &T) {
973                     self.$method(other.clone())
974                 }
975             }
976         };
977     }
978 
979     forward_op_assign!(impl AddAssign, add_assign);
980     forward_op_assign!(impl SubAssign, sub_assign);
981     forward_op_assign!(impl MulAssign, mul_assign);
982     forward_op_assign!(impl DivAssign, div_assign);
983     forward_op_assign!(impl RemAssign, rem_assign);
984 }
985 
986 impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
987     type Output = Self;
988 
989     #[inline]
neg(self) -> Self::Output990     fn neg(self) -> Self::Output {
991         Self::Output::new(-self.re, -self.im)
992     }
993 }
994 
995 impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> {
996     type Output = Complex<T>;
997 
998     #[inline]
neg(self) -> Self::Output999     fn neg(self) -> Self::Output {
1000         -self.clone()
1001     }
1002 }
1003 
1004 impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> {
1005     type Output = Self;
1006 
1007     #[inline]
inv(self) -> Self::Output1008     fn inv(self) -> Self::Output {
1009         Complex::inv(&self)
1010     }
1011 }
1012 
1013 impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> {
1014     type Output = Complex<T>;
1015 
1016     #[inline]
inv(self) -> Self::Output1017     fn inv(self) -> Self::Output {
1018         Complex::inv(self)
1019     }
1020 }
1021 
1022 macro_rules! real_arithmetic {
1023     (@forward $imp:ident::$method:ident for $($real:ident),*) => (
1024         impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> {
1025             type Output = Complex<T>;
1026 
1027             #[inline]
1028             fn $method(self, other: &T) -> Self::Output {
1029                 self.$method(other.clone())
1030             }
1031         }
1032         impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> {
1033             type Output = Complex<T>;
1034 
1035             #[inline]
1036             fn $method(self, other: T) -> Self::Output {
1037                 self.clone().$method(other)
1038             }
1039         }
1040         impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> {
1041             type Output = Complex<T>;
1042 
1043             #[inline]
1044             fn $method(self, other: &T) -> Self::Output {
1045                 self.clone().$method(other.clone())
1046             }
1047         }
1048         $(
1049             impl<'a> $imp<&'a Complex<$real>> for $real {
1050                 type Output = Complex<$real>;
1051 
1052                 #[inline]
1053                 fn $method(self, other: &Complex<$real>) -> Complex<$real> {
1054                     self.$method(other.clone())
1055                 }
1056             }
1057             impl<'a> $imp<Complex<$real>> for &'a $real {
1058                 type Output = Complex<$real>;
1059 
1060                 #[inline]
1061                 fn $method(self, other: Complex<$real>) -> Complex<$real> {
1062                     self.clone().$method(other)
1063                 }
1064             }
1065             impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real {
1066                 type Output = Complex<$real>;
1067 
1068                 #[inline]
1069                 fn $method(self, other: &Complex<$real>) -> Complex<$real> {
1070                     self.clone().$method(other.clone())
1071                 }
1072             }
1073         )*
1074     );
1075     ($($real:ident),*) => (
1076         real_arithmetic!(@forward Add::add for $($real),*);
1077         real_arithmetic!(@forward Sub::sub for $($real),*);
1078         real_arithmetic!(@forward Mul::mul for $($real),*);
1079         real_arithmetic!(@forward Div::div for $($real),*);
1080         real_arithmetic!(@forward Rem::rem for $($real),*);
1081 
1082         $(
1083             impl Add<Complex<$real>> for $real {
1084                 type Output = Complex<$real>;
1085 
1086                 #[inline]
1087                 fn add(self, other: Complex<$real>) -> Self::Output {
1088                     Self::Output::new(self + other.re, other.im)
1089                 }
1090             }
1091 
1092             impl Sub<Complex<$real>> for $real {
1093                 type Output = Complex<$real>;
1094 
1095                 #[inline]
1096                 fn sub(self, other: Complex<$real>) -> Self::Output  {
1097                     Self::Output::new(self - other.re, $real::zero() - other.im)
1098                 }
1099             }
1100 
1101             impl Mul<Complex<$real>> for $real {
1102                 type Output = Complex<$real>;
1103 
1104                 #[inline]
1105                 fn mul(self, other: Complex<$real>) -> Self::Output {
1106                     Self::Output::new(self * other.re, self * other.im)
1107                 }
1108             }
1109 
1110             impl Div<Complex<$real>> for $real {
1111                 type Output = Complex<$real>;
1112 
1113                 #[inline]
1114                 fn div(self, other: Complex<$real>) -> Self::Output {
1115                     // a / (c + i d) == [a * (c - i d)] / (c*c + d*d)
1116                     let norm_sqr = other.norm_sqr();
1117                     Self::Output::new(self * other.re / norm_sqr.clone(),
1118                                       $real::zero() - self * other.im / norm_sqr)
1119                 }
1120             }
1121 
1122             impl Rem<Complex<$real>> for $real {
1123                 type Output = Complex<$real>;
1124 
1125                 #[inline]
1126                 fn rem(self, other: Complex<$real>) -> Self::Output {
1127                     Self::Output::new(self, Self::zero()) % other
1128                 }
1129             }
1130         )*
1131     );
1132 }
1133 
1134 impl<T: Clone + Num> Add<T> for Complex<T> {
1135     type Output = Complex<T>;
1136 
1137     #[inline]
add(self, other: T) -> Self::Output1138     fn add(self, other: T) -> Self::Output {
1139         Self::Output::new(self.re + other, self.im)
1140     }
1141 }
1142 
1143 impl<T: Clone + Num> Sub<T> for Complex<T> {
1144     type Output = Complex<T>;
1145 
1146     #[inline]
sub(self, other: T) -> Self::Output1147     fn sub(self, other: T) -> Self::Output {
1148         Self::Output::new(self.re - other, self.im)
1149     }
1150 }
1151 
1152 impl<T: Clone + Num> Mul<T> for Complex<T> {
1153     type Output = Complex<T>;
1154 
1155     #[inline]
mul(self, other: T) -> Self::Output1156     fn mul(self, other: T) -> Self::Output {
1157         Self::Output::new(self.re * other.clone(), self.im * other)
1158     }
1159 }
1160 
1161 impl<T: Clone + Num> Div<T> for Complex<T> {
1162     type Output = Self;
1163 
1164     #[inline]
div(self, other: T) -> Self::Output1165     fn div(self, other: T) -> Self::Output {
1166         Self::Output::new(self.re / other.clone(), self.im / other)
1167     }
1168 }
1169 
1170 impl<T: Clone + Num> Rem<T> for Complex<T> {
1171     type Output = Complex<T>;
1172 
1173     #[inline]
rem(self, other: T) -> Self::Output1174     fn rem(self, other: T) -> Self::Output {
1175         Self::Output::new(self.re % other.clone(), self.im % other)
1176     }
1177 }
1178 
1179 real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64);
1180 
1181 // constants
1182 impl<T: ConstZero> Complex<T> {
1183     /// A constant `Complex` 0.
1184     pub const ZERO: Self = Self::new(T::ZERO, T::ZERO);
1185 }
1186 
1187 impl<T: Clone + Num + ConstZero> ConstZero for Complex<T> {
1188     const ZERO: Self = Self::ZERO;
1189 }
1190 
1191 impl<T: Clone + Num> Zero for Complex<T> {
1192     #[inline]
zero() -> Self1193     fn zero() -> Self {
1194         Self::new(Zero::zero(), Zero::zero())
1195     }
1196 
1197     #[inline]
is_zero(&self) -> bool1198     fn is_zero(&self) -> bool {
1199         self.re.is_zero() && self.im.is_zero()
1200     }
1201 
1202     #[inline]
set_zero(&mut self)1203     fn set_zero(&mut self) {
1204         self.re.set_zero();
1205         self.im.set_zero();
1206     }
1207 }
1208 
1209 impl<T: ConstOne + ConstZero> Complex<T> {
1210     /// A constant `Complex` 1.
1211     pub const ONE: Self = Self::new(T::ONE, T::ZERO);
1212 
1213     /// A constant `Complex` _i_, the imaginary unit.
1214     pub const I: Self = Self::new(T::ZERO, T::ONE);
1215 }
1216 
1217 impl<T: Clone + Num + ConstOne + ConstZero> ConstOne for Complex<T> {
1218     const ONE: Self = Self::ONE;
1219 }
1220 
1221 impl<T: Clone + Num> One for Complex<T> {
1222     #[inline]
one() -> Self1223     fn one() -> Self {
1224         Self::new(One::one(), Zero::zero())
1225     }
1226 
1227     #[inline]
is_one(&self) -> bool1228     fn is_one(&self) -> bool {
1229         self.re.is_one() && self.im.is_zero()
1230     }
1231 
1232     #[inline]
set_one(&mut self)1233     fn set_one(&mut self) {
1234         self.re.set_one();
1235         self.im.set_zero();
1236     }
1237 }
1238 
1239 macro_rules! write_complex {
1240     ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{
1241         let abs_re = if $re < Zero::zero() {
1242             $T::zero() - $re.clone()
1243         } else {
1244             $re.clone()
1245         };
1246         let abs_im = if $im < Zero::zero() {
1247             $T::zero() - $im.clone()
1248         } else {
1249             $im.clone()
1250         };
1251 
1252         return if let Some(prec) = $f.precision() {
1253             fmt_re_im(
1254                 $f,
1255                 $re < $T::zero(),
1256                 $im < $T::zero(),
1257                 format_args!(concat!("{:.1$", $t, "}"), abs_re, prec),
1258                 format_args!(concat!("{:.1$", $t, "}"), abs_im, prec),
1259             )
1260         } else {
1261             fmt_re_im(
1262                 $f,
1263                 $re < $T::zero(),
1264                 $im < $T::zero(),
1265                 format_args!(concat!("{:", $t, "}"), abs_re),
1266                 format_args!(concat!("{:", $t, "}"), abs_im),
1267             )
1268         };
1269 
1270         fn fmt_re_im(
1271             f: &mut fmt::Formatter<'_>,
1272             re_neg: bool,
1273             im_neg: bool,
1274             real: fmt::Arguments<'_>,
1275             imag: fmt::Arguments<'_>,
1276         ) -> fmt::Result {
1277             let prefix = if f.alternate() { $prefix } else { "" };
1278             let sign = if re_neg {
1279                 "-"
1280             } else if f.sign_plus() {
1281                 "+"
1282             } else {
1283                 ""
1284             };
1285 
1286             if im_neg {
1287                 fmt_complex(
1288                     f,
1289                     format_args!(
1290                         "{}{pre}{re}-{pre}{im}i",
1291                         sign,
1292                         re = real,
1293                         im = imag,
1294                         pre = prefix
1295                     ),
1296                 )
1297             } else {
1298                 fmt_complex(
1299                     f,
1300                     format_args!(
1301                         "{}{pre}{re}+{pre}{im}i",
1302                         sign,
1303                         re = real,
1304                         im = imag,
1305                         pre = prefix
1306                     ),
1307                 )
1308             }
1309         }
1310 
1311         #[cfg(feature = "std")]
1312         // Currently, we can only apply width using an intermediate `String` (and thus `std`)
1313         fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result {
1314             use std::string::ToString;
1315             if let Some(width) = f.width() {
1316                 write!(f, "{0: >1$}", complex.to_string(), width)
1317             } else {
1318                 write!(f, "{}", complex)
1319             }
1320         }
1321 
1322         #[cfg(not(feature = "std"))]
1323         fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result {
1324             write!(f, "{}", complex)
1325         }
1326     }};
1327 }
1328 
1329 // string conversions
1330 impl<T> fmt::Display for Complex<T>
1331 where
1332     T: fmt::Display + Num + PartialOrd + Clone,
1333 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1334     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1335         write_complex!(f, "", "", self.re, self.im, T)
1336     }
1337 }
1338 
1339 impl<T> fmt::LowerExp for Complex<T>
1340 where
1341     T: fmt::LowerExp + Num + PartialOrd + Clone,
1342 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1343     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1344         write_complex!(f, "e", "", self.re, self.im, T)
1345     }
1346 }
1347 
1348 impl<T> fmt::UpperExp for Complex<T>
1349 where
1350     T: fmt::UpperExp + Num + PartialOrd + Clone,
1351 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1352     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1353         write_complex!(f, "E", "", self.re, self.im, T)
1354     }
1355 }
1356 
1357 impl<T> fmt::LowerHex for Complex<T>
1358 where
1359     T: fmt::LowerHex + Num + PartialOrd + Clone,
1360 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1361     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1362         write_complex!(f, "x", "0x", self.re, self.im, T)
1363     }
1364 }
1365 
1366 impl<T> fmt::UpperHex for Complex<T>
1367 where
1368     T: fmt::UpperHex + Num + PartialOrd + Clone,
1369 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1370     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1371         write_complex!(f, "X", "0x", self.re, self.im, T)
1372     }
1373 }
1374 
1375 impl<T> fmt::Octal for Complex<T>
1376 where
1377     T: fmt::Octal + Num + PartialOrd + Clone,
1378 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1379     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1380         write_complex!(f, "o", "0o", self.re, self.im, T)
1381     }
1382 }
1383 
1384 impl<T> fmt::Binary for Complex<T>
1385 where
1386     T: fmt::Binary + Num + PartialOrd + Clone,
1387 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1388     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1389         write_complex!(f, "b", "0b", self.re, self.im, T)
1390     }
1391 }
1392 
from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>> where F: Fn(&str) -> Result<T, E>, T: Clone + Num,1393 fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>>
1394 where
1395     F: Fn(&str) -> Result<T, E>,
1396     T: Clone + Num,
1397 {
1398     let imag = match s.rfind('j') {
1399         None => 'i',
1400         _ => 'j',
1401     };
1402 
1403     let mut neg_b = false;
1404     let mut a = s;
1405     let mut b = "";
1406 
1407     for (i, w) in s.as_bytes().windows(2).enumerate() {
1408         let p = w[0];
1409         let c = w[1];
1410 
1411         // ignore '+'/'-' if part of an exponent
1412         if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') {
1413             // trim whitespace around the separator
1414             a = s[..=i].trim_end_matches(char::is_whitespace);
1415             b = s[i + 2..].trim_start_matches(char::is_whitespace);
1416             neg_b = c == b'-';
1417 
1418             if b.is_empty() || (neg_b && b.starts_with('-')) {
1419                 return Err(ParseComplexError::expr_error());
1420             }
1421             break;
1422         }
1423     }
1424 
1425     // split off real and imaginary parts
1426     if b.is_empty() {
1427         // input was either pure real or pure imaginary
1428         b = if a.ends_with(imag) { "0" } else { "0i" };
1429     }
1430 
1431     let re;
1432     let neg_re;
1433     let im;
1434     let neg_im;
1435     if a.ends_with(imag) {
1436         im = a;
1437         neg_im = false;
1438         re = b;
1439         neg_re = neg_b;
1440     } else if b.ends_with(imag) {
1441         re = a;
1442         neg_re = false;
1443         im = b;
1444         neg_im = neg_b;
1445     } else {
1446         return Err(ParseComplexError::expr_error());
1447     }
1448 
1449     // parse re
1450     let re = from(re).map_err(ParseComplexError::from_error)?;
1451     let re = if neg_re { T::zero() - re } else { re };
1452 
1453     // pop imaginary unit off
1454     let mut im = &im[..im.len() - 1];
1455     // handle im == "i" or im == "-i"
1456     if im.is_empty() || im == "+" {
1457         im = "1";
1458     } else if im == "-" {
1459         im = "-1";
1460     }
1461 
1462     // parse im
1463     let im = from(im).map_err(ParseComplexError::from_error)?;
1464     let im = if neg_im { T::zero() - im } else { im };
1465 
1466     Ok(Complex::new(re, im))
1467 }
1468 
1469 impl<T> FromStr for Complex<T>
1470 where
1471     T: FromStr + Num + Clone,
1472 {
1473     type Err = ParseComplexError<T::Err>;
1474 
1475     /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
from_str(s: &str) -> Result<Self, Self::Err>1476     fn from_str(s: &str) -> Result<Self, Self::Err> {
1477         from_str_generic(s, T::from_str)
1478     }
1479 }
1480 
1481 impl<T: Num + Clone> Num for Complex<T> {
1482     type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>;
1483 
1484     /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
1485     ///
1486     /// `radix` must be <= 18; larger radix would include *i* and *j* as digits,
1487     /// which cannot be supported.
1488     ///
1489     /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36.
1490     ///
1491     /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors
1492     /// (or panics) from that are reflected here as well.
from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>1493     fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
1494         assert!(
1495             radix <= 36,
1496             "from_str_radix: radix is too high (maximum 36)"
1497         );
1498 
1499         // larger radix would include 'i' and 'j' as digits, which cannot be supported
1500         if radix > 18 {
1501             return Err(ParseComplexError::unsupported_radix());
1502         }
1503 
1504         from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> {
1505             T::from_str_radix(x, radix)
1506         })
1507     }
1508 }
1509 
1510 impl<T: Num + Clone> Sum for Complex<T> {
sum<I>(iter: I) -> Self where I: Iterator<Item = Self>,1511     fn sum<I>(iter: I) -> Self
1512     where
1513         I: Iterator<Item = Self>,
1514     {
1515         iter.fold(Self::zero(), |acc, c| acc + c)
1516     }
1517 }
1518 
1519 impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> {
sum<I>(iter: I) -> Self where I: Iterator<Item = &'a Complex<T>>,1520     fn sum<I>(iter: I) -> Self
1521     where
1522         I: Iterator<Item = &'a Complex<T>>,
1523     {
1524         iter.fold(Self::zero(), |acc, c| acc + c)
1525     }
1526 }
1527 
1528 impl<T: Num + Clone> Product for Complex<T> {
product<I>(iter: I) -> Self where I: Iterator<Item = Self>,1529     fn product<I>(iter: I) -> Self
1530     where
1531         I: Iterator<Item = Self>,
1532     {
1533         iter.fold(Self::one(), |acc, c| acc * c)
1534     }
1535 }
1536 
1537 impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> {
product<I>(iter: I) -> Self where I: Iterator<Item = &'a Complex<T>>,1538     fn product<I>(iter: I) -> Self
1539     where
1540         I: Iterator<Item = &'a Complex<T>>,
1541     {
1542         iter.fold(Self::one(), |acc, c| acc * c)
1543     }
1544 }
1545 
1546 #[cfg(feature = "serde")]
1547 impl<T> serde::Serialize for Complex<T>
1548 where
1549     T: serde::Serialize,
1550 {
serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer,1551     fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
1552     where
1553         S: serde::Serializer,
1554     {
1555         (&self.re, &self.im).serialize(serializer)
1556     }
1557 }
1558 
1559 #[cfg(feature = "serde")]
1560 impl<'de, T> serde::Deserialize<'de> for Complex<T>
1561 where
1562     T: serde::Deserialize<'de>,
1563 {
deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: serde::Deserializer<'de>,1564     fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1565     where
1566         D: serde::Deserializer<'de>,
1567     {
1568         let (re, im) = serde::Deserialize::deserialize(deserializer)?;
1569         Ok(Self::new(re, im))
1570     }
1571 }
1572 
1573 #[derive(Debug, PartialEq)]
1574 pub struct ParseComplexError<E> {
1575     kind: ComplexErrorKind<E>,
1576 }
1577 
1578 #[derive(Debug, PartialEq)]
1579 enum ComplexErrorKind<E> {
1580     ParseError(E),
1581     ExprError,
1582     UnsupportedRadix,
1583 }
1584 
1585 impl<E> ParseComplexError<E> {
expr_error() -> Self1586     fn expr_error() -> Self {
1587         ParseComplexError {
1588             kind: ComplexErrorKind::ExprError,
1589         }
1590     }
1591 
unsupported_radix() -> Self1592     fn unsupported_radix() -> Self {
1593         ParseComplexError {
1594             kind: ComplexErrorKind::UnsupportedRadix,
1595         }
1596     }
1597 
from_error(error: E) -> Self1598     fn from_error(error: E) -> Self {
1599         ParseComplexError {
1600             kind: ComplexErrorKind::ParseError(error),
1601         }
1602     }
1603 }
1604 
1605 #[cfg(feature = "std")]
1606 impl<E: Error> Error for ParseComplexError<E> {
1607     #[allow(deprecated)]
description(&self) -> &str1608     fn description(&self) -> &str {
1609         match self.kind {
1610             ComplexErrorKind::ParseError(ref e) => e.description(),
1611             ComplexErrorKind::ExprError => "invalid or unsupported complex expression",
1612             ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion",
1613         }
1614     }
1615 }
1616 
1617 impl<E: fmt::Display> fmt::Display for ParseComplexError<E> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1618     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1619         match self.kind {
1620             ComplexErrorKind::ParseError(ref e) => e.fmt(f),
1621             ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f),
1622             ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion".fmt(f),
1623         }
1624     }
1625 }
1626 
1627 #[cfg(test)]
hash<T: hash::Hash>(x: &T) -> u641628 fn hash<T: hash::Hash>(x: &T) -> u64 {
1629     use std::collections::hash_map::RandomState;
1630     use std::hash::{BuildHasher, Hasher};
1631     let mut hasher = <RandomState as BuildHasher>::Hasher::new();
1632     x.hash(&mut hasher);
1633     hasher.finish()
1634 }
1635 
1636 #[cfg(test)]
1637 pub(crate) mod test {
1638     #![allow(non_upper_case_globals)]
1639 
1640     use super::{Complex, Complex64};
1641     use super::{ComplexErrorKind, ParseComplexError};
1642     use core::f64;
1643     use core::str::FromStr;
1644 
1645     use std::string::{String, ToString};
1646 
1647     use num_traits::{Num, One, Zero};
1648 
1649     pub const _0_0i: Complex64 = Complex::new(0.0, 0.0);
1650     pub const _1_0i: Complex64 = Complex::new(1.0, 0.0);
1651     pub const _1_1i: Complex64 = Complex::new(1.0, 1.0);
1652     pub const _0_1i: Complex64 = Complex::new(0.0, 1.0);
1653     pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0);
1654     pub const _05_05i: Complex64 = Complex::new(0.5, 0.5);
1655     pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
1656     pub const _4_2i: Complex64 = Complex::new(4.0, 2.0);
1657     pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY);
1658     pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY);
1659     pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN);
1660     pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN);
1661     pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0);
1662     pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0);
1663     pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0);
1664     pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0);
1665     pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0);
1666     pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY);
1667     pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY);
1668     pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN);
1669     pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN);
1670     pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0);
1671     pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0);
1672     pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0);
1673     pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN);
1674 
1675     #[test]
test_consts()1676     fn test_consts() {
1677         // check our constants are what Complex::new creates
1678         fn test(c: Complex64, r: f64, i: f64) {
1679             assert_eq!(c, Complex::new(r, i));
1680         }
1681         test(_0_0i, 0.0, 0.0);
1682         test(_1_0i, 1.0, 0.0);
1683         test(_1_1i, 1.0, 1.0);
1684         test(_neg1_1i, -1.0, 1.0);
1685         test(_05_05i, 0.5, 0.5);
1686 
1687         assert_eq!(_0_0i, Zero::zero());
1688         assert_eq!(_1_0i, One::one());
1689     }
1690 
1691     #[test]
test_scale_unscale()1692     fn test_scale_unscale() {
1693         assert_eq!(_05_05i.scale(2.0), _1_1i);
1694         assert_eq!(_1_1i.unscale(2.0), _05_05i);
1695         for &c in all_consts.iter() {
1696             assert_eq!(c.scale(2.0).unscale(2.0), c);
1697         }
1698     }
1699 
1700     #[test]
test_conj()1701     fn test_conj() {
1702         for &c in all_consts.iter() {
1703             assert_eq!(c.conj(), Complex::new(c.re, -c.im));
1704             assert_eq!(c.conj().conj(), c);
1705         }
1706     }
1707 
1708     #[test]
test_inv()1709     fn test_inv() {
1710         assert_eq!(_1_1i.inv(), _05_05i.conj());
1711         assert_eq!(_1_0i.inv(), _1_0i.inv());
1712     }
1713 
1714     #[test]
1715     #[should_panic]
test_divide_by_zero_natural()1716     fn test_divide_by_zero_natural() {
1717         let n = Complex::new(2, 3);
1718         let d = Complex::new(0, 0);
1719         let _x = n / d;
1720     }
1721 
1722     #[test]
test_inv_zero()1723     fn test_inv_zero() {
1724         // FIXME #20: should this really fail, or just NaN?
1725         assert!(_0_0i.inv().is_nan());
1726     }
1727 
1728     #[test]
1729     #[allow(clippy::float_cmp)]
test_l1_norm()1730     fn test_l1_norm() {
1731         assert_eq!(_0_0i.l1_norm(), 0.0);
1732         assert_eq!(_1_0i.l1_norm(), 1.0);
1733         assert_eq!(_1_1i.l1_norm(), 2.0);
1734         assert_eq!(_0_1i.l1_norm(), 1.0);
1735         assert_eq!(_neg1_1i.l1_norm(), 2.0);
1736         assert_eq!(_05_05i.l1_norm(), 1.0);
1737         assert_eq!(_4_2i.l1_norm(), 6.0);
1738     }
1739 
1740     #[test]
test_pow()1741     fn test_pow() {
1742         for c in all_consts.iter() {
1743             assert_eq!(c.powi(0), _1_0i);
1744             let mut pos = _1_0i;
1745             let mut neg = _1_0i;
1746             for i in 1i32..20 {
1747                 pos *= c;
1748                 assert_eq!(pos, c.powi(i));
1749                 if c.is_zero() {
1750                     assert!(c.powi(-i).is_nan());
1751                 } else {
1752                     neg /= c;
1753                     assert_eq!(neg, c.powi(-i));
1754                 }
1755             }
1756         }
1757     }
1758 
1759     #[cfg(any(feature = "std", feature = "libm"))]
1760     pub(crate) mod float {
1761 
1762         use core::f64::INFINITY;
1763 
1764         use super::*;
1765         use num_traits::{Float, Pow};
1766 
1767         #[test]
test_cis()1768         fn test_cis() {
1769             assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i));
1770             assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i));
1771             assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i));
1772             assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i));
1773             assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i));
1774         }
1775 
1776         #[test]
1777         #[cfg_attr(target_arch = "x86", ignore)]
1778         // FIXME #7158: (maybe?) currently failing on x86.
1779         #[allow(clippy::float_cmp)]
test_norm()1780         fn test_norm() {
1781             fn test(c: Complex64, ns: f64) {
1782                 assert_eq!(c.norm_sqr(), ns);
1783                 assert_eq!(c.norm(), ns.sqrt())
1784             }
1785             test(_0_0i, 0.0);
1786             test(_1_0i, 1.0);
1787             test(_1_1i, 2.0);
1788             test(_neg1_1i, 2.0);
1789             test(_05_05i, 0.5);
1790         }
1791 
1792         #[test]
test_arg()1793         fn test_arg() {
1794             fn test(c: Complex64, arg: f64) {
1795                 assert!((c.arg() - arg).abs() < 1.0e-6)
1796             }
1797             test(_1_0i, 0.0);
1798             test(_1_1i, 0.25 * f64::consts::PI);
1799             test(_neg1_1i, 0.75 * f64::consts::PI);
1800             test(_05_05i, 0.25 * f64::consts::PI);
1801         }
1802 
1803         #[test]
test_polar_conv()1804         fn test_polar_conv() {
1805             fn test(c: Complex64) {
1806                 let (r, theta) = c.to_polar();
1807                 assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6);
1808             }
1809             for &c in all_consts.iter() {
1810                 test(c);
1811             }
1812         }
1813 
close(a: Complex64, b: Complex64) -> bool1814         pub(crate) fn close(a: Complex64, b: Complex64) -> bool {
1815             close_to_tol(a, b, 1e-10)
1816         }
1817 
close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool1818         fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
1819             // returns true if a and b are reasonably close
1820             let close = (a == b) || (a - b).norm() < tol;
1821             if !close {
1822                 println!("{:?} != {:?}", a, b);
1823             }
1824             close
1825         }
1826 
1827         // Version that also works if re or im are +inf, -inf, or nan
close_naninf(a: Complex64, b: Complex64) -> bool1828         fn close_naninf(a: Complex64, b: Complex64) -> bool {
1829             close_naninf_to_tol(a, b, 1.0e-10)
1830         }
1831 
close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool1832         fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
1833             let mut close = true;
1834 
1835             // Compare the real parts
1836             if a.re.is_finite() {
1837                 if b.re.is_finite() {
1838                     close = (a.re == b.re) || (a.re - b.re).abs() < tol;
1839                 } else {
1840                     close = false;
1841                 }
1842             } else if (a.re.is_nan() && !b.re.is_nan())
1843                 || (a.re.is_infinite()
1844                     && a.re.is_sign_positive()
1845                     && !(b.re.is_infinite() && b.re.is_sign_positive()))
1846                 || (a.re.is_infinite()
1847                     && a.re.is_sign_negative()
1848                     && !(b.re.is_infinite() && b.re.is_sign_negative()))
1849             {
1850                 close = false;
1851             }
1852 
1853             // Compare the imaginary parts
1854             if a.im.is_finite() {
1855                 if b.im.is_finite() {
1856                     close &= (a.im == b.im) || (a.im - b.im).abs() < tol;
1857                 } else {
1858                     close = false;
1859                 }
1860             } else if (a.im.is_nan() && !b.im.is_nan())
1861                 || (a.im.is_infinite()
1862                     && a.im.is_sign_positive()
1863                     && !(b.im.is_infinite() && b.im.is_sign_positive()))
1864                 || (a.im.is_infinite()
1865                     && a.im.is_sign_negative()
1866                     && !(b.im.is_infinite() && b.im.is_sign_negative()))
1867             {
1868                 close = false;
1869             }
1870 
1871             if close == false {
1872                 println!("{:?} != {:?}", a, b);
1873             }
1874             close
1875         }
1876 
1877         #[test]
test_exp2()1878         fn test_exp2() {
1879             assert!(close(_0_0i.exp2(), _1_0i));
1880         }
1881 
1882         #[test]
test_exp()1883         fn test_exp() {
1884             assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E)));
1885             assert!(close(_0_0i.exp(), _1_0i));
1886             assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin())));
1887             assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp()));
1888             assert!(close(
1889                 _0_1i.scale(-f64::consts::PI).exp(),
1890                 _1_0i.scale(-1.0)
1891             ));
1892             for &c in all_consts.iter() {
1893                 // e^conj(z) = conj(e^z)
1894                 assert!(close(c.conj().exp(), c.exp().conj()));
1895                 // e^(z + 2 pi i) = e^z
1896                 assert!(close(
1897                     c.exp(),
1898                     (c + _0_1i.scale(f64::consts::PI * 2.0)).exp()
1899                 ));
1900             }
1901 
1902             // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp
1903             assert!(close_naninf(_1_infi.exp(), _nan_nani));
1904             assert!(close_naninf(_neg1_infi.exp(), _nan_nani));
1905             assert!(close_naninf(_1_nani.exp(), _nan_nani));
1906             assert!(close_naninf(_neg1_nani.exp(), _nan_nani));
1907             assert!(close_naninf(_inf_0i.exp(), _inf_0i));
1908             assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0)));
1909             assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0)));
1910             assert!(close_naninf(
1911                 _inf_1i.exp(),
1912                 f64::INFINITY * Complex::cis(1.0)
1913             ));
1914             assert!(close_naninf(
1915                 _inf_neg1i.exp(),
1916                 f64::INFINITY * Complex::cis(-1.0)
1917             ));
1918             assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified
1919             assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified
1920             assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified
1921             assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified
1922             assert!(close_naninf(_nan_0i.exp(), _nan_0i));
1923             assert!(close_naninf(_nan_1i.exp(), _nan_nani));
1924             assert!(close_naninf(_nan_neg1i.exp(), _nan_nani));
1925             assert!(close_naninf(_nan_nani.exp(), _nan_nani));
1926         }
1927 
1928         #[test]
test_ln()1929         fn test_ln() {
1930             assert!(close(_1_0i.ln(), _0_0i));
1931             assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0)));
1932             assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0)));
1933             assert!(close(
1934                 (_neg1_1i * _05_05i).ln(),
1935                 _neg1_1i.ln() + _05_05i.ln()
1936             ));
1937             for &c in all_consts.iter() {
1938                 // ln(conj(z() = conj(ln(z))
1939                 assert!(close(c.conj().ln(), c.ln().conj()));
1940                 // for this branch, -pi <= arg(ln(z)) <= pi
1941                 assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI);
1942             }
1943         }
1944 
1945         #[test]
test_powc()1946         fn test_powc() {
1947             let a = Complex::new(2.0, -3.0);
1948             let b = Complex::new(3.0, 0.0);
1949             assert!(close(a.powc(b), a.powf(b.re)));
1950             assert!(close(b.powc(a), a.expf(b.re)));
1951             let c = Complex::new(1.0 / 3.0, 0.1);
1952             assert!(close_to_tol(
1953                 a.powc(c),
1954                 Complex::new(1.65826, -0.33502),
1955                 1e-5
1956             ));
1957             let z = Complex::new(0.0, 0.0);
1958             assert!(close(z.powc(b), z));
1959             assert!(z.powc(Complex64::new(0., INFINITY)).is_nan());
1960             assert!(z.powc(Complex64::new(10., INFINITY)).is_nan());
1961             assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan());
1962             assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z));
1963             assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite());
1964             assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan());
1965 
1966             for c in all_consts.iter() {
1967                 assert_eq!(c.powc(_0_0i), _1_0i);
1968             }
1969             assert_eq!(_nan_nani.powc(_0_0i), _1_0i);
1970         }
1971 
1972         #[test]
test_powf()1973         fn test_powf() {
1974             let c = Complex64::new(2.0, -1.0);
1975             let expected = Complex64::new(-0.8684746, -16.695934);
1976             assert!(close_to_tol(c.powf(3.5), expected, 1e-5));
1977             assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5));
1978             assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5));
1979 
1980             for c in all_consts.iter() {
1981                 assert_eq!(c.powf(0.0), _1_0i);
1982             }
1983             assert_eq!(_nan_nani.powf(0.0), _1_0i);
1984         }
1985 
1986         #[test]
test_log()1987         fn test_log() {
1988             let c = Complex::new(2.0, -1.0);
1989             let r = c.log(10.0);
1990             assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
1991         }
1992 
1993         #[test]
test_log2()1994         fn test_log2() {
1995             assert!(close(_1_0i.log2(), _0_0i));
1996         }
1997 
1998         #[test]
test_log10()1999         fn test_log10() {
2000             assert!(close(_1_0i.log10(), _0_0i));
2001         }
2002 
2003         #[test]
test_some_expf_cases()2004         fn test_some_expf_cases() {
2005             let c = Complex::new(2.0, -1.0);
2006             let r = c.expf(10.0);
2007             assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
2008 
2009             let c = Complex::new(5.0, -2.0);
2010             let r = c.expf(3.4);
2011             assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
2012 
2013             let c = Complex::new(-1.5, 2.0 / 3.0);
2014             let r = c.expf(1.0 / 3.0);
2015             assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
2016         }
2017 
2018         #[test]
test_sqrt()2019         fn test_sqrt() {
2020             assert!(close(_0_0i.sqrt(), _0_0i));
2021             assert!(close(_1_0i.sqrt(), _1_0i));
2022             assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i));
2023             assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0)));
2024             assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt())));
2025             for &c in all_consts.iter() {
2026                 // sqrt(conj(z() = conj(sqrt(z))
2027                 assert!(close(c.conj().sqrt(), c.sqrt().conj()));
2028                 // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2
2029                 assert!(
2030                     -f64::consts::FRAC_PI_2 <= c.sqrt().arg()
2031                         && c.sqrt().arg() <= f64::consts::FRAC_PI_2
2032                 );
2033                 // sqrt(z) * sqrt(z) = z
2034                 assert!(close(c.sqrt() * c.sqrt(), c));
2035             }
2036         }
2037 
2038         #[test]
test_sqrt_real()2039         fn test_sqrt_real() {
2040             for n in (0..100).map(f64::from) {
2041                 // √(n² + 0i) = n + 0i
2042                 let n2 = n * n;
2043                 assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0));
2044                 // √(-n² + 0i) = 0 + ni
2045                 assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n));
2046                 // √(-n² - 0i) = 0 - ni
2047                 assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n));
2048             }
2049         }
2050 
2051         #[test]
test_sqrt_imag()2052         fn test_sqrt_imag() {
2053             for n in (0..100).map(f64::from) {
2054                 // √(0 + n²i) = n e^(iπ/4)
2055                 let n2 = n * n;
2056                 assert!(close(
2057                     Complex64::new(0.0, n2).sqrt(),
2058                     Complex64::from_polar(n, f64::consts::FRAC_PI_4)
2059                 ));
2060                 // √(0 - n²i) = n e^(-iπ/4)
2061                 assert!(close(
2062                     Complex64::new(0.0, -n2).sqrt(),
2063                     Complex64::from_polar(n, -f64::consts::FRAC_PI_4)
2064                 ));
2065             }
2066         }
2067 
2068         #[test]
test_cbrt()2069         fn test_cbrt() {
2070             assert!(close(_0_0i.cbrt(), _0_0i));
2071             assert!(close(_1_0i.cbrt(), _1_0i));
2072             assert!(close(
2073                 Complex::new(-1.0, 0.0).cbrt(),
2074                 Complex::new(0.5, 0.75.sqrt())
2075             ));
2076             assert!(close(
2077                 Complex::new(-1.0, -0.0).cbrt(),
2078                 Complex::new(0.5, -(0.75.sqrt()))
2079             ));
2080             assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5)));
2081             assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5)));
2082             for &c in all_consts.iter() {
2083                 // cbrt(conj(z() = conj(cbrt(z))
2084                 assert!(close(c.conj().cbrt(), c.cbrt().conj()));
2085                 // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3
2086                 assert!(
2087                     -f64::consts::FRAC_PI_3 <= c.cbrt().arg()
2088                         && c.cbrt().arg() <= f64::consts::FRAC_PI_3
2089                 );
2090                 // cbrt(z) * cbrt(z) cbrt(z) = z
2091                 assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c));
2092             }
2093         }
2094 
2095         #[test]
test_cbrt_real()2096         fn test_cbrt_real() {
2097             for n in (0..100).map(f64::from) {
2098                 // ∛(n³ + 0i) = n + 0i
2099                 let n3 = n * n * n;
2100                 assert!(close(
2101                     Complex64::new(n3, 0.0).cbrt(),
2102                     Complex64::new(n, 0.0)
2103                 ));
2104                 // ∛(-n³ + 0i) = n e^(iπ/3)
2105                 assert!(close(
2106                     Complex64::new(-n3, 0.0).cbrt(),
2107                     Complex64::from_polar(n, f64::consts::FRAC_PI_3)
2108                 ));
2109                 // ∛(-n³ - 0i) = n e^(-iπ/3)
2110                 assert!(close(
2111                     Complex64::new(-n3, -0.0).cbrt(),
2112                     Complex64::from_polar(n, -f64::consts::FRAC_PI_3)
2113                 ));
2114             }
2115         }
2116 
2117         #[test]
test_cbrt_imag()2118         fn test_cbrt_imag() {
2119             for n in (0..100).map(f64::from) {
2120                 // ∛(0 + n³i) = n e^(iπ/6)
2121                 let n3 = n * n * n;
2122                 assert!(close(
2123                     Complex64::new(0.0, n3).cbrt(),
2124                     Complex64::from_polar(n, f64::consts::FRAC_PI_6)
2125                 ));
2126                 // ∛(0 - n³i) = n e^(-iπ/6)
2127                 assert!(close(
2128                     Complex64::new(0.0, -n3).cbrt(),
2129                     Complex64::from_polar(n, -f64::consts::FRAC_PI_6)
2130                 ));
2131             }
2132         }
2133 
2134         #[test]
test_sin()2135         fn test_sin() {
2136             assert!(close(_0_0i.sin(), _0_0i));
2137             assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i));
2138             assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh())));
2139             for &c in all_consts.iter() {
2140                 // sin(conj(z)) = conj(sin(z))
2141                 assert!(close(c.conj().sin(), c.sin().conj()));
2142                 // sin(-z) = -sin(z)
2143                 assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0)));
2144             }
2145         }
2146 
2147         #[test]
test_cos()2148         fn test_cos() {
2149             assert!(close(_0_0i.cos(), _1_0i));
2150             assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i));
2151             assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh())));
2152             for &c in all_consts.iter() {
2153                 // cos(conj(z)) = conj(cos(z))
2154                 assert!(close(c.conj().cos(), c.cos().conj()));
2155                 // cos(-z) = cos(z)
2156                 assert!(close(c.scale(-1.0).cos(), c.cos()));
2157             }
2158         }
2159 
2160         #[test]
test_tan()2161         fn test_tan() {
2162             assert!(close(_0_0i.tan(), _0_0i));
2163             assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i));
2164             assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i));
2165             for &c in all_consts.iter() {
2166                 // tan(conj(z)) = conj(tan(z))
2167                 assert!(close(c.conj().tan(), c.tan().conj()));
2168                 // tan(-z) = -tan(z)
2169                 assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0)));
2170             }
2171         }
2172 
2173         #[test]
test_asin()2174         fn test_asin() {
2175             assert!(close(_0_0i.asin(), _0_0i));
2176             assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0)));
2177             assert!(close(
2178                 _1_0i.scale(-1.0).asin(),
2179                 _1_0i.scale(-f64::consts::PI / 2.0)
2180             ));
2181             assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln())));
2182             for &c in all_consts.iter() {
2183                 // asin(conj(z)) = conj(asin(z))
2184                 assert!(close(c.conj().asin(), c.asin().conj()));
2185                 // asin(-z) = -asin(z)
2186                 assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0)));
2187                 // for this branch, -pi/2 <= asin(z).re <= pi/2
2188                 assert!(
2189                     -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0
2190                 );
2191             }
2192         }
2193 
2194         #[test]
test_acos()2195         fn test_acos() {
2196             assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0)));
2197             assert!(close(_1_0i.acos(), _0_0i));
2198             assert!(close(
2199                 _1_0i.scale(-1.0).acos(),
2200                 _1_0i.scale(f64::consts::PI)
2201             ));
2202             assert!(close(
2203                 _0_1i.acos(),
2204                 Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln())
2205             ));
2206             for &c in all_consts.iter() {
2207                 // acos(conj(z)) = conj(acos(z))
2208                 assert!(close(c.conj().acos(), c.acos().conj()));
2209                 // for this branch, 0 <= acos(z).re <= pi
2210                 assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI);
2211             }
2212         }
2213 
2214         #[test]
test_atan()2215         fn test_atan() {
2216             assert!(close(_0_0i.atan(), _0_0i));
2217             assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0)));
2218             assert!(close(
2219                 _1_0i.scale(-1.0).atan(),
2220                 _1_0i.scale(-f64::consts::PI / 4.0)
2221             ));
2222             assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity())));
2223             for &c in all_consts.iter() {
2224                 // atan(conj(z)) = conj(atan(z))
2225                 assert!(close(c.conj().atan(), c.atan().conj()));
2226                 // atan(-z) = -atan(z)
2227                 assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0)));
2228                 // for this branch, -pi/2 <= atan(z).re <= pi/2
2229                 assert!(
2230                     -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0
2231                 );
2232             }
2233         }
2234 
2235         #[test]
test_sinh()2236         fn test_sinh() {
2237             assert!(close(_0_0i.sinh(), _0_0i));
2238             assert!(close(
2239                 _1_0i.sinh(),
2240                 _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0)
2241             ));
2242             assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin())));
2243             for &c in all_consts.iter() {
2244                 // sinh(conj(z)) = conj(sinh(z))
2245                 assert!(close(c.conj().sinh(), c.sinh().conj()));
2246                 // sinh(-z) = -sinh(z)
2247                 assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0)));
2248             }
2249         }
2250 
2251         #[test]
test_cosh()2252         fn test_cosh() {
2253             assert!(close(_0_0i.cosh(), _1_0i));
2254             assert!(close(
2255                 _1_0i.cosh(),
2256                 _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0)
2257             ));
2258             assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos())));
2259             for &c in all_consts.iter() {
2260                 // cosh(conj(z)) = conj(cosh(z))
2261                 assert!(close(c.conj().cosh(), c.cosh().conj()));
2262                 // cosh(-z) = cosh(z)
2263                 assert!(close(c.scale(-1.0).cosh(), c.cosh()));
2264             }
2265         }
2266 
2267         #[test]
test_tanh()2268         fn test_tanh() {
2269             assert!(close(_0_0i.tanh(), _0_0i));
2270             assert!(close(
2271                 _1_0i.tanh(),
2272                 _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0))
2273             ));
2274             assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan())));
2275             for &c in all_consts.iter() {
2276                 // tanh(conj(z)) = conj(tanh(z))
2277                 assert!(close(c.conj().tanh(), c.conj().tanh()));
2278                 // tanh(-z) = -tanh(z)
2279                 assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0)));
2280             }
2281         }
2282 
2283         #[test]
test_asinh()2284         fn test_asinh() {
2285             assert!(close(_0_0i.asinh(), _0_0i));
2286             assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln()));
2287             assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0)));
2288             assert!(close(
2289                 _0_1i.asinh().scale(-1.0),
2290                 _0_1i.scale(-f64::consts::PI / 2.0)
2291             ));
2292             for &c in all_consts.iter() {
2293                 // asinh(conj(z)) = conj(asinh(z))
2294                 assert!(close(c.conj().asinh(), c.conj().asinh()));
2295                 // asinh(-z) = -asinh(z)
2296                 assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0)));
2297                 // for this branch, -pi/2 <= asinh(z).im <= pi/2
2298                 assert!(
2299                     -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0
2300                 );
2301             }
2302         }
2303 
2304         #[test]
test_acosh()2305         fn test_acosh() {
2306             assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0)));
2307             assert!(close(_1_0i.acosh(), _0_0i));
2308             assert!(close(
2309                 _1_0i.scale(-1.0).acosh(),
2310                 _0_1i.scale(f64::consts::PI)
2311             ));
2312             for &c in all_consts.iter() {
2313                 // acosh(conj(z)) = conj(acosh(z))
2314                 assert!(close(c.conj().acosh(), c.conj().acosh()));
2315                 // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re
2316                 assert!(
2317                     -f64::consts::PI <= c.acosh().im
2318                         && c.acosh().im <= f64::consts::PI
2319                         && 0.0 <= c.cosh().re
2320                 );
2321             }
2322         }
2323 
2324         #[test]
test_atanh()2325         fn test_atanh() {
2326             assert!(close(_0_0i.atanh(), _0_0i));
2327             assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0)));
2328             assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0)));
2329             for &c in all_consts.iter() {
2330                 // atanh(conj(z)) = conj(atanh(z))
2331                 assert!(close(c.conj().atanh(), c.conj().atanh()));
2332                 // atanh(-z) = -atanh(z)
2333                 assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0)));
2334                 // for this branch, -pi/2 <= atanh(z).im <= pi/2
2335                 assert!(
2336                     -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0
2337                 );
2338             }
2339         }
2340 
2341         #[test]
test_exp_ln()2342         fn test_exp_ln() {
2343             for &c in all_consts.iter() {
2344                 // e^ln(z) = z
2345                 assert!(close(c.ln().exp(), c));
2346             }
2347         }
2348 
2349         #[test]
test_exp2_log()2350         fn test_exp2_log() {
2351             for &c in all_consts.iter() {
2352                 // 2^log2(z) = z
2353                 assert!(close(c.log2().exp2(), c));
2354             }
2355         }
2356 
2357         #[test]
test_trig_to_hyperbolic()2358         fn test_trig_to_hyperbolic() {
2359             for &c in all_consts.iter() {
2360                 // sin(iz) = i sinh(z)
2361                 assert!(close((_0_1i * c).sin(), _0_1i * c.sinh()));
2362                 // cos(iz) = cosh(z)
2363                 assert!(close((_0_1i * c).cos(), c.cosh()));
2364                 // tan(iz) = i tanh(z)
2365                 assert!(close((_0_1i * c).tan(), _0_1i * c.tanh()));
2366             }
2367         }
2368 
2369         #[test]
test_trig_identities()2370         fn test_trig_identities() {
2371             for &c in all_consts.iter() {
2372                 // tan(z) = sin(z)/cos(z)
2373                 assert!(close(c.tan(), c.sin() / c.cos()));
2374                 // sin(z)^2 + cos(z)^2 = 1
2375                 assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i));
2376 
2377                 // sin(asin(z)) = z
2378                 assert!(close(c.asin().sin(), c));
2379                 // cos(acos(z)) = z
2380                 assert!(close(c.acos().cos(), c));
2381                 // tan(atan(z)) = z
2382                 // i and -i are branch points
2383                 if c != _0_1i && c != _0_1i.scale(-1.0) {
2384                     assert!(close(c.atan().tan(), c));
2385                 }
2386 
2387                 // sin(z) = (e^(iz) - e^(-iz))/(2i)
2388                 assert!(close(
2389                     ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0),
2390                     c.sin()
2391                 ));
2392                 // cos(z) = (e^(iz) + e^(-iz))/2
2393                 assert!(close(
2394                     ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0),
2395                     c.cos()
2396                 ));
2397                 // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz))
2398                 assert!(close(
2399                     _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp())
2400                         / (_1_0i + (_0_1i * c).scale(2.0).exp()),
2401                     c.tan()
2402                 ));
2403             }
2404         }
2405 
2406         #[test]
test_hyperbolic_identites()2407         fn test_hyperbolic_identites() {
2408             for &c in all_consts.iter() {
2409                 // tanh(z) = sinh(z)/cosh(z)
2410                 assert!(close(c.tanh(), c.sinh() / c.cosh()));
2411                 // cosh(z)^2 - sinh(z)^2 = 1
2412                 assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i));
2413 
2414                 // sinh(asinh(z)) = z
2415                 assert!(close(c.asinh().sinh(), c));
2416                 // cosh(acosh(z)) = z
2417                 assert!(close(c.acosh().cosh(), c));
2418                 // tanh(atanh(z)) = z
2419                 // 1 and -1 are branch points
2420                 if c != _1_0i && c != _1_0i.scale(-1.0) {
2421                     assert!(close(c.atanh().tanh(), c));
2422                 }
2423 
2424                 // sinh(z) = (e^z - e^(-z))/2
2425                 assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh()));
2426                 // cosh(z) = (e^z + e^(-z))/2
2427                 assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh()));
2428                 // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1)
2429                 assert!(close(
2430                     (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i),
2431                     c.tanh()
2432                 ));
2433             }
2434         }
2435     }
2436 
2437     // Test both a + b and a += b
2438     macro_rules! test_a_op_b {
2439         ($a:ident + $b:expr, $answer:expr) => {
2440             assert_eq!($a + $b, $answer);
2441             assert_eq!(
2442                 {
2443                     let mut x = $a;
2444                     x += $b;
2445                     x
2446                 },
2447                 $answer
2448             );
2449         };
2450         ($a:ident - $b:expr, $answer:expr) => {
2451             assert_eq!($a - $b, $answer);
2452             assert_eq!(
2453                 {
2454                     let mut x = $a;
2455                     x -= $b;
2456                     x
2457                 },
2458                 $answer
2459             );
2460         };
2461         ($a:ident * $b:expr, $answer:expr) => {
2462             assert_eq!($a * $b, $answer);
2463             assert_eq!(
2464                 {
2465                     let mut x = $a;
2466                     x *= $b;
2467                     x
2468                 },
2469                 $answer
2470             );
2471         };
2472         ($a:ident / $b:expr, $answer:expr) => {
2473             assert_eq!($a / $b, $answer);
2474             assert_eq!(
2475                 {
2476                     let mut x = $a;
2477                     x /= $b;
2478                     x
2479                 },
2480                 $answer
2481             );
2482         };
2483         ($a:ident % $b:expr, $answer:expr) => {
2484             assert_eq!($a % $b, $answer);
2485             assert_eq!(
2486                 {
2487                     let mut x = $a;
2488                     x %= $b;
2489                     x
2490                 },
2491                 $answer
2492             );
2493         };
2494     }
2495 
2496     // Test both a + b and a + &b
2497     macro_rules! test_op {
2498         ($a:ident $op:tt $b:expr, $answer:expr) => {
2499             test_a_op_b!($a $op $b, $answer);
2500             test_a_op_b!($a $op &$b, $answer);
2501         };
2502     }
2503 
2504     mod complex_arithmetic {
2505         use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts};
2506         use num_traits::{MulAdd, MulAddAssign, Zero};
2507 
2508         #[test]
test_add()2509         fn test_add() {
2510             test_op!(_05_05i + _05_05i, _1_1i);
2511             test_op!(_0_1i + _1_0i, _1_1i);
2512             test_op!(_1_0i + _neg1_1i, _0_1i);
2513 
2514             for &c in all_consts.iter() {
2515                 test_op!(_0_0i + c, c);
2516                 test_op!(c + _0_0i, c);
2517             }
2518         }
2519 
2520         #[test]
test_sub()2521         fn test_sub() {
2522             test_op!(_05_05i - _05_05i, _0_0i);
2523             test_op!(_0_1i - _1_0i, _neg1_1i);
2524             test_op!(_0_1i - _neg1_1i, _1_0i);
2525 
2526             for &c in all_consts.iter() {
2527                 test_op!(c - _0_0i, c);
2528                 test_op!(c - c, _0_0i);
2529             }
2530         }
2531 
2532         #[test]
test_mul()2533         fn test_mul() {
2534             test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0));
2535             test_op!(_1_1i * _0_1i, _neg1_1i);
2536 
2537             // i^2 & i^4
2538             test_op!(_0_1i * _0_1i, -_1_0i);
2539             assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
2540 
2541             for &c in all_consts.iter() {
2542                 test_op!(c * _1_0i, c);
2543                 test_op!(_1_0i * c, c);
2544             }
2545         }
2546 
2547         #[test]
2548         #[cfg(any(feature = "std", feature = "libm"))]
test_mul_add_float()2549         fn test_mul_add_float() {
2550             assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i);
2551             assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i));
2552             assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
2553             assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
2554             assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
2555 
2556             let mut x = _1_0i;
2557             x.mul_add_assign(_1_0i, _1_0i);
2558             assert_eq!(x, _1_0i * _1_0i + _1_0i);
2559 
2560             for &a in &all_consts {
2561                 for &b in &all_consts {
2562                     for &c in &all_consts {
2563                         let abc = a * b + c;
2564                         assert_eq!(a.mul_add(b, c), abc);
2565                         let mut x = a;
2566                         x.mul_add_assign(b, c);
2567                         assert_eq!(x, abc);
2568                     }
2569                 }
2570             }
2571         }
2572 
2573         #[test]
test_mul_add()2574         fn test_mul_add() {
2575             use super::Complex;
2576             const _0_0i: Complex<i32> = Complex { re: 0, im: 0 };
2577             const _1_0i: Complex<i32> = Complex { re: 1, im: 0 };
2578             const _1_1i: Complex<i32> = Complex { re: 1, im: 1 };
2579             const _0_1i: Complex<i32> = Complex { re: 0, im: 1 };
2580             const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 };
2581             const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i];
2582 
2583             assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i);
2584             assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i));
2585             assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
2586             assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
2587             assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
2588 
2589             let mut x = _1_0i;
2590             x.mul_add_assign(_1_0i, _1_0i);
2591             assert_eq!(x, _1_0i * _1_0i + _1_0i);
2592 
2593             for &a in &all_consts {
2594                 for &b in &all_consts {
2595                     for &c in &all_consts {
2596                         let abc = a * b + c;
2597                         assert_eq!(a.mul_add(b, c), abc);
2598                         let mut x = a;
2599                         x.mul_add_assign(b, c);
2600                         assert_eq!(x, abc);
2601                     }
2602                 }
2603             }
2604         }
2605 
2606         #[test]
test_div()2607         fn test_div() {
2608             test_op!(_neg1_1i / _0_1i, _1_1i);
2609             for &c in all_consts.iter() {
2610                 if c != Zero::zero() {
2611                     test_op!(c / c, _1_0i);
2612                 }
2613             }
2614         }
2615 
2616         #[test]
test_rem()2617         fn test_rem() {
2618             test_op!(_neg1_1i % _0_1i, _0_0i);
2619             test_op!(_4_2i % _0_1i, _0_0i);
2620             test_op!(_05_05i % _0_1i, _05_05i);
2621             test_op!(_05_05i % _1_1i, _05_05i);
2622             assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i);
2623             assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i);
2624         }
2625 
2626         #[test]
test_neg()2627         fn test_neg() {
2628             assert_eq!(-_1_0i + _0_1i, _neg1_1i);
2629             assert_eq!((-_0_1i) * _0_1i, _1_0i);
2630             for &c in all_consts.iter() {
2631                 assert_eq!(-(-c), c);
2632             }
2633         }
2634     }
2635 
2636     mod real_arithmetic {
2637         use super::super::Complex;
2638         use super::{_4_2i, _neg1_1i};
2639 
2640         #[test]
test_add()2641         fn test_add() {
2642             test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0));
2643             assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0));
2644         }
2645 
2646         #[test]
test_sub()2647         fn test_sub() {
2648             test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0));
2649             assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0));
2650         }
2651 
2652         #[test]
test_mul()2653         fn test_mul() {
2654             assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0));
2655             assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0));
2656         }
2657 
2658         #[test]
test_div()2659         fn test_div() {
2660             assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0));
2661             assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05));
2662         }
2663 
2664         #[test]
test_rem()2665         fn test_rem() {
2666             assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0));
2667             assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0));
2668             assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0));
2669             assert_eq!(_neg1_1i % 2.0, _neg1_1i);
2670             assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0));
2671         }
2672 
2673         #[test]
test_div_rem_gaussian()2674         fn test_div_rem_gaussian() {
2675             // These would overflow with `norm_sqr` division.
2676             let max = Complex::new(255u8, 255u8);
2677             assert_eq!(max / 200, Complex::new(1, 1));
2678             assert_eq!(max % 200, Complex::new(55, 55));
2679         }
2680     }
2681 
2682     #[test]
test_to_string()2683     fn test_to_string() {
2684         fn test(c: Complex64, s: String) {
2685             assert_eq!(c.to_string(), s);
2686         }
2687         test(_0_0i, "0+0i".to_string());
2688         test(_1_0i, "1+0i".to_string());
2689         test(_0_1i, "0+1i".to_string());
2690         test(_1_1i, "1+1i".to_string());
2691         test(_neg1_1i, "-1+1i".to_string());
2692         test(-_neg1_1i, "1-1i".to_string());
2693         test(_05_05i, "0.5+0.5i".to_string());
2694     }
2695 
2696     #[test]
test_string_formatting()2697     fn test_string_formatting() {
2698         let a = Complex::new(1.23456, 123.456);
2699         assert_eq!(format!("{}", a), "1.23456+123.456i");
2700         assert_eq!(format!("{:.2}", a), "1.23+123.46i");
2701         assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i");
2702         assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i");
2703         #[cfg(feature = "std")]
2704         assert_eq!(format!("{:+20.2E}", a), "     +1.23E0+1.23E2i");
2705 
2706         let b = Complex::new(0x80, 0xff);
2707         assert_eq!(format!("{:X}", b), "80+FFi");
2708         assert_eq!(format!("{:#x}", b), "0x80+0xffi");
2709         assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i");
2710         assert_eq!(format!("{:+#o}", b), "+0o200+0o377i");
2711         #[cfg(feature = "std")]
2712         assert_eq!(format!("{:+#16o}", b), "   +0o200+0o377i");
2713 
2714         let c = Complex::new(-10, -10000);
2715         assert_eq!(format!("{}", c), "-10-10000i");
2716         #[cfg(feature = "std")]
2717         assert_eq!(format!("{:16}", c), "      -10-10000i");
2718     }
2719 
2720     #[test]
test_hash()2721     fn test_hash() {
2722         let a = Complex::new(0i32, 0i32);
2723         let b = Complex::new(1i32, 0i32);
2724         let c = Complex::new(0i32, 1i32);
2725         assert!(crate::hash(&a) != crate::hash(&b));
2726         assert!(crate::hash(&b) != crate::hash(&c));
2727         assert!(crate::hash(&c) != crate::hash(&a));
2728     }
2729 
2730     #[test]
test_hashset()2731     fn test_hashset() {
2732         use std::collections::HashSet;
2733         let a = Complex::new(0i32, 0i32);
2734         let b = Complex::new(1i32, 0i32);
2735         let c = Complex::new(0i32, 1i32);
2736 
2737         let set: HashSet<_> = [a, b, c].iter().cloned().collect();
2738         assert!(set.contains(&a));
2739         assert!(set.contains(&b));
2740         assert!(set.contains(&c));
2741         assert!(!set.contains(&(a + b + c)));
2742     }
2743 
2744     #[test]
test_is_nan()2745     fn test_is_nan() {
2746         assert!(!_1_1i.is_nan());
2747         let a = Complex::new(f64::NAN, f64::NAN);
2748         assert!(a.is_nan());
2749     }
2750 
2751     #[test]
test_is_nan_special_cases()2752     fn test_is_nan_special_cases() {
2753         let a = Complex::new(0f64, f64::NAN);
2754         let b = Complex::new(f64::NAN, 0f64);
2755         assert!(a.is_nan());
2756         assert!(b.is_nan());
2757     }
2758 
2759     #[test]
test_is_infinite()2760     fn test_is_infinite() {
2761         let a = Complex::new(2f64, f64::INFINITY);
2762         assert!(a.is_infinite());
2763     }
2764 
2765     #[test]
test_is_finite()2766     fn test_is_finite() {
2767         assert!(_1_1i.is_finite())
2768     }
2769 
2770     #[test]
test_is_normal()2771     fn test_is_normal() {
2772         let a = Complex::new(0f64, f64::NAN);
2773         let b = Complex::new(2f64, f64::INFINITY);
2774         assert!(!a.is_normal());
2775         assert!(!b.is_normal());
2776         assert!(_1_1i.is_normal());
2777     }
2778 
2779     #[test]
test_from_str()2780     fn test_from_str() {
2781         fn test(z: Complex64, s: &str) {
2782             assert_eq!(FromStr::from_str(s), Ok(z));
2783         }
2784         test(_0_0i, "0 + 0i");
2785         test(_0_0i, "0+0j");
2786         test(_0_0i, "0 - 0j");
2787         test(_0_0i, "0-0i");
2788         test(_0_0i, "0i + 0");
2789         test(_0_0i, "0");
2790         test(_0_0i, "-0");
2791         test(_0_0i, "0i");
2792         test(_0_0i, "0j");
2793         test(_0_0i, "+0j");
2794         test(_0_0i, "-0i");
2795 
2796         test(_1_0i, "1 + 0i");
2797         test(_1_0i, "1+0j");
2798         test(_1_0i, "1 - 0j");
2799         test(_1_0i, "+1-0i");
2800         test(_1_0i, "-0j+1");
2801         test(_1_0i, "1");
2802 
2803         test(_1_1i, "1 + i");
2804         test(_1_1i, "1+j");
2805         test(_1_1i, "1 + 1j");
2806         test(_1_1i, "1+1i");
2807         test(_1_1i, "i + 1");
2808         test(_1_1i, "1i+1");
2809         test(_1_1i, "+j+1");
2810 
2811         test(_0_1i, "0 + i");
2812         test(_0_1i, "0+j");
2813         test(_0_1i, "-0 + j");
2814         test(_0_1i, "-0+i");
2815         test(_0_1i, "0 + 1i");
2816         test(_0_1i, "0+1j");
2817         test(_0_1i, "-0 + 1j");
2818         test(_0_1i, "-0+1i");
2819         test(_0_1i, "j + 0");
2820         test(_0_1i, "i");
2821         test(_0_1i, "j");
2822         test(_0_1i, "1j");
2823 
2824         test(_neg1_1i, "-1 + i");
2825         test(_neg1_1i, "-1+j");
2826         test(_neg1_1i, "-1 + 1j");
2827         test(_neg1_1i, "-1+1i");
2828         test(_neg1_1i, "1i-1");
2829         test(_neg1_1i, "j + -1");
2830 
2831         test(_05_05i, "0.5 + 0.5i");
2832         test(_05_05i, "0.5+0.5j");
2833         test(_05_05i, "5e-1+0.5j");
2834         test(_05_05i, "5E-1 + 0.5j");
2835         test(_05_05i, "5E-1i + 0.5");
2836         test(_05_05i, "0.05e+1j + 50E-2");
2837     }
2838 
2839     #[test]
test_from_str_radix()2840     fn test_from_str_radix() {
2841         fn test(z: Complex64, s: &str, radix: u32) {
2842             let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> =
2843                 Num::from_str_radix(s, radix);
2844             assert_eq!(res.unwrap(), z)
2845         }
2846         test(_4_2i, "4+2i", 10);
2847         test(Complex::new(15.0, 32.0), "F+20i", 16);
2848         test(Complex::new(15.0, 32.0), "1111+100000i", 2);
2849         test(Complex::new(-15.0, -32.0), "-F-20i", 16);
2850         test(Complex::new(-15.0, -32.0), "-1111-100000i", 2);
2851 
2852         fn test_error(s: &str, radix: u32) -> ParseComplexError<<f64 as Num>::FromStrRadixErr> {
2853             let res = Complex64::from_str_radix(s, radix);
2854 
2855             res.expect_err(&format!("Expected failure on input {:?}", s))
2856         }
2857 
2858         let err = test_error("1ii", 19);
2859         if let ComplexErrorKind::UnsupportedRadix = err.kind {
2860             /* pass */
2861         } else {
2862             panic!("Expected failure on invalid radix, got {:?}", err);
2863         }
2864 
2865         let err = test_error("1 + 0", 16);
2866         if let ComplexErrorKind::ExprError = err.kind {
2867             /* pass */
2868         } else {
2869             panic!("Expected failure on expr error, got {:?}", err);
2870         }
2871     }
2872 
2873     #[test]
2874     #[should_panic(expected = "radix is too high")]
test_from_str_radix_fail()2875     fn test_from_str_radix_fail() {
2876         // ensure we preserve the underlying panic on radix > 36
2877         let _complex = Complex64::from_str_radix("1", 37);
2878     }
2879 
2880     #[test]
test_from_str_fail()2881     fn test_from_str_fail() {
2882         fn test(s: &str) {
2883             let complex: Result<Complex64, _> = FromStr::from_str(s);
2884             assert!(
2885                 complex.is_err(),
2886                 "complex {:?} -> {:?} should be an error",
2887                 s,
2888                 complex
2889             );
2890         }
2891         test("foo");
2892         test("6E");
2893         test("0 + 2.718");
2894         test("1 - -2i");
2895         test("314e-2ij");
2896         test("4.3j - i");
2897         test("1i - 2i");
2898         test("+ 1 - 3.0i");
2899     }
2900 
2901     #[test]
test_sum()2902     fn test_sum() {
2903         let v = vec![_0_1i, _1_0i];
2904         assert_eq!(v.iter().sum::<Complex64>(), _1_1i);
2905         assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i);
2906     }
2907 
2908     #[test]
test_prod()2909     fn test_prod() {
2910         let v = vec![_0_1i, _1_0i];
2911         assert_eq!(v.iter().product::<Complex64>(), _0_1i);
2912         assert_eq!(v.into_iter().product::<Complex64>(), _0_1i);
2913     }
2914 
2915     #[test]
test_zero()2916     fn test_zero() {
2917         let zero = Complex64::zero();
2918         assert!(zero.is_zero());
2919 
2920         let mut c = Complex::new(1.23, 4.56);
2921         assert!(!c.is_zero());
2922         assert_eq!(c + zero, c);
2923 
2924         c.set_zero();
2925         assert!(c.is_zero());
2926     }
2927 
2928     #[test]
test_one()2929     fn test_one() {
2930         let one = Complex64::one();
2931         assert!(one.is_one());
2932 
2933         let mut c = Complex::new(1.23, 4.56);
2934         assert!(!c.is_one());
2935         assert_eq!(c * one, c);
2936 
2937         c.set_one();
2938         assert!(c.is_one());
2939     }
2940 
2941     #[test]
2942     #[allow(clippy::float_cmp)]
test_const()2943     fn test_const() {
2944         const R: f64 = 12.3;
2945         const I: f64 = -4.5;
2946         const C: Complex64 = Complex::new(R, I);
2947 
2948         assert_eq!(C.re, 12.3);
2949         assert_eq!(C.im, -4.5);
2950     }
2951 }
2952