xref: /aosp_15_r20/art/compiler/optimizing/inliner.cc (revision 795d594fd825385562da6b089ea9b2033f3abf5a)
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "inliner.h"
18 
19 #include "art_method-inl.h"
20 #include "base/logging.h"
21 #include "base/pointer_size.h"
22 #include "builder.h"
23 #include "class_linker.h"
24 #include "class_root-inl.h"
25 #include "constant_folding.h"
26 #include "data_type-inl.h"
27 #include "dead_code_elimination.h"
28 #include "dex/inline_method_analyser.h"
29 #include "driver/compiler_options.h"
30 #include "driver/dex_compilation_unit.h"
31 #include "handle_cache-inl.h"
32 #include "instruction_simplifier.h"
33 #include "intrinsics.h"
34 #include "jit/jit.h"
35 #include "jit/jit_code_cache.h"
36 #include "mirror/class_loader.h"
37 #include "mirror/dex_cache.h"
38 #include "mirror/object_array-alloc-inl.h"
39 #include "mirror/object_array-inl.h"
40 #include "nodes.h"
41 #include "profiling_info_builder.h"
42 #include "reference_type_propagation.h"
43 #include "register_allocator_linear_scan.h"
44 #include "scoped_thread_state_change-inl.h"
45 #include "sharpening.h"
46 #include "ssa_builder.h"
47 #include "ssa_phi_elimination.h"
48 #include "thread.h"
49 #include "verifier/verifier_compiler_binding.h"
50 
51 namespace art HIDDEN {
52 
53 // Instruction limit to control memory.
54 static constexpr size_t kMaximumNumberOfTotalInstructions = 1024;
55 
56 // Maximum number of instructions for considering a method small,
57 // which we will always try to inline if the other non-instruction limits
58 // are not reached.
59 static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3;
60 
61 // Limit the number of dex registers that we accumulate while inlining
62 // to avoid creating large amount of nested environments.
63 static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32;
64 
65 // Limit recursive call inlining, which do not benefit from too
66 // much inlining compared to code locality.
67 static constexpr size_t kMaximumNumberOfRecursiveCalls = 4;
68 
69 // Limit recursive polymorphic call inlining to prevent code bloat, since it can quickly get out of
70 // hand in the presence of multiple Wrapper classes. We set this to 0 to disallow polymorphic
71 // recursive calls at all.
72 static constexpr size_t kMaximumNumberOfPolymorphicRecursiveCalls = 0;
73 
74 // Controls the use of inline caches in AOT mode.
75 static constexpr bool kUseAOTInlineCaches = true;
76 
77 // Controls the use of inlining try catches.
78 static constexpr bool kInlineTryCatches = true;
79 
80 // We check for line numbers to make sure the DepthString implementation
81 // aligns the output nicely.
82 #define LOG_INTERNAL(msg) \
83   static_assert(__LINE__ > 10, "Unhandled line number"); \
84   static_assert(__LINE__ < 10000, "Unhandled line number"); \
85   VLOG(compiler) << DepthString(__LINE__) << msg
86 
87 #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ")
88 #define LOG_NOTE() LOG_INTERNAL("Note: ")
89 #define LOG_SUCCESS() LOG_INTERNAL("Success: ")
90 #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ")
91 #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ")
92 
DepthString(int line) const93 std::string HInliner::DepthString(int line) const {
94   std::string value;
95   // Indent according to the inlining depth.
96   size_t count = depth_;
97   // Line numbers get printed in the log, so add a space if the log's line is less
98   // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright.
99   if (!kIsTargetBuild) {
100     if (line < 100) {
101       value += " ";
102     }
103     if (line < 1000) {
104       value += " ";
105     }
106     // Safeguard if this file reaches more than 10000 lines.
107     DCHECK_LT(line, 10000);
108   }
109   for (size_t i = 0; i < count; ++i) {
110     value += "  ";
111   }
112   return value;
113 }
114 
CountNumberOfInstructions(HGraph * graph)115 static size_t CountNumberOfInstructions(HGraph* graph) {
116   size_t number_of_instructions = 0;
117   for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) {
118     for (HInstructionIterator instr_it(block->GetInstructions());
119          !instr_it.Done();
120          instr_it.Advance()) {
121       ++number_of_instructions;
122     }
123   }
124   return number_of_instructions;
125 }
126 
UpdateInliningBudget()127 void HInliner::UpdateInliningBudget() {
128   if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) {
129     // Always try to inline small methods.
130     inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod;
131   } else {
132     inlining_budget_ = std::max(
133         kMaximumNumberOfInstructionsForSmallMethod,
134         kMaximumNumberOfTotalInstructions - total_number_of_instructions_);
135   }
136 }
137 
Run()138 bool HInliner::Run() {
139   if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) {
140     // Inlining effectively disabled.
141     return false;
142   } else if (graph_->IsDebuggable()) {
143     // For simplicity, we currently never inline when the graph is debuggable. This avoids
144     // doing some logic in the runtime to discover if a method could have been inlined.
145     return false;
146   }
147 
148   bool did_inline = false;
149 
150   // Initialize the number of instructions for the method being compiled. Recursive calls
151   // to HInliner::Run have already updated the instruction count.
152   if (outermost_graph_ == graph_) {
153     total_number_of_instructions_ = CountNumberOfInstructions(graph_);
154   }
155 
156   UpdateInliningBudget();
157   DCHECK_NE(total_number_of_instructions_, 0u);
158   DCHECK_NE(inlining_budget_, 0u);
159 
160   // If we're compiling tests, honor inlining directives in method names:
161   // - if a method's name contains the substring "$noinline$", do not
162   //   inline that method;
163   // - if a method's name contains the substring "$inline$", ensure
164   //   that this method is actually inlined.
165   // We limit the latter to AOT compilation, as the JIT may or may not inline
166   // depending on the state of classes at runtime.
167   const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompileArtTest();
168   const bool honor_inline_directives =
169       honor_noinline_directives &&
170       Runtime::Current()->IsAotCompiler() &&
171       !graph_->IsCompilingBaseline();
172 
173   // Keep a copy of all blocks when starting the visit.
174   ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder();
175   DCHECK(!blocks.empty());
176   // Because we are changing the graph when inlining,
177   // we just iterate over the blocks of the outer method.
178   // This avoids doing the inlining work again on the inlined blocks.
179   for (HBasicBlock* block : blocks) {
180     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
181       HInstruction* next = instruction->GetNext();
182       HInvoke* call = instruction->AsInvokeOrNull();
183       // As long as the call is not intrinsified, it is worth trying to inline.
184       if (call != nullptr && !codegen_->IsImplementedIntrinsic(call)) {
185         if (honor_noinline_directives) {
186           // Debugging case: directives in method names control or assert on inlining.
187           std::string callee_name =
188               call->GetMethodReference().PrettyMethod(/* with_signature= */ false);
189           // Tests prevent inlining by having $noinline$ in their method names.
190           if (callee_name.find("$noinline$") == std::string::npos) {
191             if (TryInline(call)) {
192               did_inline = true;
193             } else if (honor_inline_directives) {
194               bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos);
195               CHECK(!should_have_inlined) << "Could not inline " << callee_name;
196             }
197           }
198         } else {
199           DCHECK(!honor_inline_directives);
200           // Normal case: try to inline.
201           if (TryInline(call)) {
202             did_inline = true;
203           }
204         }
205       }
206       instruction = next;
207     }
208   }
209 
210   if (run_extra_type_propagation_) {
211     ReferenceTypePropagation rtp_fixup(graph_,
212                                        outer_compilation_unit_.GetDexCache(),
213                                        /* is_first_run= */ false);
214     rtp_fixup.Run();
215   }
216 
217   // We return true if we either inlined at least one method, or we marked one of our methods as
218   // always throwing.
219   // To check if we added an always throwing method we can either:
220   //   1) Pass a boolean throughout the pipeline and get an accurate result, or
221   //   2) Just check that the `HasAlwaysThrowingInvokes()` flag is true now. This is not 100%
222   //     accurate but the only other part where we set `HasAlwaysThrowingInvokes` is constant
223   //     folding the DivideUnsigned intrinsics for when the divisor is known to be 0. This case is
224   //     rare enough that changing the pipeline for this is not worth it. In the case of the false
225   //     positive (i.e. A) we didn't inline at all, B) the graph already had an always throwing
226   //     invoke, and C) we didn't set any new always throwing invokes), we will be running constant
227   //     folding, instruction simplifier, and dead code elimination one more time even though it
228   //     shouldn't change things. There's no false negative case.
229   return did_inline || graph_->HasAlwaysThrowingInvokes();
230 }
231 
IsMethodOrDeclaringClassFinal(ArtMethod * method)232 static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
233     REQUIRES_SHARED(Locks::mutator_lock_) {
234   return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
235 }
236 
237 /**
238  * Given the `resolved_method` looked up in the dex cache, try to find
239  * the actual runtime target of an interface or virtual call.
240  * Return nullptr if the runtime target cannot be proven.
241  */
FindVirtualOrInterfaceTarget(HInvoke * invoke,ReferenceTypeInfo info)242 static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ReferenceTypeInfo info)
243     REQUIRES_SHARED(Locks::mutator_lock_) {
244   ArtMethod* resolved_method = invoke->GetResolvedMethod();
245   if (IsMethodOrDeclaringClassFinal(resolved_method)) {
246     // No need to lookup further, the resolved method will be the target.
247     return resolved_method;
248   }
249 
250   if (info.GetTypeHandle()->IsInterface()) {
251     // Statically knowing that the receiver has an interface type cannot
252     // help us find what is the target method.
253     return nullptr;
254   } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
255     // The method that we're trying to call is not in the receiver's class or super classes.
256     return nullptr;
257   } else if (info.GetTypeHandle()->IsErroneous()) {
258     // If the type is erroneous, do not go further, as we are going to query the vtable or
259     // imt table, that we can only safely do on non-erroneous classes.
260     return nullptr;
261   }
262 
263   ClassLinker* cl = Runtime::Current()->GetClassLinker();
264   PointerSize pointer_size = cl->GetImagePointerSize();
265   if (invoke->IsInvokeInterface()) {
266     resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
267         resolved_method, pointer_size);
268   } else {
269     DCHECK(invoke->IsInvokeVirtual());
270     resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
271         resolved_method, pointer_size);
272   }
273 
274   if (resolved_method == nullptr) {
275     // The information we had on the receiver was not enough to find
276     // the target method. Since we check above the exact type of the receiver,
277     // the only reason this can happen is an IncompatibleClassChangeError.
278     return nullptr;
279   } else if (!resolved_method->IsInvokable()) {
280     // The information we had on the receiver was not enough to find
281     // the target method. Since we check above the exact type of the receiver,
282     // the only reason this can happen is an IncompatibleClassChangeError.
283     return nullptr;
284   } else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
285     // A final method has to be the target method.
286     return resolved_method;
287   } else if (info.IsExact()) {
288     // If we found a method and the receiver's concrete type is statically
289     // known, we know for sure the target.
290     return resolved_method;
291   } else {
292     // Even if we did find a method, the receiver type was not enough to
293     // statically find the runtime target.
294     return nullptr;
295   }
296 }
297 
FindMethodIndexIn(ArtMethod * method,const DexFile & dex_file,uint32_t name_and_signature_index)298 static uint32_t FindMethodIndexIn(ArtMethod* method,
299                                   const DexFile& dex_file,
300                                   uint32_t name_and_signature_index)
301     REQUIRES_SHARED(Locks::mutator_lock_) {
302   if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
303     return method->GetDexMethodIndex();
304   } else {
305     return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
306   }
307 }
308 
FindClassIndexIn(ObjPtr<mirror::Class> cls,const DexCompilationUnit & compilation_unit)309 static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls,
310                                        const DexCompilationUnit& compilation_unit)
311     REQUIRES_SHARED(Locks::mutator_lock_) {
312   const DexFile& dex_file = *compilation_unit.GetDexFile();
313   dex::TypeIndex index;
314   if (cls->GetDexCache() == nullptr) {
315     DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
316     index = cls->FindTypeIndexInOtherDexFile(dex_file);
317   } else if (!cls->GetDexTypeIndex().IsValid()) {
318     DCHECK(cls->IsProxyClass()) << cls->PrettyClass();
319     // TODO: deal with proxy classes.
320   } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
321     DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get());
322     index = cls->GetDexTypeIndex();
323   } else {
324     index = cls->FindTypeIndexInOtherDexFile(dex_file);
325     // We cannot guarantee the entry will resolve to the same class,
326     // as there may be different class loaders. So only return the index if it's
327     // the right class already resolved with the class loader.
328     if (index.IsValid()) {
329       ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType(
330           index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
331       if (resolved != cls) {
332         index = dex::TypeIndex::Invalid();
333       }
334     }
335   }
336 
337   return index;
338 }
339 
GetInlineCacheType(const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)340 HInliner::InlineCacheType HInliner::GetInlineCacheType(
341     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
342   DCHECK_EQ(classes.Capacity(), InlineCache::kIndividualCacheSize);
343   uint8_t number_of_types = classes.Size();
344   if (number_of_types == 0) {
345     return kInlineCacheUninitialized;
346   } else if (number_of_types == 1) {
347     return kInlineCacheMonomorphic;
348   } else if (number_of_types == InlineCache::kIndividualCacheSize) {
349     return kInlineCacheMegamorphic;
350   } else {
351     return kInlineCachePolymorphic;
352   }
353 }
354 
GetMonomorphicType(const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)355 static inline ObjPtr<mirror::Class> GetMonomorphicType(
356     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes)
357     REQUIRES_SHARED(Locks::mutator_lock_) {
358   DCHECK(classes.GetReference(0) != nullptr);
359   return classes.GetReference(0)->AsClass();
360 }
361 
FindMethodFromCHA(ArtMethod * resolved_method)362 ArtMethod* HInliner::FindMethodFromCHA(ArtMethod* resolved_method) {
363   if (!resolved_method->HasSingleImplementation()) {
364     return nullptr;
365   }
366   if (Runtime::Current()->IsAotCompiler()) {
367     // No CHA-based devirtulization for AOT compiler (yet).
368     return nullptr;
369   }
370   if (Runtime::Current()->IsZygote()) {
371     // No CHA-based devirtulization for Zygote, as it compiles with
372     // offline information.
373     return nullptr;
374   }
375   if (outermost_graph_->IsCompilingOsr()) {
376     // We do not support HDeoptimize in OSR methods.
377     return nullptr;
378   }
379   PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize();
380   ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size);
381   if (single_impl == nullptr) {
382     return nullptr;
383   }
384   if (single_impl->IsProxyMethod()) {
385     // Proxy method is a generic invoker that's not worth
386     // devirtualizing/inlining. It also causes issues when the proxy
387     // method is in another dex file if we try to rewrite invoke-interface to
388     // invoke-virtual because a proxy method doesn't have a real dex file.
389     return nullptr;
390   }
391   if (!single_impl->GetDeclaringClass()->IsResolved()) {
392     // There's a race with the class loading, which updates the CHA info
393     // before setting the class to resolved. So we just bail for this
394     // rare occurence.
395     return nullptr;
396   }
397   return single_impl;
398 }
399 
IsMethodVerified(ArtMethod * method)400 static bool IsMethodVerified(ArtMethod* method)
401     REQUIRES_SHARED(Locks::mutator_lock_) {
402   if (method->GetDeclaringClass()->IsVerified()) {
403     return true;
404   }
405   // For AOT, we check if the class has a verification status that allows us to
406   // inline / analyze.
407   // At runtime, we know this is cold code if the class is not verified, so don't
408   // bother analyzing.
409   if (Runtime::Current()->IsAotCompiler()) {
410     if (method->GetDeclaringClass()->IsVerifiedNeedsAccessChecks() ||
411         method->GetDeclaringClass()->ShouldVerifyAtRuntime()) {
412       return true;
413     }
414   }
415   return false;
416 }
417 
AlwaysThrows(ArtMethod * method)418 static bool AlwaysThrows(ArtMethod* method)
419     REQUIRES_SHARED(Locks::mutator_lock_) {
420   DCHECK(method != nullptr);
421   // Skip non-compilable and unverified methods.
422   if (!method->IsCompilable() || !IsMethodVerified(method)) {
423     return false;
424   }
425 
426   // Skip native methods, methods with try blocks, and methods that are too large.
427   // TODO(solanes): We could correctly mark methods with try/catch blocks as always throwing as long
428   // as we can get rid of the infinite loop cases. These cases (e.g. `void foo() {while (true) {}}`)
429   // are the only ones that can have no return instruction and still not be an "always throwing
430   // method". Unfortunately, we need to construct the graph to know there's an infinite loop and
431   // therefore not worth the trouble.
432   CodeItemDataAccessor accessor(method->DexInstructionData());
433   if (!accessor.HasCodeItem() ||
434       accessor.TriesSize() != 0 ||
435       accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) {
436     return false;
437   }
438   // Scan for exits.
439   bool throw_seen = false;
440   for (const DexInstructionPcPair& pair : accessor) {
441     switch (pair.Inst().Opcode()) {
442       case Instruction::RETURN:
443       case Instruction::RETURN_VOID:
444       case Instruction::RETURN_WIDE:
445       case Instruction::RETURN_OBJECT:
446         return false;  // found regular control flow back
447       case Instruction::THROW:
448         throw_seen = true;
449         break;
450       default:
451         break;
452     }
453   }
454   return throw_seen;
455 }
456 
TryInline(HInvoke * invoke_instruction)457 bool HInliner::TryInline(HInvoke* invoke_instruction) {
458   MaybeRecordStat(stats_, MethodCompilationStat::kTryInline);
459 
460   // Don't bother to move further if we know the method is unresolved or the invocation is
461   // polymorphic (invoke-{polymorphic,custom}).
462   if (invoke_instruction->IsInvokeUnresolved()) {
463     MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedUnresolved);
464     return false;
465   } else if (invoke_instruction->IsInvokePolymorphic()) {
466     MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedPolymorphic);
467     return false;
468   } else if (invoke_instruction->IsInvokeCustom()) {
469     MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedCustom);
470     return false;
471   }
472 
473   ScopedObjectAccess soa(Thread::Current());
474   LOG_TRY() << invoke_instruction->GetMethodReference().PrettyMethod();
475 
476   ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
477   if (resolved_method == nullptr) {
478     DCHECK(invoke_instruction->IsInvokeStaticOrDirect());
479     DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit());
480     LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method";
481     return false;
482   }
483 
484   ArtMethod* actual_method = nullptr;
485   ReferenceTypeInfo receiver_info = ReferenceTypeInfo::CreateInvalid();
486   if (invoke_instruction->GetInvokeType() == kStatic) {
487     actual_method = invoke_instruction->GetResolvedMethod();
488   } else {
489     HInstruction* receiver = invoke_instruction->InputAt(0);
490     while (receiver->IsNullCheck()) {
491       // Due to multiple levels of inlining within the same pass, it might be that
492       // null check does not have the reference type of the actual receiver.
493       receiver = receiver->InputAt(0);
494     }
495     receiver_info = receiver->GetReferenceTypeInfo();
496     if (!receiver_info.IsValid()) {
497       // We have to run the extra type propagation now as we are requiring the RTI.
498       DCHECK(run_extra_type_propagation_);
499       run_extra_type_propagation_ = false;
500       ReferenceTypePropagation rtp_fixup(graph_,
501                                          outer_compilation_unit_.GetDexCache(),
502                                          /* is_first_run= */ false);
503       rtp_fixup.Run();
504       receiver_info = receiver->GetReferenceTypeInfo();
505     }
506 
507     DCHECK(receiver_info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
508     if (invoke_instruction->IsInvokeStaticOrDirect()) {
509       actual_method = invoke_instruction->GetResolvedMethod();
510     } else {
511       actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, receiver_info);
512     }
513   }
514 
515   if (actual_method != nullptr) {
516     // Single target.
517     bool result = TryInlineAndReplace(invoke_instruction,
518                                       actual_method,
519                                       receiver_info,
520                                       /* do_rtp= */ true,
521                                       /* is_speculative= */ false);
522     if (result) {
523       MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface);
524       if (outermost_graph_ == graph_) {
525         MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvokeVirtualOrInterface);
526       }
527     } else {
528       HInvoke* invoke_to_analyze = nullptr;
529       if (TryDevirtualize(invoke_instruction, actual_method, &invoke_to_analyze)) {
530         // Consider devirtualization as inlining.
531         result = true;
532         MaybeRecordStat(stats_, MethodCompilationStat::kDevirtualized);
533       } else {
534         invoke_to_analyze = invoke_instruction;
535       }
536       // Set always throws property for non-inlined method call with single target.
537       if (invoke_instruction->AlwaysThrows() || AlwaysThrows(actual_method)) {
538         invoke_to_analyze->SetAlwaysThrows(/* always_throws= */ true);
539         graph_->SetHasAlwaysThrowingInvokes(/* value= */ true);
540       }
541     }
542     return result;
543   }
544 
545   if (graph_->IsCompilingBaseline()) {
546     LOG_FAIL_NO_STAT() << "Call to " << invoke_instruction->GetMethodReference().PrettyMethod()
547                        << " not inlined because we are compiling baseline and we could not"
548                        << " statically resolve the target";
549     // For baseline compilation, we will collect inline caches, so we should not
550     // try to inline using them.
551     outermost_graph_->SetUsefulOptimizing();
552     return false;
553   }
554 
555   DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
556 
557   // No try catch inlining allowed here, or recursively. For try catch inlining we are banking on
558   // the fact that we have a unique dex pc list. We cannot guarantee that for some TryInline methods
559   // e.g. `TryInlinePolymorphicCall`.
560   // TODO(solanes): Setting `try_catch_inlining_allowed_` to false here covers all cases from
561   // `TryInlineFromCHA` and from `TryInlineFromInlineCache` as well (e.g.
562   // `TryInlinePolymorphicCall`). Reassess to see if we can inline inline catch blocks in
563   // `TryInlineFromCHA`, `TryInlineMonomorphicCall` and `TryInlinePolymorphicCallToSameTarget`.
564 
565   // We store the value to restore it since we will use the same HInliner instance for other inlinee
566   // candidates.
567   const bool previous_value = try_catch_inlining_allowed_;
568   try_catch_inlining_allowed_ = false;
569 
570   if (TryInlineFromCHA(invoke_instruction)) {
571     try_catch_inlining_allowed_ = previous_value;
572     return true;
573   }
574 
575   const bool result = TryInlineFromInlineCache(invoke_instruction);
576   try_catch_inlining_allowed_ = previous_value;
577   return result;
578 }
579 
TryInlineFromCHA(HInvoke * invoke_instruction)580 bool HInliner::TryInlineFromCHA(HInvoke* invoke_instruction) {
581   ArtMethod* method = FindMethodFromCHA(invoke_instruction->GetResolvedMethod());
582   if (method == nullptr) {
583     return false;
584   }
585   LOG_NOTE() << "Try CHA-based inlining of " << method->PrettyMethod();
586 
587   uint32_t dex_pc = invoke_instruction->GetDexPc();
588   HInstruction* cursor = invoke_instruction->GetPrevious();
589   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
590   Handle<mirror::Class> cls = graph_->GetHandleCache()->NewHandle(method->GetDeclaringClass());
591   if (!TryInlineAndReplace(invoke_instruction,
592                            method,
593                            ReferenceTypeInfo::Create(cls),
594                            /* do_rtp= */ true,
595                            /* is_speculative= */ true)) {
596     return false;
597   }
598   AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor);
599   // Add dependency due to devirtualization: we are assuming the resolved method
600   // has a single implementation.
601   outermost_graph_->AddCHASingleImplementationDependency(invoke_instruction->GetResolvedMethod());
602   MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline);
603   return true;
604 }
605 
UseOnlyPolymorphicInliningWithNoDeopt()606 bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() {
607   // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and
608   // do not generate a deopt.
609   //
610   // For AOT:
611   //    Generating a deopt does not ensure that we will actually capture the new types;
612   //    and the danger is that we could be stuck in a loop with "forever" deoptimizations.
613   //    Take for example the following scenario:
614   //      - we capture the inline cache in one run
615   //      - the next run, we deoptimize because we miss a type check, but the method
616   //        never becomes hot again
617   //    In this case, the inline cache will not be updated in the profile and the AOT code
618   //    will keep deoptimizing.
619   //    Another scenario is if we use profile compilation for a process which is not allowed
620   //    to JIT (e.g. system server). If we deoptimize we will run interpreted code for the
621   //    rest of the lifetime.
622   // TODO(calin):
623   //    This is a compromise because we will most likely never update the inline cache
624   //    in the profile (unless there's another reason to deopt). So we might be stuck with
625   //    a sub-optimal inline cache.
626   //    We could be smarter when capturing inline caches to mitigate this.
627   //    (e.g. by having different thresholds for new and old methods).
628   //
629   // For OSR:
630   //     We may come from the interpreter and it may have seen different receiver types.
631   return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr();
632 }
TryInlineFromInlineCache(HInvoke * invoke_instruction)633 bool HInliner::TryInlineFromInlineCache(HInvoke* invoke_instruction)
634     REQUIRES_SHARED(Locks::mutator_lock_) {
635   if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) {
636     return false;
637   }
638 
639   StackHandleScope<InlineCache::kIndividualCacheSize> classes(Thread::Current());
640   // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches
641   // for it.
642   InlineCacheType inline_cache_type =
643       (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote())
644           ? GetInlineCacheAOT(invoke_instruction, &classes)
645           : GetInlineCacheJIT(invoke_instruction, &classes);
646 
647   switch (inline_cache_type) {
648     case kInlineCacheNoData: {
649       LOG_FAIL_NO_STAT()
650           << "No inline cache information for call to "
651           << invoke_instruction->GetMethodReference().PrettyMethod();
652       return false;
653     }
654 
655     case kInlineCacheUninitialized: {
656       LOG_FAIL_NO_STAT()
657           << "Interface or virtual call to "
658           << invoke_instruction->GetMethodReference().PrettyMethod()
659           << " is not hit and not inlined";
660       return false;
661     }
662 
663     case kInlineCacheMonomorphic: {
664       MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall);
665       if (UseOnlyPolymorphicInliningWithNoDeopt()) {
666         return TryInlinePolymorphicCall(invoke_instruction, classes);
667       } else {
668         return TryInlineMonomorphicCall(invoke_instruction, classes);
669       }
670     }
671 
672     case kInlineCachePolymorphic: {
673       MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall);
674       return TryInlinePolymorphicCall(invoke_instruction, classes);
675     }
676 
677     case kInlineCacheMegamorphic: {
678       LOG_FAIL_NO_STAT()
679           << "Interface or virtual call to "
680           << invoke_instruction->GetMethodReference().PrettyMethod()
681           << " is megamorphic and not inlined";
682       MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall);
683       return false;
684     }
685 
686     case kInlineCacheMissingTypes: {
687       LOG_FAIL_NO_STAT()
688           << "Interface or virtual call to "
689           << invoke_instruction->GetMethodReference().PrettyMethod()
690           << " is missing types and not inlined";
691       return false;
692     }
693   }
694 }
695 
GetInlineCacheJIT(HInvoke * invoke_instruction,StackHandleScope<InlineCache::kIndividualCacheSize> * classes)696 HInliner::InlineCacheType HInliner::GetInlineCacheJIT(
697     HInvoke* invoke_instruction,
698     /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) {
699   DCHECK(codegen_->GetCompilerOptions().IsJitCompiler());
700 
701   ArtMethod* caller = graph_->GetArtMethod();
702   // Under JIT, we should always know the caller.
703   DCHECK(caller != nullptr);
704 
705   InlineCache* cache = nullptr;
706   // Start with the outer graph profiling info.
707   ProfilingInfo* profiling_info = outermost_graph_->GetProfilingInfo();
708   if (profiling_info != nullptr) {
709     if (depth_ == 0) {
710       cache = profiling_info->GetInlineCache(invoke_instruction->GetDexPc());
711     } else {
712       uint32_t dex_pc = ProfilingInfoBuilder::EncodeInlinedDexPc(
713           this, codegen_->GetCompilerOptions(), invoke_instruction);
714       if (dex_pc != kNoDexPc) {
715         cache = profiling_info->GetInlineCache(dex_pc);
716       }
717     }
718   }
719 
720   if (cache == nullptr) {
721     // Check the current graph profiling info.
722     profiling_info = graph_->GetProfilingInfo();
723     if (profiling_info == nullptr) {
724       return kInlineCacheNoData;
725     }
726 
727     cache = profiling_info->GetInlineCache(invoke_instruction->GetDexPc());
728   }
729 
730   if (cache == nullptr) {
731     // Either we never hit this invoke and we never compiled the callee,
732     // or the method wasn't resolved when we performed baseline compilation.
733     // Bail for now.
734     return kInlineCacheNoData;
735   }
736   Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto(*cache, classes);
737   return GetInlineCacheType(*classes);
738 }
739 
GetInlineCacheAOT(HInvoke * invoke_instruction,StackHandleScope<InlineCache::kIndividualCacheSize> * classes)740 HInliner::InlineCacheType HInliner::GetInlineCacheAOT(
741     HInvoke* invoke_instruction,
742     /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) {
743   DCHECK_EQ(classes->Capacity(), InlineCache::kIndividualCacheSize);
744   DCHECK_EQ(classes->Size(), 0u);
745 
746   const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo();
747   if (pci == nullptr) {
748     return kInlineCacheNoData;
749   }
750 
751   ProfileCompilationInfo::MethodHotness hotness = pci->GetMethodHotness(MethodReference(
752       caller_compilation_unit_.GetDexFile(), caller_compilation_unit_.GetDexMethodIndex()));
753   if (!hotness.IsHot()) {
754     return kInlineCacheNoData;  // no profile information for this invocation.
755   }
756 
757   const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap();
758   DCHECK(inline_caches != nullptr);
759 
760   // Inlined inline caches are not supported in AOT, so we use the dex pc directly, and don't
761   // call `InlineCache::EncodeDexPc`.
762   // To support it, we would need to ensure `inline_max_code_units` remain the
763   // same between dex2oat and runtime, for example by adding it to the boot
764   // image oat header.
765   const auto it = inline_caches->find(invoke_instruction->GetDexPc());
766   if (it == inline_caches->end()) {
767     return kInlineCacheUninitialized;
768   }
769 
770   const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second;
771   if (dex_pc_data.is_missing_types) {
772     return kInlineCacheMissingTypes;
773   }
774   if (dex_pc_data.is_megamorphic) {
775     return kInlineCacheMegamorphic;
776   }
777   DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize);
778 
779   // Walk over the class descriptors and look up the actual classes.
780   // If we cannot find a type we return kInlineCacheMissingTypes.
781   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
782   Thread* self = Thread::Current();
783   for (const dex::TypeIndex& type_index : dex_pc_data.classes) {
784     const DexFile* dex_file = caller_compilation_unit_.GetDexFile();
785     size_t descriptor_length;
786     const char* descriptor = pci->GetTypeDescriptor(dex_file, type_index, &descriptor_length);
787     ObjPtr<mirror::Class> clazz = class_linker->FindClass(
788         self, descriptor, descriptor_length, caller_compilation_unit_.GetClassLoader());
789     if (clazz == nullptr) {
790       self->ClearException();  // Clean up the exception left by type resolution.
791       VLOG(compiler) << "Could not find class from inline cache in AOT mode "
792           << invoke_instruction->GetMethodReference().PrettyMethod()
793           << " : "
794           << descriptor;
795       return kInlineCacheMissingTypes;
796     }
797     DCHECK_LT(classes->Size(), classes->Capacity());
798     classes->NewHandle(clazz);
799   }
800 
801   return GetInlineCacheType(*classes);
802 }
803 
BuildGetReceiverClass(ClassLinker * class_linker,HInstruction * receiver,uint32_t dex_pc) const804 HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
805                                                    HInstruction* receiver,
806                                                    uint32_t dex_pc) const {
807   ArtField* field = GetClassRoot<mirror::Object>(class_linker)->GetInstanceField(0);
808   DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
809   HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet(
810       receiver,
811       field,
812       DataType::Type::kReference,
813       field->GetOffset(),
814       field->IsVolatile(),
815       field->GetDexFieldIndex(),
816       field->GetDeclaringClass()->GetDexClassDefIndex(),
817       *field->GetDexFile(),
818       dex_pc);
819   // The class of a field is effectively final, and does not have any memory dependencies.
820   result->SetSideEffects(SideEffects::None());
821   return result;
822 }
823 
ResolveMethodFromInlineCache(Handle<mirror::Class> klass,HInvoke * invoke_instruction,PointerSize pointer_size)824 static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass,
825                                                HInvoke* invoke_instruction,
826                                                PointerSize pointer_size)
827     REQUIRES_SHARED(Locks::mutator_lock_) {
828   ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
829   if (Runtime::Current()->IsAotCompiler()) {
830     // We can get unrelated types when working with profiles (corruption,
831     // systme updates, or anyone can write to it). So first check if the class
832     // actually implements the declaring class of the method that is being
833     // called in bytecode.
834     // Note: the lookup methods used below require to have assignable types.
835     if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) {
836       return nullptr;
837     }
838 
839     // Also check whether the type in the inline cache is an interface or an
840     // abstract class. We only expect concrete classes in inline caches, so this
841     // means the class was changed.
842     if (klass->IsAbstract() || klass->IsInterface()) {
843       return nullptr;
844     }
845   }
846 
847   if (invoke_instruction->IsInvokeInterface()) {
848     resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size);
849   } else {
850     DCHECK(invoke_instruction->IsInvokeVirtual());
851     resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size);
852   }
853   // Even if the class exists we can still not have the function the
854   // inline-cache targets if the profile is from far enough in the past/future.
855   // We need to allow this since we don't update boot-profiles very often. This
856   // can occur in boot-profiles with inline-caches.
857   DCHECK(Runtime::Current()->IsAotCompiler() || resolved_method != nullptr);
858   return resolved_method;
859 }
860 
TryInlineMonomorphicCall(HInvoke * invoke_instruction,const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)861 bool HInliner::TryInlineMonomorphicCall(
862     HInvoke* invoke_instruction,
863     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
864   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
865       << invoke_instruction->DebugName();
866 
867   dex::TypeIndex class_index = FindClassIndexIn(
868       GetMonomorphicType(classes), caller_compilation_unit_);
869   if (!class_index.IsValid()) {
870     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheInaccessibleToCaller)
871         << "Call to " << ArtMethod::PrettyMethod(invoke_instruction->GetResolvedMethod())
872         << " from inline cache is not inlined because its class is not"
873         << " accessible to the caller";
874     return false;
875   }
876 
877   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
878   PointerSize pointer_size = class_linker->GetImagePointerSize();
879   Handle<mirror::Class> monomorphic_type =
880       graph_->GetHandleCache()->NewHandle(GetMonomorphicType(classes));
881   ArtMethod* resolved_method = ResolveMethodFromInlineCache(
882       monomorphic_type, invoke_instruction, pointer_size);
883   if (resolved_method == nullptr) {
884     // Bogus AOT profile, bail.
885     DCHECK(Runtime::Current()->IsAotCompiler());
886     return false;
887   }
888 
889   LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod();
890   HInstruction* receiver = invoke_instruction->InputAt(0);
891   HInstruction* cursor = invoke_instruction->GetPrevious();
892   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
893   if (!TryInlineAndReplace(invoke_instruction,
894                            resolved_method,
895                            ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true),
896                            /* do_rtp= */ false,
897                            /* is_speculative= */ true)) {
898     return false;
899   }
900 
901   // We successfully inlined, now add a guard.
902   AddTypeGuard(receiver,
903                cursor,
904                bb_cursor,
905                class_index,
906                monomorphic_type,
907                invoke_instruction,
908                /* with_deoptimization= */ true);
909 
910   // Lazily run type propagation to get the guard typed, and eventually propagate the
911   // type of the receiver.
912   run_extra_type_propagation_ = true;
913 
914   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall);
915   return true;
916 }
917 
AddCHAGuard(HInstruction * invoke_instruction,uint32_t dex_pc,HInstruction * cursor,HBasicBlock * bb_cursor)918 void HInliner::AddCHAGuard(HInstruction* invoke_instruction,
919                            uint32_t dex_pc,
920                            HInstruction* cursor,
921                            HBasicBlock* bb_cursor) {
922   HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator())
923       HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc);
924   // ShouldDeoptimizeFlag is used to perform a deoptimization because of a CHA
925   // invalidation or for debugging reasons. It is OK to just check for non-zero
926   // value here instead of the specific CHA value. When a debugging deopt is
927   // requested we deoptimize before we execute any code and hence we shouldn't
928   // see that case here.
929   HInstruction* compare = new (graph_->GetAllocator()) HNotEqual(
930       deopt_flag, graph_->GetIntConstant(0));
931   HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize(
932       graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc);
933 
934   if (cursor != nullptr) {
935     bb_cursor->InsertInstructionAfter(deopt_flag, cursor);
936   } else {
937     bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction());
938   }
939   bb_cursor->InsertInstructionAfter(compare, deopt_flag);
940   bb_cursor->InsertInstructionAfter(deopt, compare);
941 
942   // Add receiver as input to aid CHA guard optimization later.
943   deopt_flag->AddInput(invoke_instruction->InputAt(0));
944   DCHECK_EQ(deopt_flag->InputCount(), 1u);
945   deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
946   outermost_graph_->IncrementNumberOfCHAGuards();
947 }
948 
AddTypeGuard(HInstruction * receiver,HInstruction * cursor,HBasicBlock * bb_cursor,dex::TypeIndex class_index,Handle<mirror::Class> klass,HInstruction * invoke_instruction,bool with_deoptimization)949 HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
950                                      HInstruction* cursor,
951                                      HBasicBlock* bb_cursor,
952                                      dex::TypeIndex class_index,
953                                      Handle<mirror::Class> klass,
954                                      HInstruction* invoke_instruction,
955                                      bool with_deoptimization) {
956   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
957   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
958       class_linker, receiver, invoke_instruction->GetDexPc());
959   if (cursor != nullptr) {
960     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
961   } else {
962     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
963   }
964 
965   const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
966   bool is_referrer;
967   ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod();
968   if (outermost_art_method == nullptr) {
969     DCHECK(Runtime::Current()->IsAotCompiler());
970     // We are in AOT mode and we don't have an ART method to determine
971     // if the inlined method belongs to the referrer. Assume it doesn't.
972     is_referrer = false;
973   } else {
974     is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass();
975   }
976 
977   // Note that we will just compare the classes, so we don't need Java semantics access checks.
978   // Note that the type index and the dex file are relative to the method this type guard is
979   // inlined into.
980   HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
981                                                                    class_index,
982                                                                    caller_dex_file,
983                                                                    klass,
984                                                                    is_referrer,
985                                                                    invoke_instruction->GetDexPc(),
986                                                                    /* needs_access_check= */ false);
987   HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind(
988       load_class, codegen_, caller_compilation_unit_);
989   DCHECK(kind != HLoadClass::LoadKind::kInvalid)
990       << "We should always be able to reference a class for inline caches";
991   // Load kind must be set before inserting the instruction into the graph.
992   load_class->SetLoadKind(kind);
993   bb_cursor->InsertInstructionAfter(load_class, receiver_class);
994   // In AOT mode, we will most likely load the class from BSS, which will involve a call
995   // to the runtime. In this case, the load instruction will need an environment so copy
996   // it from the invoke instruction.
997   if (load_class->NeedsEnvironment()) {
998     DCHECK(Runtime::Current()->IsAotCompiler());
999     load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1000   }
1001 
1002   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class);
1003   bb_cursor->InsertInstructionAfter(compare, load_class);
1004   if (with_deoptimization) {
1005     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
1006         graph_->GetAllocator(),
1007         compare,
1008         receiver,
1009         Runtime::Current()->IsAotCompiler()
1010             ? DeoptimizationKind::kAotInlineCache
1011             : DeoptimizationKind::kJitInlineCache,
1012         invoke_instruction->GetDexPc());
1013     bb_cursor->InsertInstructionAfter(deoptimize, compare);
1014     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1015     DCHECK_EQ(invoke_instruction->InputAt(0), receiver);
1016     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
1017     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
1018   }
1019   return compare;
1020 }
1021 
MaybeReplaceAndRemove(HInstruction * new_instruction,HInstruction * old_instruction)1022 static void MaybeReplaceAndRemove(HInstruction* new_instruction, HInstruction* old_instruction) {
1023   DCHECK(new_instruction != old_instruction);
1024   if (new_instruction != nullptr) {
1025     old_instruction->ReplaceWith(new_instruction);
1026   }
1027   old_instruction->GetBlock()->RemoveInstruction(old_instruction);
1028 }
1029 
TryInlinePolymorphicCall(HInvoke * invoke_instruction,const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)1030 bool HInliner::TryInlinePolymorphicCall(
1031     HInvoke* invoke_instruction,
1032     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
1033   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
1034       << invoke_instruction->DebugName();
1035 
1036   if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, classes)) {
1037     return true;
1038   }
1039 
1040   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1041   PointerSize pointer_size = class_linker->GetImagePointerSize();
1042 
1043   bool all_targets_inlined = true;
1044   bool one_target_inlined = false;
1045   DCHECK_EQ(classes.Capacity(), InlineCache::kIndividualCacheSize);
1046   uint8_t number_of_types = classes.Size();
1047   for (size_t i = 0; i != number_of_types; ++i) {
1048     DCHECK(classes.GetReference(i) != nullptr);
1049     Handle<mirror::Class> handle =
1050         graph_->GetHandleCache()->NewHandle(classes.GetReference(i)->AsClass());
1051     ArtMethod* method = ResolveMethodFromInlineCache(handle, invoke_instruction, pointer_size);
1052     if (method == nullptr) {
1053       DCHECK(Runtime::Current()->IsAotCompiler());
1054       // AOT profile is bogus. This loop expects to iterate over all entries,
1055       // so just just continue.
1056       all_targets_inlined = false;
1057       continue;
1058     }
1059 
1060     HInstruction* receiver = invoke_instruction->InputAt(0);
1061     HInstruction* cursor = invoke_instruction->GetPrevious();
1062     HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1063 
1064     dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_);
1065     HInstruction* return_replacement = nullptr;
1066 
1067     // In monomorphic cases when UseOnlyPolymorphicInliningWithNoDeopt() is true, we call
1068     // `TryInlinePolymorphicCall` even though we are monomorphic.
1069     const bool actually_monomorphic = number_of_types == 1;
1070     DCHECK_IMPLIES(actually_monomorphic, UseOnlyPolymorphicInliningWithNoDeopt());
1071 
1072     // We only want to limit recursive polymorphic cases, not monomorphic ones.
1073     const bool too_many_polymorphic_recursive_calls =
1074         !actually_monomorphic &&
1075         CountRecursiveCallsOf(method) > kMaximumNumberOfPolymorphicRecursiveCalls;
1076     if (too_many_polymorphic_recursive_calls) {
1077       LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedPolymorphicRecursiveBudget)
1078           << "Method " << method->PrettyMethod()
1079           << " is not inlined because it has reached its polymorphic recursive call budget.";
1080     } else if (class_index.IsValid()) {
1081       LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod();
1082     }
1083 
1084     if (too_many_polymorphic_recursive_calls ||
1085         !class_index.IsValid() ||
1086         !TryBuildAndInline(invoke_instruction,
1087                            method,
1088                            ReferenceTypeInfo::Create(handle, /* is_exact= */ true),
1089                            &return_replacement,
1090                            /* is_speculative= */ true)) {
1091       all_targets_inlined = false;
1092     } else {
1093       one_target_inlined = true;
1094 
1095       LOG_SUCCESS() << "Polymorphic call to "
1096                     << invoke_instruction->GetMethodReference().PrettyMethod()
1097                     << " has inlined " << ArtMethod::PrettyMethod(method);
1098 
1099       // If we have inlined all targets before, and this receiver is the last seen,
1100       // we deoptimize instead of keeping the original invoke instruction.
1101       bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() &&
1102           all_targets_inlined &&
1103           (i + 1 == number_of_types);
1104 
1105       HInstruction* compare = AddTypeGuard(receiver,
1106                                            cursor,
1107                                            bb_cursor,
1108                                            class_index,
1109                                            handle,
1110                                            invoke_instruction,
1111                                            deoptimize);
1112       if (deoptimize) {
1113         MaybeReplaceAndRemove(return_replacement, invoke_instruction);
1114       } else {
1115         CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
1116       }
1117     }
1118   }
1119 
1120   if (!one_target_inlined) {
1121     LOG_FAIL_NO_STAT()
1122         << "Call to " << invoke_instruction->GetMethodReference().PrettyMethod()
1123         << " from inline cache is not inlined because none"
1124         << " of its targets could be inlined";
1125     return false;
1126   }
1127 
1128   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
1129 
1130   // Lazily run type propagation to get the guards typed.
1131   run_extra_type_propagation_ = true;
1132   return true;
1133 }
1134 
CreateDiamondPatternForPolymorphicInline(HInstruction * compare,HInstruction * return_replacement,HInstruction * invoke_instruction)1135 void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
1136                                                         HInstruction* return_replacement,
1137                                                         HInstruction* invoke_instruction) {
1138   uint32_t dex_pc = invoke_instruction->GetDexPc();
1139   HBasicBlock* cursor_block = compare->GetBlock();
1140   HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
1141   ArenaAllocator* allocator = graph_->GetAllocator();
1142 
1143   // Spit the block after the compare: `cursor_block` will now be the start of the diamond,
1144   // and the returned block is the start of the then branch (that could contain multiple blocks).
1145   HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
1146 
1147   // Split the block containing the invoke before and after the invoke. The returned block
1148   // of the split before will contain the invoke and will be the otherwise branch of
1149   // the diamond. The returned block of the split after will be the merge block
1150   // of the diamond.
1151   HBasicBlock* end_then = invoke_instruction->GetBlock();
1152   HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
1153   HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
1154 
1155   // If the methods we are inlining return a value, we create a phi in the merge block
1156   // that will have the `invoke_instruction and the `return_replacement` as inputs.
1157   if (return_replacement != nullptr) {
1158     HPhi* phi = new (allocator) HPhi(
1159         allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
1160     merge->AddPhi(phi);
1161     invoke_instruction->ReplaceWith(phi);
1162     phi->AddInput(return_replacement);
1163     phi->AddInput(invoke_instruction);
1164   }
1165 
1166   // Add the control flow instructions.
1167   otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
1168   end_then->AddInstruction(new (allocator) HGoto(dex_pc));
1169   cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
1170 
1171   // Add the newly created blocks to the graph.
1172   graph_->AddBlock(then);
1173   graph_->AddBlock(otherwise);
1174   graph_->AddBlock(merge);
1175 
1176   // Set up successor (and implictly predecessor) relations.
1177   cursor_block->AddSuccessor(otherwise);
1178   cursor_block->AddSuccessor(then);
1179   end_then->AddSuccessor(merge);
1180   otherwise->AddSuccessor(merge);
1181 
1182   // Set up dominance information.
1183   then->SetDominator(cursor_block);
1184   cursor_block->AddDominatedBlock(then);
1185   otherwise->SetDominator(cursor_block);
1186   cursor_block->AddDominatedBlock(otherwise);
1187   merge->SetDominator(cursor_block);
1188   cursor_block->AddDominatedBlock(merge);
1189 
1190   // Update the revert post order.
1191   size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
1192   MakeRoomFor(&graph_->reverse_post_order_, 1, index);
1193   graph_->reverse_post_order_[++index] = then;
1194   index = IndexOfElement(graph_->reverse_post_order_, end_then);
1195   MakeRoomFor(&graph_->reverse_post_order_, 2, index);
1196   graph_->reverse_post_order_[++index] = otherwise;
1197   graph_->reverse_post_order_[++index] = merge;
1198 
1199 
1200   graph_->UpdateLoopAndTryInformationOfNewBlock(
1201       then, original_invoke_block, /* replace_if_back_edge= */ false);
1202   graph_->UpdateLoopAndTryInformationOfNewBlock(
1203       otherwise, original_invoke_block, /* replace_if_back_edge= */ false);
1204 
1205   // In case the original invoke location was a back edge, we need to update
1206   // the loop to now have the merge block as a back edge.
1207   graph_->UpdateLoopAndTryInformationOfNewBlock(
1208       merge, original_invoke_block, /* replace_if_back_edge= */ true);
1209 }
1210 
TryInlinePolymorphicCallToSameTarget(HInvoke * invoke_instruction,const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)1211 bool HInliner::TryInlinePolymorphicCallToSameTarget(
1212     HInvoke* invoke_instruction,
1213     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
1214   // This optimization only works under JIT for now.
1215   if (!codegen_->GetCompilerOptions().IsJitCompiler()) {
1216     return false;
1217   }
1218 
1219   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1220   PointerSize pointer_size = class_linker->GetImagePointerSize();
1221 
1222   ArtMethod* actual_method = nullptr;
1223   size_t method_index = invoke_instruction->IsInvokeVirtual()
1224       ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
1225       : invoke_instruction->AsInvokeInterface()->GetImtIndex();
1226 
1227   // Check whether we are actually calling the same method among
1228   // the different types seen.
1229   DCHECK_EQ(classes.Capacity(), InlineCache::kIndividualCacheSize);
1230   uint8_t number_of_types = classes.Size();
1231   for (size_t i = 0; i != number_of_types; ++i) {
1232     DCHECK(classes.GetReference(i) != nullptr);
1233     ArtMethod* new_method = nullptr;
1234     if (invoke_instruction->IsInvokeInterface()) {
1235       new_method = classes.GetReference(i)->AsClass()->GetImt(pointer_size)->Get(
1236           method_index, pointer_size);
1237       if (new_method->IsRuntimeMethod()) {
1238         // Bail out as soon as we see a conflict trampoline in one of the target's
1239         // interface table.
1240         return false;
1241       }
1242     } else {
1243       DCHECK(invoke_instruction->IsInvokeVirtual());
1244       new_method =
1245           classes.GetReference(i)->AsClass()->GetEmbeddedVTableEntry(method_index, pointer_size);
1246     }
1247     DCHECK(new_method != nullptr);
1248     if (actual_method == nullptr) {
1249       actual_method = new_method;
1250     } else if (actual_method != new_method) {
1251       // Different methods, bailout.
1252       return false;
1253     }
1254   }
1255 
1256   HInstruction* receiver = invoke_instruction->InputAt(0);
1257   HInstruction* cursor = invoke_instruction->GetPrevious();
1258   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1259 
1260   HInstruction* return_replacement = nullptr;
1261   Handle<mirror::Class> cls =
1262       graph_->GetHandleCache()->NewHandle(actual_method->GetDeclaringClass());
1263   if (!TryBuildAndInline(invoke_instruction,
1264                          actual_method,
1265                          ReferenceTypeInfo::Create(cls),
1266                          &return_replacement,
1267                          /* is_speculative= */ true)) {
1268     return false;
1269   }
1270 
1271   // We successfully inlined, now add a guard.
1272   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
1273       class_linker, receiver, invoke_instruction->GetDexPc());
1274 
1275   DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
1276       ? DataType::Type::kInt64
1277       : DataType::Type::kInt32;
1278   HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet(
1279       receiver_class,
1280       type,
1281       invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
1282                                             : HClassTableGet::TableKind::kIMTable,
1283       method_index,
1284       invoke_instruction->GetDexPc());
1285 
1286   HConstant* constant;
1287   if (type == DataType::Type::kInt64) {
1288     constant = graph_->GetLongConstant(reinterpret_cast<intptr_t>(actual_method));
1289   } else {
1290     constant = graph_->GetIntConstant(reinterpret_cast<intptr_t>(actual_method));
1291   }
1292 
1293   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant);
1294   if (cursor != nullptr) {
1295     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
1296   } else {
1297     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
1298   }
1299   bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
1300   bb_cursor->InsertInstructionAfter(compare, class_table_get);
1301 
1302   if (outermost_graph_->IsCompilingOsr()) {
1303     CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
1304   } else {
1305     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
1306         graph_->GetAllocator(),
1307         compare,
1308         receiver,
1309         DeoptimizationKind::kJitSameTarget,
1310         invoke_instruction->GetDexPc());
1311     bb_cursor->InsertInstructionAfter(deoptimize, compare);
1312     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1313     MaybeReplaceAndRemove(return_replacement, invoke_instruction);
1314     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
1315     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
1316   }
1317 
1318   // Lazily run type propagation to get the guard typed.
1319   run_extra_type_propagation_ = true;
1320   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
1321 
1322   LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod();
1323   return true;
1324 }
1325 
MaybeRunReferenceTypePropagation(HInstruction * replacement,HInvoke * invoke_instruction)1326 void HInliner::MaybeRunReferenceTypePropagation(HInstruction* replacement,
1327                                                 HInvoke* invoke_instruction) {
1328   if (ReturnTypeMoreSpecific(replacement, invoke_instruction)) {
1329     // Actual return value has a more specific type than the method's declared
1330     // return type. Run RTP again on the outer graph to propagate it.
1331     ReferenceTypePropagation(graph_,
1332                              outer_compilation_unit_.GetDexCache(),
1333                              /* is_first_run= */ false).Run();
1334   }
1335 }
1336 
TryDevirtualize(HInvoke * invoke_instruction,ArtMethod * method,HInvoke ** replacement)1337 bool HInliner::TryDevirtualize(HInvoke* invoke_instruction,
1338                                ArtMethod* method,
1339                                HInvoke** replacement) {
1340   DCHECK(invoke_instruction != *replacement);
1341   if (!invoke_instruction->IsInvokeInterface() && !invoke_instruction->IsInvokeVirtual()) {
1342     return false;
1343   }
1344 
1345   // Don't devirtualize to an intrinsic invalid after the builder phase. The ArtMethod might be an
1346   // intrinsic even when the HInvoke isn't e.g. java.lang.CharSequence.isEmpty (not an intrinsic)
1347   // can get devirtualized into java.lang.String.isEmpty (which is an intrinsic).
1348   if (method->IsIntrinsic() && !IsValidIntrinsicAfterBuilder(method->GetIntrinsic())) {
1349     return false;
1350   }
1351 
1352   // Don't bother trying to call directly a default conflict method. It
1353   // doesn't have a proper MethodReference, but also `GetCanonicalMethod`
1354   // will return an actual default implementation.
1355   if (method->IsDefaultConflicting()) {
1356     return false;
1357   }
1358   DCHECK(!method->IsProxyMethod());
1359   ClassLinker* cl = Runtime::Current()->GetClassLinker();
1360   PointerSize pointer_size = cl->GetImagePointerSize();
1361   // The sharpening logic assumes the caller isn't passing a copied method.
1362   method = method->GetCanonicalMethod(pointer_size);
1363   uint32_t dex_method_index = FindMethodIndexIn(
1364       method,
1365       *invoke_instruction->GetMethodReference().dex_file,
1366       invoke_instruction->GetMethodReference().index);
1367   if (dex_method_index == dex::kDexNoIndex) {
1368     return false;
1369   }
1370   HInvokeStaticOrDirect::DispatchInfo dispatch_info =
1371       HSharpening::SharpenLoadMethod(method,
1372                                      /* has_method_id= */ true,
1373                                      /* for_interface_call= */ false,
1374                                      codegen_);
1375   DCHECK_NE(dispatch_info.code_ptr_location, CodePtrLocation::kCallCriticalNative);
1376   if (dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall) {
1377     // If sharpening returns that we need to load the method at runtime, keep
1378     // the virtual/interface call which will be faster.
1379     // Also, the entrypoints for runtime calls do not handle devirtualized
1380     // calls.
1381     return false;
1382   }
1383 
1384   HInvokeStaticOrDirect* new_invoke = new (graph_->GetAllocator()) HInvokeStaticOrDirect(
1385       graph_->GetAllocator(),
1386       invoke_instruction->GetNumberOfArguments(),
1387       invoke_instruction->GetNumberOfOutVRegs(),
1388       invoke_instruction->GetType(),
1389       invoke_instruction->GetDexPc(),
1390       MethodReference(invoke_instruction->GetMethodReference().dex_file, dex_method_index),
1391       method,
1392       dispatch_info,
1393       kDirect,
1394       MethodReference(method->GetDexFile(), method->GetDexMethodIndex()),
1395       HInvokeStaticOrDirect::ClinitCheckRequirement::kNone,
1396       !graph_->IsDebuggable());
1397   HInputsRef inputs = invoke_instruction->GetInputs();
1398   DCHECK_EQ(inputs.size(), invoke_instruction->GetNumberOfArguments());
1399   for (size_t index = 0; index != inputs.size(); ++index) {
1400     new_invoke->SetArgumentAt(index, inputs[index]);
1401   }
1402   if (HInvokeStaticOrDirect::NeedsCurrentMethodInput(dispatch_info)) {
1403     new_invoke->SetRawInputAt(new_invoke->GetCurrentMethodIndexUnchecked(),
1404                               graph_->GetCurrentMethod());
1405   }
1406   invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1407   new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1408   if (invoke_instruction->GetType() == DataType::Type::kReference) {
1409     new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo());
1410   }
1411   *replacement = new_invoke;
1412 
1413   MaybeReplaceAndRemove(*replacement, invoke_instruction);
1414   // No need to call MaybeRunReferenceTypePropagation, as we know the return type
1415   // cannot be more specific.
1416   DCHECK(!ReturnTypeMoreSpecific(*replacement, invoke_instruction));
1417   return true;
1418 }
1419 
1420 
TryInlineAndReplace(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,bool do_rtp,bool is_speculative)1421 bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction,
1422                                    ArtMethod* method,
1423                                    ReferenceTypeInfo receiver_type,
1424                                    bool do_rtp,
1425                                    bool is_speculative) {
1426   DCHECK(!codegen_->IsImplementedIntrinsic(invoke_instruction));
1427   HInstruction* return_replacement = nullptr;
1428 
1429   if (!TryBuildAndInline(
1430           invoke_instruction, method, receiver_type, &return_replacement, is_speculative)) {
1431     return false;
1432   }
1433 
1434   MaybeReplaceAndRemove(return_replacement, invoke_instruction);
1435   FixUpReturnReferenceType(method, return_replacement);
1436   if (do_rtp) {
1437     MaybeRunReferenceTypePropagation(return_replacement, invoke_instruction);
1438   }
1439   return true;
1440 }
1441 
CountRecursiveCallsOf(ArtMethod * method) const1442 size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const {
1443   const HInliner* current = this;
1444   size_t count = 0;
1445   do {
1446     if (current->graph_->GetArtMethod() == method) {
1447       ++count;
1448     }
1449     current = current->parent_;
1450   } while (current != nullptr);
1451   return count;
1452 }
1453 
MayInline(const CompilerOptions & compiler_options,const DexFile & inlined_from,const DexFile & inlined_into)1454 static inline bool MayInline(const CompilerOptions& compiler_options,
1455                              const DexFile& inlined_from,
1456                              const DexFile& inlined_into) {
1457   // We're not allowed to inline across dex files if we're the no-inline-from dex file.
1458   if (!IsSameDexFile(inlined_from, inlined_into) &&
1459       ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) {
1460     return false;
1461   }
1462 
1463   return true;
1464 }
1465 
1466 // Returns whether inlining is allowed based on ART semantics.
IsInliningAllowed(ArtMethod * method,const CodeItemDataAccessor & accessor) const1467 bool HInliner::IsInliningAllowed(ArtMethod* method, const CodeItemDataAccessor& accessor) const {
1468   if (!accessor.HasCodeItem()) {
1469     LOG_FAIL_NO_STAT()
1470         << "Method " << method->PrettyMethod() << " is not inlined because it is native";
1471     return false;
1472   }
1473 
1474   if (!method->IsCompilable()) {
1475     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotCompilable)
1476         << "Method " << method->PrettyMethod()
1477         << " has soft failures un-handled by the compiler, so it cannot be inlined";
1478     return false;
1479   }
1480 
1481   if (!IsMethodVerified(method)) {
1482     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
1483         << "Method " << method->PrettyMethod()
1484         << " couldn't be verified, so it cannot be inlined";
1485     return false;
1486   }
1487 
1488   if (annotations::MethodIsNeverInline(*method->GetDexFile(),
1489                                        method->GetClassDef(),
1490                                        method->GetDexMethodIndex())) {
1491     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNeverInlineAnnotation)
1492         << "Method " << method->PrettyMethod()
1493         << " has the @NeverInline annotation so it won't be inlined";
1494     return false;
1495   }
1496 
1497   return true;
1498 }
1499 
1500 // Returns whether ART supports inlining this method.
1501 //
1502 // Some methods are not supported because they have features for which inlining
1503 // is not implemented. For example, we do not currently support inlining throw
1504 // instructions into a try block.
IsInliningSupported(const HInvoke * invoke_instruction,ArtMethod * method,const CodeItemDataAccessor & accessor) const1505 bool HInliner::IsInliningSupported(const HInvoke* invoke_instruction,
1506                                    ArtMethod* method,
1507                                    const CodeItemDataAccessor& accessor) const {
1508   if (method->IsProxyMethod()) {
1509     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy)
1510         << "Method " << method->PrettyMethod()
1511         << " is not inlined because of unimplemented inline support for proxy methods.";
1512     return false;
1513   }
1514 
1515   if (accessor.TriesSize() != 0) {
1516     if (!kInlineTryCatches) {
1517       LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchDisabled)
1518           << "Method " << method->PrettyMethod()
1519           << " is not inlined because inlining try catches is disabled globally";
1520       return false;
1521     }
1522     const bool disallowed_try_catch_inlining =
1523         // Direct parent is a try block.
1524         invoke_instruction->GetBlock()->IsTryBlock() ||
1525         // Indirect parent disallows try catch inlining.
1526         !try_catch_inlining_allowed_;
1527     if (disallowed_try_catch_inlining) {
1528       LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchCallee)
1529           << "Method " << method->PrettyMethod()
1530           << " is not inlined because it has a try catch and we are not supporting it for this"
1531           << " particular call. This is could be because e.g. it would be inlined inside another"
1532           << " try block, we arrived here from TryInlinePolymorphicCall, etc.";
1533       return false;
1534     }
1535   }
1536 
1537   if (invoke_instruction->IsInvokeStaticOrDirect() &&
1538       invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
1539     // Case of a static method that cannot be inlined because it implicitly
1540     // requires an initialization check of its declaring class.
1541     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheClinitCheck)
1542         << "Method " << method->PrettyMethod()
1543         << " is not inlined because it is static and requires a clinit"
1544         << " check that cannot be emitted due to Dex cache limitations";
1545     return false;
1546   }
1547 
1548   return true;
1549 }
1550 
IsInliningEncouraged(const HInvoke * invoke_instruction,ArtMethod * method,const CodeItemDataAccessor & accessor) const1551 bool HInliner::IsInliningEncouraged(const HInvoke* invoke_instruction,
1552                                     ArtMethod* method,
1553                                     const CodeItemDataAccessor& accessor) const {
1554   if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) {
1555     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget)
1556         << "Method "
1557         << method->PrettyMethod()
1558         << " is not inlined because it has reached its recursive call budget.";
1559     return false;
1560   }
1561 
1562   size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits();
1563   if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) {
1564     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem)
1565         << "Method " << method->PrettyMethod()
1566         << " is not inlined because its code item is too big: "
1567         << accessor.InsnsSizeInCodeUnits()
1568         << " > "
1569         << inline_max_code_units;
1570     return false;
1571   }
1572 
1573   if (graph_->IsCompilingBaseline() &&
1574       accessor.InsnsSizeInCodeUnits() > CompilerOptions::kBaselineInlineMaxCodeUnits) {
1575     LOG_FAIL_NO_STAT() << "Reached baseline maximum code unit for inlining  "
1576                        << method->PrettyMethod();
1577     outermost_graph_->SetUsefulOptimizing();
1578     return false;
1579   }
1580 
1581   if (invoke_instruction->GetBlock()->GetLastInstruction()->IsThrow()) {
1582     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEndsWithThrow)
1583         << "Method " << method->PrettyMethod()
1584         << " is not inlined because its block ends with a throw";
1585     return false;
1586   }
1587 
1588   return true;
1589 }
1590 
TryBuildAndInline(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,HInstruction ** return_replacement,bool is_speculative)1591 bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
1592                                  ArtMethod* method,
1593                                  ReferenceTypeInfo receiver_type,
1594                                  HInstruction** return_replacement,
1595                                  bool is_speculative) {
1596   // If invoke_instruction is devirtualized to a different method, give intrinsics
1597   // another chance before we try to inline it.
1598   if (invoke_instruction->GetResolvedMethod() != method &&
1599       method->IsIntrinsic() &&
1600       IsValidIntrinsicAfterBuilder(method->GetIntrinsic())) {
1601     MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized);
1602     // For simplicity, always create a new instruction to replace the existing
1603     // invoke.
1604     HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
1605         graph_->GetAllocator(),
1606         invoke_instruction->GetNumberOfArguments(),
1607         invoke_instruction->GetNumberOfOutVRegs(),
1608         invoke_instruction->GetType(),
1609         invoke_instruction->GetDexPc(),
1610         invoke_instruction->GetMethodReference(),  // Use existing invoke's method's reference.
1611         method,
1612         MethodReference(method->GetDexFile(), method->GetDexMethodIndex()),
1613         method->GetMethodIndex(),
1614         !graph_->IsDebuggable());
1615     DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone);
1616     HInputsRef inputs = invoke_instruction->GetInputs();
1617     for (size_t index = 0; index != inputs.size(); ++index) {
1618       new_invoke->SetArgumentAt(index, inputs[index]);
1619     }
1620     invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1621     new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1622     if (invoke_instruction->GetType() == DataType::Type::kReference) {
1623       new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo());
1624     }
1625     *return_replacement = new_invoke;
1626     return true;
1627   }
1628 
1629   CodeItemDataAccessor accessor(method->DexInstructionData());
1630 
1631   if (!IsInliningAllowed(method, accessor)) {
1632     return false;
1633   }
1634 
1635   // We have checked above that inlining is "allowed" to make sure that the method has bytecode
1636   // (is not native), is compilable and verified and to enforce the @NeverInline annotation.
1637   // However, the pattern substitution is always preferable, so we do it before the check if
1638   // inlining is "encouraged". It also has an exception to the `MayInline()` restriction.
1639   if (TryPatternSubstitution(invoke_instruction, method, accessor, return_replacement)) {
1640     LOG_SUCCESS() << "Successfully replaced pattern of invoke "
1641                   << method->PrettyMethod();
1642     MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern);
1643     return true;
1644   }
1645 
1646   // Check whether we're allowed to inline. The outermost compilation unit is the relevant
1647   // dex file here (though the transitivity of an inline chain would allow checking the caller).
1648   if (!MayInline(codegen_->GetCompilerOptions(),
1649                  *method->GetDexFile(),
1650                  *outer_compilation_unit_.GetDexFile())) {
1651     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont)
1652         << "Won't inline " << method->PrettyMethod() << " in "
1653         << outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
1654         << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
1655         << method->GetDexFile()->GetLocation();
1656     return false;
1657   }
1658 
1659   if (!IsInliningSupported(invoke_instruction, method, accessor)) {
1660     return false;
1661   }
1662 
1663   if (!IsInliningEncouraged(invoke_instruction, method, accessor)) {
1664     return false;
1665   }
1666 
1667   if (!TryBuildAndInlineHelper(
1668           invoke_instruction, method, receiver_type, return_replacement, is_speculative)) {
1669     return false;
1670   }
1671 
1672   LOG_SUCCESS() << method->PrettyMethod();
1673   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke);
1674   if (outermost_graph_ == graph_) {
1675     MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvoke);
1676   }
1677   return true;
1678 }
1679 
GetInvokeInputForArgVRegIndex(HInvoke * invoke_instruction,size_t arg_vreg_index)1680 static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
1681                                                    size_t arg_vreg_index)
1682     REQUIRES_SHARED(Locks::mutator_lock_) {
1683   size_t input_index = 0;
1684   for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
1685     DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1686     if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
1687       ++i;
1688       DCHECK_NE(i, arg_vreg_index);
1689     }
1690   }
1691   DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1692   return invoke_instruction->InputAt(input_index);
1693 }
1694 
1695 // Try to recognize known simple patterns and replace invoke call with appropriate instructions.
TryPatternSubstitution(HInvoke * invoke_instruction,ArtMethod * method,const CodeItemDataAccessor & accessor,HInstruction ** return_replacement)1696 bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
1697                                       ArtMethod* method,
1698                                       const CodeItemDataAccessor& accessor,
1699                                       HInstruction** return_replacement) {
1700   InlineMethod inline_method;
1701   if (!InlineMethodAnalyser::AnalyseMethodCode(method, &accessor, &inline_method)) {
1702     return false;
1703   }
1704 
1705   size_t number_of_instructions = 0u;  // Note: We do not count constants.
1706   switch (inline_method.opcode) {
1707     case kInlineOpNop:
1708       DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid);
1709       *return_replacement = nullptr;
1710       break;
1711     case kInlineOpReturnArg:
1712       *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
1713                                                           inline_method.d.return_data.arg);
1714       break;
1715     case kInlineOpNonWideConst: {
1716       char shorty0 = method->GetShorty()[0];
1717       if (shorty0 == 'L') {
1718         DCHECK_EQ(inline_method.d.data, 0u);
1719         *return_replacement = graph_->GetNullConstant();
1720       } else if (shorty0 == 'F') {
1721         *return_replacement = graph_->GetFloatConstant(
1722             bit_cast<float, int32_t>(static_cast<int32_t>(inline_method.d.data)));
1723       } else {
1724         *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
1725       }
1726       break;
1727     }
1728     case kInlineOpIGet: {
1729       const InlineIGetIPutData& data = inline_method.d.ifield_data;
1730       if (data.method_is_static || data.object_arg != 0u) {
1731         // TODO: Needs null check.
1732         return false;
1733       }
1734       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1735       HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, method, obj);
1736       DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
1737       DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
1738       invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
1739       *return_replacement = iget;
1740       number_of_instructions = 1u;
1741       break;
1742     }
1743     case kInlineOpIPut: {
1744       const InlineIGetIPutData& data = inline_method.d.ifield_data;
1745       if (data.method_is_static || data.object_arg != 0u) {
1746         // TODO: Needs null check.
1747         return false;
1748       }
1749       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1750       HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
1751       HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, method, obj, value);
1752       DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
1753       DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
1754       invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1755       if (data.return_arg_plus1 != 0u) {
1756         size_t return_arg = data.return_arg_plus1 - 1u;
1757         *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
1758       }
1759       number_of_instructions = 1u;
1760       break;
1761     }
1762     case kInlineOpConstructor: {
1763       const InlineConstructorData& data = inline_method.d.constructor_data;
1764       // Get the indexes to arrays for easier processing.
1765       uint16_t iput_field_indexes[] = {
1766           data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
1767       };
1768       uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
1769       static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
1770       // Count valid field indexes.
1771       for (size_t i = 0, end = data.iput_count; i < end; i++) {
1772         // Check that there are no duplicate valid field indexes.
1773         DCHECK_EQ(0, std::count(iput_field_indexes + i + 1,
1774                                 iput_field_indexes + end,
1775                                 iput_field_indexes[i]));
1776       }
1777       // Check that there are no valid field indexes in the rest of the array.
1778       DCHECK_EQ(0, std::count_if(iput_field_indexes + data.iput_count,
1779                                  iput_field_indexes + arraysize(iput_field_indexes),
1780                                  [](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
1781 
1782       // Create HInstanceFieldSet for each IPUT that stores non-zero data.
1783       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction,
1784                                                         /* arg_vreg_index= */ 0u);
1785       bool needs_constructor_barrier = false;
1786       for (size_t i = 0, end = data.iput_count; i != end; ++i) {
1787         HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
1788         if (!IsZeroBitPattern(value)) {
1789           uint16_t field_index = iput_field_indexes[i];
1790           bool is_final;
1791           HInstanceFieldSet* iput =
1792               CreateInstanceFieldSet(field_index, method, obj, value, &is_final);
1793           invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1794 
1795           // Check whether the field is final. If it is, we need to add a barrier.
1796           if (is_final) {
1797             needs_constructor_barrier = true;
1798           }
1799         }
1800       }
1801       if (needs_constructor_barrier) {
1802         // See DexCompilationUnit::RequiresConstructorBarrier for more details.
1803         DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence";
1804 
1805         HConstructorFence* constructor_fence =
1806             new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator());
1807         invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence,
1808                                                                 invoke_instruction);
1809       }
1810       *return_replacement = nullptr;
1811       number_of_instructions = data.iput_count + (needs_constructor_barrier ? 1u : 0u);
1812       break;
1813     }
1814   }
1815   if (number_of_instructions != 0u) {
1816     total_number_of_instructions_ += number_of_instructions;
1817     UpdateInliningBudget();
1818   }
1819   return true;
1820 }
1821 
CreateInstanceFieldGet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj)1822 HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index,
1823                                                     ArtMethod* referrer,
1824                                                     HInstruction* obj)
1825     REQUIRES_SHARED(Locks::mutator_lock_) {
1826   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1827   ArtField* resolved_field =
1828       class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
1829   DCHECK(resolved_field != nullptr);
1830   HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet(
1831       obj,
1832       resolved_field,
1833       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1834       resolved_field->GetOffset(),
1835       resolved_field->IsVolatile(),
1836       field_index,
1837       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1838       *referrer->GetDexFile(),
1839       // Read barrier generates a runtime call in slow path and we need a valid
1840       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1841       /* dex_pc= */ 0);
1842   if (iget->GetType() == DataType::Type::kReference) {
1843     // Use the same dex_cache that we used for field lookup as the hint_dex_cache.
1844     Handle<mirror::DexCache> dex_cache =
1845         graph_->GetHandleCache()->NewHandle(referrer->GetDexCache());
1846     ReferenceTypePropagation rtp(graph_,
1847                                  dex_cache,
1848                                  /* is_first_run= */ false);
1849     rtp.Visit(iget);
1850   }
1851   return iget;
1852 }
1853 
CreateInstanceFieldSet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj,HInstruction * value,bool * is_final)1854 HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index,
1855                                                     ArtMethod* referrer,
1856                                                     HInstruction* obj,
1857                                                     HInstruction* value,
1858                                                     bool* is_final)
1859     REQUIRES_SHARED(Locks::mutator_lock_) {
1860   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1861   ArtField* resolved_field =
1862       class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
1863   DCHECK(resolved_field != nullptr);
1864   if (is_final != nullptr) {
1865     // This information is needed only for constructors.
1866     DCHECK(referrer->IsConstructor());
1867     *is_final = resolved_field->IsFinal();
1868   }
1869   HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet(
1870       obj,
1871       value,
1872       resolved_field,
1873       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1874       resolved_field->GetOffset(),
1875       resolved_field->IsVolatile(),
1876       field_index,
1877       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1878       *referrer->GetDexFile(),
1879       // Read barrier generates a runtime call in slow path and we need a valid
1880       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1881       /* dex_pc= */ 0);
1882   return iput;
1883 }
1884 
1885 template <typename T>
NewHandleIfDifferent(ObjPtr<T> object,Handle<T> hint,HGraph * graph)1886 static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object, Handle<T> hint, HGraph* graph)
1887     REQUIRES_SHARED(Locks::mutator_lock_) {
1888   return (object != hint.Get()) ? graph->GetHandleCache()->NewHandle(object) : hint;
1889 }
1890 
CanEncodeInlinedMethodInStackMap(const DexFile & outer_dex_file,ArtMethod * callee,const CodeGenerator * codegen,bool * out_needs_bss_check)1891 static bool CanEncodeInlinedMethodInStackMap(const DexFile& outer_dex_file,
1892                                              ArtMethod* callee,
1893                                              const CodeGenerator* codegen,
1894                                              bool* out_needs_bss_check)
1895     REQUIRES_SHARED(Locks::mutator_lock_) {
1896   if (!Runtime::Current()->IsAotCompiler()) {
1897     // JIT can always encode methods in stack maps.
1898     return true;
1899   }
1900 
1901   const DexFile* dex_file = callee->GetDexFile();
1902   if (IsSameDexFile(outer_dex_file, *dex_file)) {
1903     return true;
1904   }
1905 
1906   // Inline across dexfiles if the callee's DexFile is:
1907   // 1) in the bootclasspath, or
1908   if (callee->GetDeclaringClass()->IsBootStrapClassLoaded()) {
1909     // In multi-image, each BCP DexFile has their own OatWriter. Since they don't cooperate with
1910     // each other, we request the BSS check for them.
1911     // TODO(solanes, 154012332): Add .bss support for BCP multi-image.
1912     *out_needs_bss_check = codegen->GetCompilerOptions().IsMultiImage();
1913     return true;
1914   }
1915 
1916   // 2) is a non-BCP dexfile with the OatFile we are compiling.
1917   if (codegen->GetCompilerOptions().WithinOatFile(dex_file)) {
1918     return true;
1919   }
1920 
1921   // TODO(solanes): Support more AOT cases for inlining:
1922   // - methods in class loader context's DexFiles
1923   return false;
1924 }
1925 
1926   // Substitutes parameters in the callee graph with their values from the caller.
SubstituteArguments(HGraph * callee_graph,HInvoke * invoke_instruction,ReferenceTypeInfo receiver_type,const DexCompilationUnit & dex_compilation_unit)1927 void HInliner::SubstituteArguments(HGraph* callee_graph,
1928                                    HInvoke* invoke_instruction,
1929                                    ReferenceTypeInfo receiver_type,
1930                                    const DexCompilationUnit& dex_compilation_unit) {
1931   ArtMethod* const resolved_method = callee_graph->GetArtMethod();
1932   size_t parameter_index = 0;
1933   bool run_rtp = false;
1934   for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
1935        !instructions.Done();
1936        instructions.Advance()) {
1937     HInstruction* current = instructions.Current();
1938     if (current->IsParameterValue()) {
1939       HInstruction* argument = invoke_instruction->InputAt(parameter_index);
1940       if (argument->IsNullConstant()) {
1941         current->ReplaceWith(callee_graph->GetNullConstant());
1942       } else if (argument->IsIntConstant()) {
1943         current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
1944       } else if (argument->IsLongConstant()) {
1945         current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
1946       } else if (argument->IsFloatConstant()) {
1947         current->ReplaceWith(
1948             callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
1949       } else if (argument->IsDoubleConstant()) {
1950         current->ReplaceWith(
1951             callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
1952       } else if (argument->GetType() == DataType::Type::kReference) {
1953         if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) {
1954           run_rtp = true;
1955           current->SetReferenceTypeInfo(receiver_type);
1956         } else {
1957           current->SetReferenceTypeInfoIfValid(argument->GetReferenceTypeInfo());
1958         }
1959         current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
1960       }
1961       ++parameter_index;
1962     }
1963   }
1964 
1965   // We have replaced formal arguments with actual arguments. If actual types
1966   // are more specific than the declared ones, run RTP again on the inner graph.
1967   if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
1968     ReferenceTypePropagation(callee_graph,
1969                              dex_compilation_unit.GetDexCache(),
1970                              /* is_first_run= */ false).Run();
1971   }
1972 }
1973 
1974 // Returns whether we can inline the callee_graph into the target_block.
1975 //
1976 // This performs a combination of semantics checks, compiler support checks, and
1977 // resource limit checks.
1978 //
1979 // If this function returns true, it will also set out_number_of_instructions to
1980 // the number of instructions in the inlined body.
CanInlineBody(const HGraph * callee_graph,HInvoke * invoke,size_t * out_number_of_instructions,bool is_speculative) const1981 bool HInliner::CanInlineBody(const HGraph* callee_graph,
1982                              HInvoke* invoke,
1983                              size_t* out_number_of_instructions,
1984                              bool is_speculative) const {
1985   ArtMethod* const resolved_method = callee_graph->GetArtMethod();
1986 
1987   HBasicBlock* exit_block = callee_graph->GetExitBlock();
1988   if (exit_block == nullptr) {
1989     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
1990         << "Method " << resolved_method->PrettyMethod()
1991         << " could not be inlined because it has an infinite loop";
1992     return false;
1993   }
1994 
1995   bool has_one_return = false;
1996   bool has_try_catch = false;
1997   for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
1998     const HInstruction* last_instruction = predecessor->GetLastInstruction();
1999     // On inlinees, we can have Return/ReturnVoid/Throw -> TryBoundary -> Exit. To check for the
2000     // actual last instruction, we have to skip the TryBoundary instruction.
2001     if (last_instruction->IsTryBoundary()) {
2002       has_try_catch = true;
2003       predecessor = predecessor->GetSinglePredecessor();
2004       last_instruction = predecessor->GetLastInstruction();
2005 
2006       // If the last instruction chain is Return/ReturnVoid -> TryBoundary -> Exit we will have to
2007       // split a critical edge in InlineInto and might recompute loop information, which is
2008       // unsupported for irreducible loops.
2009       if (!last_instruction->IsThrow() && graph_->HasIrreducibleLoops()) {
2010         DCHECK(last_instruction->IsReturn() || last_instruction->IsReturnVoid());
2011         // TODO(ngeoffray): Support re-computing loop information to graphs with
2012         // irreducible loops?
2013         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller)
2014             << "Method " << resolved_method->PrettyMethod()
2015             << " could not be inlined because we will have to recompute the loop information and"
2016             << " the caller has irreducible loops";
2017         return false;
2018       }
2019     }
2020 
2021     if (last_instruction->IsThrow()) {
2022       if (graph_->GetExitBlock() == nullptr) {
2023         // TODO(ngeoffray): Support adding HExit in the caller graph.
2024         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
2025             << "Method " << resolved_method->PrettyMethod()
2026             << " could not be inlined because one branch always throws and"
2027             << " caller does not have an exit block";
2028         return false;
2029       } else if (graph_->HasIrreducibleLoops()) {
2030         // TODO(ngeoffray): Support re-computing loop information to graphs with
2031         // irreducible loops?
2032         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller)
2033             << "Method " << resolved_method->PrettyMethod()
2034             << " could not be inlined because one branch always throws and"
2035             << " the caller has irreducible loops";
2036         return false;
2037       }
2038     } else {
2039       has_one_return = true;
2040     }
2041   }
2042 
2043   if (!has_one_return) {
2044     // If a method has a try catch, all throws are potentially caught. We are conservative and
2045     // don't assume a method always throws unless we can guarantee that.
2046     if (!is_speculative && !has_try_catch) {
2047       // If we know that the method always throws with the particular parameters, set it as such.
2048       // This is better than using the dex instructions as we have more information about this
2049       // particular call. We don't mark speculative inlines (e.g. the ones from the inline cache) as
2050       // always throwing since they might not throw when executed.
2051       invoke->SetAlwaysThrows(/* always_throws= */ true);
2052       graph_->SetHasAlwaysThrowingInvokes(/* value= */ true);
2053     }
2054 
2055     // Methods that contain infinite loops with try catches fall into this line too as we construct
2056     // an Exit block for them. This will mean that the stat `kNotInlinedAlwaysThrows` might not be
2057     // 100% correct but:
2058     // 1) This is a very small fraction of methods, and
2059     // 2) It is not easy to disambiguate between those.
2060     // Since we want to avoid inlining methods with infinite loops anyway, we return false for these
2061     // cases too.
2062     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows)
2063         << "Method " << resolved_method->PrettyMethod()
2064         << " could not be inlined because it always throws";
2065     return false;
2066   }
2067 
2068   const bool too_many_registers =
2069       total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters;
2070   bool needs_bss_check = false;
2071   const bool can_encode_in_stack_map = CanEncodeInlinedMethodInStackMap(
2072       *outer_compilation_unit_.GetDexFile(), resolved_method, codegen_, &needs_bss_check);
2073   size_t number_of_instructions = 0;
2074   // Skip the entry block, it does not contain instructions that prevent inlining.
2075   for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) {
2076     if (block->IsLoopHeader()) {
2077       if (block->GetLoopInformation()->IsIrreducible()) {
2078         // Don't inline methods with irreducible loops, they could prevent some
2079         // optimizations to run.
2080         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCallee)
2081             << "Method " << resolved_method->PrettyMethod()
2082             << " could not be inlined because it contains an irreducible loop";
2083         return false;
2084       }
2085       if (!block->GetLoopInformation()->HasExitEdge()) {
2086         // Don't inline methods with loops without exit, since they cause the
2087         // loop information to be computed incorrectly when updating after
2088         // inlining.
2089         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit)
2090             << "Method " << resolved_method->PrettyMethod()
2091             << " could not be inlined because it contains a loop with no exit";
2092         return false;
2093       }
2094     }
2095 
2096     for (HInstructionIterator instr_it(block->GetInstructions());
2097          !instr_it.Done();
2098          instr_it.Advance()) {
2099       if (++number_of_instructions > inlining_budget_) {
2100         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget)
2101             << "Method " << resolved_method->PrettyMethod()
2102             << " is not inlined because the outer method has reached"
2103             << " its instruction budget limit.";
2104         return false;
2105       }
2106       HInstruction* current = instr_it.Current();
2107       if (current->NeedsEnvironment()) {
2108         if (too_many_registers) {
2109           LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget)
2110               << "Method " << resolved_method->PrettyMethod()
2111               << " is not inlined because its caller has reached"
2112               << " its environment budget limit.";
2113           return false;
2114         }
2115 
2116         if (!can_encode_in_stack_map) {
2117           LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps)
2118               << "Method " << resolved_method->PrettyMethod() << " could not be inlined because "
2119               << current->DebugName() << " needs an environment, is in a different dex file"
2120               << ", and cannot be encoded in the stack maps.";
2121           return false;
2122         }
2123       }
2124 
2125       if (current->IsUnresolvedStaticFieldGet() ||
2126           current->IsUnresolvedInstanceFieldGet() ||
2127           current->IsUnresolvedStaticFieldSet() ||
2128           current->IsUnresolvedInstanceFieldSet() ||
2129           current->IsInvokeUnresolved()) {
2130         // Unresolved invokes / field accesses are expensive at runtime when decoding inlining info,
2131         // so don't inline methods that have them.
2132         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint)
2133             << "Method " << resolved_method->PrettyMethod()
2134             << " could not be inlined because it is using an unresolved"
2135             << " entrypoint";
2136         return false;
2137       }
2138 
2139       // We currently don't have support for inlining across dex files if we are:
2140       // 1) In AoT,
2141       // 2) cross-dex inlining,
2142       // 3) the callee is a BCP DexFile,
2143       // 4) we are compiling multi image, and
2144       // 5) have an instruction that needs a bss entry, which will always be
2145       // 5)b) an instruction that needs an environment.
2146       // 1) - 4) are encoded in `needs_bss_check` (see CanEncodeInlinedMethodInStackMap).
2147       if (needs_bss_check && current->NeedsBss()) {
2148         DCHECK(current->NeedsEnvironment());
2149         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedBss)
2150             << "Method " << resolved_method->PrettyMethod()
2151             << " could not be inlined because it needs a BSS check";
2152         return false;
2153       }
2154 
2155       if (outermost_graph_->IsCompilingBaseline() &&
2156           (current->IsInvokeVirtual() || current->IsInvokeInterface()) &&
2157           ProfilingInfoBuilder::IsInlineCacheUseful(current->AsInvoke(), codegen_)) {
2158         uint32_t maximum_inlining_depth_for_baseline =
2159             InlineCache::MaxDexPcEncodingDepth(
2160                 outermost_graph_->GetArtMethod(),
2161                 codegen_->GetCompilerOptions().GetInlineMaxCodeUnits());
2162         if (depth_ + 1 > maximum_inlining_depth_for_baseline) {
2163           LOG_FAIL_NO_STAT() << "Reached maximum depth for inlining in baseline compilation: "
2164                              << depth_ << " for " << callee_graph->GetArtMethod()->PrettyMethod();
2165           outermost_graph_->SetUsefulOptimizing();
2166           return false;
2167         }
2168       }
2169     }
2170   }
2171 
2172   *out_number_of_instructions = number_of_instructions;
2173   return true;
2174 }
2175 
TryBuildAndInlineHelper(HInvoke * invoke_instruction,ArtMethod * resolved_method,ReferenceTypeInfo receiver_type,HInstruction ** return_replacement,bool is_speculative)2176 bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
2177                                        ArtMethod* resolved_method,
2178                                        ReferenceTypeInfo receiver_type,
2179                                        HInstruction** return_replacement,
2180                                        bool is_speculative) {
2181   DCHECK_IMPLIES(resolved_method->IsStatic(), !receiver_type.IsValid());
2182   DCHECK_IMPLIES(!resolved_method->IsStatic(), receiver_type.IsValid());
2183   const dex::CodeItem* code_item = resolved_method->GetCodeItem();
2184   const DexFile& callee_dex_file = *resolved_method->GetDexFile();
2185   uint32_t method_index = resolved_method->GetDexMethodIndex();
2186   CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo());
2187   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
2188   Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(),
2189                                                             caller_compilation_unit_.GetDexCache(),
2190                                                             graph_);
2191   Handle<mirror::ClassLoader> class_loader =
2192       NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(),
2193                            caller_compilation_unit_.GetClassLoader(),
2194                            graph_);
2195 
2196   Handle<mirror::Class> compiling_class =
2197       graph_->GetHandleCache()->NewHandle(resolved_method->GetDeclaringClass());
2198   DexCompilationUnit dex_compilation_unit(
2199       class_loader,
2200       class_linker,
2201       callee_dex_file,
2202       code_item,
2203       resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
2204       method_index,
2205       resolved_method->GetAccessFlags(),
2206       /* verified_method= */ nullptr,
2207       dex_cache,
2208       compiling_class);
2209 
2210   InvokeType invoke_type = invoke_instruction->GetInvokeType();
2211   if (invoke_type == kInterface) {
2212     // We have statically resolved the dispatch. To please the class linker
2213     // at runtime, we change this call as if it was a virtual call.
2214     invoke_type = kVirtual;
2215   }
2216 
2217   bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe();
2218   const dex::ClassDef& callee_class = resolved_method->GetClassDef();
2219   // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
2220   // is currently rarely true.
2221   bool callee_dead_reference_safe =
2222       annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class)
2223       && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index);
2224 
2225   const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
2226   HGraph* callee_graph = new (graph_->GetAllocator()) HGraph(
2227       graph_->GetAllocator(),
2228       graph_->GetArenaStack(),
2229       graph_->GetHandleCache()->GetHandles(),
2230       callee_dex_file,
2231       method_index,
2232       codegen_->GetCompilerOptions().GetInstructionSet(),
2233       invoke_type,
2234       callee_dead_reference_safe,
2235       graph_->IsDebuggable(),
2236       graph_->GetCompilationKind(),
2237       /* start_instruction_id= */ caller_instruction_counter);
2238   callee_graph->SetArtMethod(resolved_method);
2239 
2240   ScopedProfilingInfoUse spiu(Runtime::Current()->GetJit(), resolved_method, Thread::Current());
2241   if (Runtime::Current()->GetJit() != nullptr) {
2242     callee_graph->SetProfilingInfo(spiu.GetProfilingInfo());
2243   }
2244 
2245   // When they are needed, allocate `inline_stats_` on the Arena instead
2246   // of on the stack, as Clang might produce a stack frame too large
2247   // for this function, that would not fit the requirements of the
2248   // `-Wframe-larger-than` option.
2249   if (stats_ != nullptr) {
2250     // Reuse one object for all inline attempts from this caller to keep Arena memory usage low.
2251     if (inline_stats_ == nullptr) {
2252       void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc);
2253       inline_stats_ = new (storage) OptimizingCompilerStats;
2254     } else {
2255       inline_stats_->Reset();
2256     }
2257   }
2258   HGraphBuilder builder(callee_graph,
2259                         code_item_accessor,
2260                         &dex_compilation_unit,
2261                         &outer_compilation_unit_,
2262                         codegen_,
2263                         inline_stats_);
2264 
2265   if (builder.BuildGraph() != kAnalysisSuccess) {
2266     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild)
2267         << "Method " << callee_dex_file.PrettyMethod(method_index)
2268         << " could not be built, so cannot be inlined";
2269     return false;
2270   }
2271 
2272   SubstituteArguments(callee_graph, invoke_instruction, receiver_type, dex_compilation_unit);
2273 
2274   const bool try_catch_inlining_allowed_for_recursive_inline =
2275       // It was allowed previously.
2276       try_catch_inlining_allowed_ &&
2277       // The current invoke is not a try block.
2278       !invoke_instruction->GetBlock()->IsTryBlock();
2279   RunOptimizations(callee_graph,
2280                    invoke_instruction->GetEnvironment(),
2281                    code_item,
2282                    dex_compilation_unit,
2283                    try_catch_inlining_allowed_for_recursive_inline);
2284 
2285   size_t number_of_instructions = 0;
2286   if (!CanInlineBody(callee_graph, invoke_instruction, &number_of_instructions, is_speculative)) {
2287     return false;
2288   }
2289 
2290   DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
2291       << "No instructions can be added to the outer graph while inner graph is being built";
2292 
2293   // Inline the callee graph inside the caller graph.
2294   const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
2295   graph_->SetCurrentInstructionId(callee_instruction_counter);
2296   *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
2297   // Update our budget for other inlining attempts in `caller_graph`.
2298   total_number_of_instructions_ += number_of_instructions;
2299   UpdateInliningBudget();
2300 
2301   DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
2302       << "No instructions can be added to the inner graph during inlining into the outer graph";
2303 
2304   if (stats_ != nullptr) {
2305     DCHECK(inline_stats_ != nullptr);
2306     inline_stats_->AddTo(stats_);
2307   }
2308 
2309   if (caller_dead_reference_safe && !callee_dead_reference_safe) {
2310     // Caller was dead reference safe, but is not anymore, since we inlined dead
2311     // reference unsafe code. Prior transformations remain valid, since they did not
2312     // affect the inlined code.
2313     graph_->MarkDeadReferenceUnsafe();
2314   }
2315 
2316   return true;
2317 }
2318 
RunOptimizations(HGraph * callee_graph,HEnvironment * caller_environment,const dex::CodeItem * code_item,const DexCompilationUnit & dex_compilation_unit,bool try_catch_inlining_allowed_for_recursive_inline)2319 void HInliner::RunOptimizations(HGraph* callee_graph,
2320                                 HEnvironment* caller_environment,
2321                                 const dex::CodeItem* code_item,
2322                                 const DexCompilationUnit& dex_compilation_unit,
2323                                 bool try_catch_inlining_allowed_for_recursive_inline) {
2324   // Note: if the outermost_graph_ is being compiled OSR, we should not run any
2325   // optimization that could lead to a HDeoptimize. The following optimizations do not.
2326   HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner");
2327   HConstantFolding fold(callee_graph, inline_stats_, "constant_folding$inliner");
2328   InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_);
2329 
2330   HOptimization* optimizations[] = {
2331     &fold,
2332     &simplify,
2333     &dce,
2334   };
2335 
2336   for (size_t i = 0; i < arraysize(optimizations); ++i) {
2337     HOptimization* optimization = optimizations[i];
2338     optimization->Run();
2339   }
2340 
2341   // Bail early for pathological cases on the environment (for example recursive calls,
2342   // or too large environment).
2343   if (total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters) {
2344     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2345              << " will not be inlined because the outer method has reached"
2346              << " its environment budget limit.";
2347     return;
2348   }
2349 
2350   // Bail early if we know we already are over the limit.
2351   size_t number_of_instructions = CountNumberOfInstructions(callee_graph);
2352   if (number_of_instructions > inlining_budget_) {
2353     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2354              << " will not be inlined because the outer method has reached"
2355              << " its instruction budget limit. " << number_of_instructions;
2356     return;
2357   }
2358 
2359   CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item);
2360   HInliner inliner(callee_graph,
2361                    outermost_graph_,
2362                    codegen_,
2363                    outer_compilation_unit_,
2364                    dex_compilation_unit,
2365                    inline_stats_,
2366                    total_number_of_dex_registers_ + accessor.RegistersSize(),
2367                    total_number_of_instructions_ + number_of_instructions,
2368                    this,
2369                    caller_environment,
2370                    depth_ + 1,
2371                    try_catch_inlining_allowed_for_recursive_inline);
2372   inliner.Run();
2373 }
2374 
IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,bool declared_is_exact,bool declared_can_be_null,HInstruction * actual_obj)2375 static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,
2376                                       bool declared_is_exact,
2377                                       bool declared_can_be_null,
2378                                       HInstruction* actual_obj)
2379     REQUIRES_SHARED(Locks::mutator_lock_) {
2380   if (declared_can_be_null && !actual_obj->CanBeNull()) {
2381     return true;
2382   }
2383 
2384   ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
2385   if (!actual_rti.IsValid()) {
2386     return false;
2387   }
2388 
2389   ObjPtr<mirror::Class> actual_class = actual_rti.GetTypeHandle().Get();
2390   return (actual_rti.IsExact() && !declared_is_exact) ||
2391          (declared_class != actual_class && declared_class->IsAssignableFrom(actual_class));
2392 }
2393 
IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,bool declared_can_be_null,HInstruction * actual_obj)2394 static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,
2395                                       bool declared_can_be_null,
2396                                       HInstruction* actual_obj)
2397     REQUIRES_SHARED(Locks::mutator_lock_) {
2398   bool admissible = ReferenceTypePropagation::IsAdmissible(declared_class);
2399   return IsReferenceTypeRefinement(
2400       admissible ? declared_class : GetClassRoot<mirror::Class>(),
2401       /*declared_is_exact=*/ admissible && declared_class->CannotBeAssignedFromOtherTypes(),
2402       declared_can_be_null,
2403       actual_obj);
2404 }
2405 
ArgumentTypesMoreSpecific(HInvoke * invoke_instruction,ArtMethod * resolved_method)2406 bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
2407   // If this is an instance call, test whether the type of the `this` argument
2408   // is more specific than the class which declares the method.
2409   if (!resolved_method->IsStatic()) {
2410     if (IsReferenceTypeRefinement(resolved_method->GetDeclaringClass(),
2411                                   /*declared_can_be_null=*/ false,
2412                                   invoke_instruction->InputAt(0u))) {
2413       return true;
2414     }
2415   }
2416 
2417   // Iterate over the list of parameter types and test whether any of the
2418   // actual inputs has a more specific reference type than the type declared in
2419   // the signature.
2420   const dex::TypeList* param_list = resolved_method->GetParameterTypeList();
2421   for (size_t param_idx = 0,
2422               input_idx = resolved_method->IsStatic() ? 0 : 1,
2423               e = (param_list == nullptr ? 0 : param_list->Size());
2424        param_idx < e;
2425        ++param_idx, ++input_idx) {
2426     HInstruction* input = invoke_instruction->InputAt(input_idx);
2427     if (input->GetType() == DataType::Type::kReference) {
2428       ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex(
2429           param_list->GetTypeItem(param_idx).type_idx_);
2430       if (IsReferenceTypeRefinement(param_cls, /*declared_can_be_null=*/ true, input)) {
2431         return true;
2432       }
2433     }
2434   }
2435 
2436   return false;
2437 }
2438 
ReturnTypeMoreSpecific(HInstruction * return_replacement,HInvoke * invoke_instruction)2439 bool HInliner::ReturnTypeMoreSpecific(HInstruction* return_replacement,
2440                                       HInvoke* invoke_instruction) {
2441   // Check the integrity of reference types and run another type propagation if needed.
2442   if (return_replacement != nullptr) {
2443     if (return_replacement->GetType() == DataType::Type::kReference) {
2444       // Test if the return type is a refinement of the declared return type.
2445       ReferenceTypeInfo invoke_rti = invoke_instruction->GetReferenceTypeInfo();
2446       if (IsReferenceTypeRefinement(invoke_rti.GetTypeHandle().Get(),
2447                                     invoke_rti.IsExact(),
2448                                     invoke_instruction->CanBeNull(),
2449                                     return_replacement)) {
2450         return true;
2451       } else if (return_replacement->IsInstanceFieldGet()) {
2452         HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet();
2453         if (field_get->GetFieldInfo().GetField() ==
2454                 GetClassRoot<mirror::Object>()->GetInstanceField(0)) {
2455           return true;
2456         }
2457       }
2458     } else if (return_replacement->IsInstanceOf()) {
2459       // Inlining InstanceOf into an If may put a tighter bound on reference types.
2460       return true;
2461     }
2462   }
2463 
2464   return false;
2465 }
2466 
FixUpReturnReferenceType(ArtMethod * resolved_method,HInstruction * return_replacement)2467 void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
2468                                         HInstruction* return_replacement) {
2469   if (return_replacement != nullptr) {
2470     if (return_replacement->GetType() == DataType::Type::kReference) {
2471       if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
2472         // Make sure that we have a valid type for the return. We may get an invalid one when
2473         // we inline invokes with multiple branches and create a Phi for the result.
2474         // TODO: we could be more precise by merging the phi inputs but that requires
2475         // some functionality from the reference type propagation.
2476         DCHECK(return_replacement->IsPhi());
2477         ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType();
2478         ReferenceTypeInfo rti = ReferenceTypePropagation::IsAdmissible(cls)
2479             ? ReferenceTypeInfo::Create(graph_->GetHandleCache()->NewHandle(cls))
2480             : graph_->GetInexactObjectRti();
2481         return_replacement->SetReferenceTypeInfo(rti);
2482       }
2483     }
2484   }
2485 }
2486 
2487 }  // namespace art
2488