xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_lenet.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 /** Example demonstrating how to implement LeNet's network using the Compute Library's graph API */
35 class GraphLenetExample : public Example
36 {
37 public:
GraphLenetExample()38     GraphLenetExample()
39         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "LeNet")
40     {
41     }
do_setup(int argc,char ** argv)42     bool do_setup(int argc, char **argv) override
43     {
44         // Parse arguments
45         cmd_parser.parse(argc, argv);
46         cmd_parser.validate();
47 
48         // Consume common parameters
49         common_params = consume_common_graph_parameters(common_opts);
50 
51         // Return when help menu is requested
52         if(common_params.help)
53         {
54             cmd_parser.print_help(argv[0]);
55             return false;
56         }
57 
58         // Checks
59         ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
60 
61         // Print parameter values
62         std::cout << common_params << std::endl;
63 
64         // Get trainable parameters data path
65         std::string  data_path = common_params.data_path;
66         unsigned int batches   = 4; /** Number of batches */
67 
68         // Create input descriptor
69         const auto        operation_layout = common_params.data_layout;
70         const TensorShape tensor_shape     = permute_shape(TensorShape(28U, 28U, 1U, batches), DataLayout::NCHW, operation_layout);
71         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
72 
73         // Set weights trained layout
74         const DataLayout weights_layout = DataLayout::NCHW;
75 
76         //conv1 << pool1 << conv2 << pool2 << fc1 << act1 << fc2 << smx
77         graph << common_params.target
78               << common_params.fast_math_hint
79               << InputLayer(input_descriptor, get_input_accessor(common_params))
80               << ConvolutionLayer(
81                   5U, 5U, 20U,
82                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_w.npy", weights_layout),
83                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_b.npy"),
84                   PadStrideInfo(1, 1, 0, 0))
85               .set_name("conv1")
86               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
87               << ConvolutionLayer(
88                   5U, 5U, 50U,
89                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_w.npy", weights_layout),
90                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_b.npy"),
91                   PadStrideInfo(1, 1, 0, 0))
92               .set_name("conv2")
93               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
94               << FullyConnectedLayer(
95                   500U,
96                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_w.npy", weights_layout),
97                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_b.npy"))
98               .set_name("ip1")
99               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu")
100               << FullyConnectedLayer(
101                   10U,
102                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_w.npy", weights_layout),
103                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_b.npy"))
104               .set_name("ip2")
105               << SoftmaxLayer().set_name("prob")
106               << OutputLayer(get_output_accessor(common_params));
107 
108         // Finalize graph
109         GraphConfig config;
110         config.num_threads = common_params.threads;
111         config.use_tuner   = common_params.enable_tuner;
112         config.tuner_mode  = common_params.tuner_mode;
113         config.tuner_file  = common_params.tuner_file;
114         config.mlgo_file   = common_params.mlgo_file;
115 
116         graph.finalize(common_params.target, config);
117 
118         return true;
119     }
do_run()120     void do_run() override
121     {
122         // Run graph
123         graph.run();
124     }
125 
126 private:
127     CommandLineParser  cmd_parser;
128     CommonGraphOptions common_opts;
129     CommonGraphParams  common_params;
130     Stream             graph;
131 };
132 
133 /** Main program for LeNet
134  *
135  * Model is based on:
136  *      http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
137  *      "Gradient-Based Learning Applied to Document Recognition"
138  *      Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner
139  *
140  * The original model uses tanh instead of relu activations. However the use of relu activations in lenet has been
141  * widely adopted to improve accuracy.*
142  *
143  * @note To list all the possible arguments execute the binary appended with the --help option
144  *
145  * @param[in] argc Number of arguments
146  * @param[in] argv Arguments
147  */
main(int argc,char ** argv)148 int main(int argc, char **argv)
149 {
150     return arm_compute::utils::run_example<GraphLenetExample>(argc, argv);
151 }
152