xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/CpuDirectConv3dKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuDirectConv3dKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/IAccessWindow.h"
29 #include "arm_compute/core/ITensor.h"
30 #include "arm_compute/core/Types.h"
31 #include "arm_compute/core/Utils.h"
32 #include "arm_compute/core/Validate.h"
33 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
34 #include "src/core/CPP/Validate.h"
35 #include "src/core/NEON/wrapper/wrapper.h"
36 #include "src/core/common/Registrars.h"
37 #include "src/core/helpers/AutoConfiguration.h"
38 #include "src/cpu/kernels/conv3d/neon/list.h"
39 
40 #include <algorithm>
41 
42 using namespace arm_compute::detail;
43 
44 namespace arm_compute
45 {
46 namespace cpu
47 {
48 namespace kernels
49 {
50 namespace
51 {
52 static const std::vector<CpuDirectConv3dKernel::DirectConv3dKernel> available_kernels =
53 {
54 #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
55     {
56         "neon_fp16_directconv3d",
__anon5309f39b0202() 57         [](const DataTypeISASelectorData & data) { return data.dt == DataType::F16 && data.isa.fp16; },
58         REGISTER_FP16_NEON(arm_compute::cpu::directconv3d_float_neon_ndhwc<float16_t>)
59     },
60 #endif /* !defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */
61     {
62         "neon_fp32_directconv3d",
__anon5309f39b0302() 63         [](const DataTypeISASelectorData & data) { return data.dt == DataType::F32; },
64         REGISTER_FP32_NEON(arm_compute::cpu::directconv3d_float_neon_ndhwc<float>)
65     },
66     {
67         "neon_qasymm8_directconv3d",
__anon5309f39b0402() 68         [](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8; },
69         REGISTER_QASYMM8_NEON(arm_compute::cpu::directconv3d_quantized_neon_ndhwc<uint8_t>)
70     },
71     {
72         "neon_qasymm8_signed_directconv3d",
__anon5309f39b0502() 73         [](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; },
74         REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::directconv3d_quantized_neon_ndhwc<int8_t>)
75     }
76 };
77 
validate_arguments(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * src2,const ITensorInfo * dst,const Conv3dInfo & conv_info)78 Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, const Conv3dInfo &conv_info)
79 {
80     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
81     ARM_COMPUTE_RETURN_ERROR_ON(src0->data_layout() != DataLayout::NDHWC);
82     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src0, src1, dst);
83     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src0);
84     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::F16, DataType::F32, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
85     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
86     ARM_COMPUTE_RETURN_ERROR_ON(conv_info.dilation != Size3D(1U, 1U, 1U));
87 
88     const auto *uk = CpuDirectConv3dKernel::get_implementation(DataTypeISASelectorData{ src0->data_type(), CPUInfo::get().get_isa() });
89 
90     ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
91 
92     const DataLayout data_layout = src0->data_layout();
93     const int        channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
94 
95     // Weight layout is D, H, W, Cin, Cout
96     ARM_COMPUTE_RETURN_ERROR_ON(src1->num_dimensions() > 5);
97     ARM_COMPUTE_RETURN_ERROR_ON(src1->dimension(1) != src0->dimension(channel_idx));
98 
99     if(src2 != nullptr)
100     {
101         if(is_data_type_quantized(src0->data_type()))
102         {
103             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src2, 1, DataType::S32);
104         }
105         else
106         {
107             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src1, src2);
108         }
109         ARM_COMPUTE_RETURN_ERROR_ON_MSG(src2->dimension(0) != src1->dimension(0), "Biases size and number of dst feature maps should match");
110         ARM_COMPUTE_RETURN_ERROR_ON_MSG(src2->num_dimensions() > 1, "Biases should be one dimensional");
111     }
112 
113     // Checks performed when output is configured
114     if(dst->total_size() != 0)
115     {
116         TensorShape output_shape = misc::shape_calculator::compute_conv3d_shape(src0->tensor_shape(), src1->tensor_shape(), conv_info);
117 
118         DataType data_type = src0->data_type();
119 
120         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), output_shape);
121         ARM_COMPUTE_RETURN_ERROR_ON(dst->data_type() != data_type);
122     }
123 
124     return Status{};
125 }
126 } // namespace
127 
configure(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * src2,ITensorInfo * dst,const Conv3dInfo & conv_info)128 void CpuDirectConv3dKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, ITensorInfo *dst, const Conv3dInfo &conv_info)
129 {
130     ARM_COMPUTE_UNUSED(src2);
131     ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
132 
133     const auto *uk = CpuDirectConv3dKernel::get_implementation(DataTypeISASelectorData{ src0->data_type(), CPUInfo::get().get_isa() });
134 
135     ARM_COMPUTE_ERROR_ON_NULLPTR(uk);
136 
137     _conv_info  = conv_info;
138     _run_method = uk->ukernel;
139     _name       = std::string("CpuDirectConv3dKernel").append("/").append(uk->name);
140 
141     // Get convolved dimensions
142     TensorShape output_shape = misc::shape_calculator::compute_conv3d_shape(src0->tensor_shape(), src1->tensor_shape(), conv_info);
143 
144     DataType data_type = src0->data_type();
145 
146     // Output auto inizialitation if not yet initialized
147     auto_init_if_empty(*dst, output_shape, 1, data_type);
148 
149     // Perform validation step
150     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, src2, dst, conv_info));
151 
152     // Configure kernel window
153     Window win = calculate_max_window(*dst, Steps());
154     ICpuKernel::configure(win);
155 }
156 
validate(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * src2,const ITensorInfo * dst,const Conv3dInfo & conv_info)157 Status CpuDirectConv3dKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, const Conv3dInfo &conv_info)
158 {
159     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, src2, dst, conv_info));
160 
161     return Status{};
162 }
163 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)164 void CpuDirectConv3dKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
165 {
166     ARM_COMPUTE_UNUSED(info);
167     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
168     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
169     ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
170 
171     auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
172     auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
173     auto src2 = tensors.get_const_tensor(TensorType::ACL_SRC_2);
174     auto dst  = tensors.get_tensor(TensorType::ACL_DST);
175 
176     _run_method(src0, src1, src2, dst, _conv_info, window);
177 }
178 
name() const179 const char *CpuDirectConv3dKernel::name() const
180 {
181     return _name.c_str();
182 }
183 
get_available_kernels()184 const std::vector<CpuDirectConv3dKernel::DirectConv3dKernel> &CpuDirectConv3dKernel::get_available_kernels()
185 {
186     return available_kernels;
187 }
188 
189 } // namespace kernels
190 } // namespace cpu
191 } // namespace arm_compute