1 /*
2 * Copyright (c) 2017-2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h"
25
26 #include "arm_compute/core/CL/CLKernelLibrary.h"
27 #include "arm_compute/core/CL/ICLTensor.h"
28 #include "arm_compute/core/KernelDescriptors.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "arm_compute/runtime/CL/functions/CLFFTConvolutionLayer.h"
31 #include "src/core/CL/ICLKernel.h"
32 #include "src/core/experimental/PostOpUtils.h"
33 #include "src/core/helpers/MemoryHelpers.h"
34 #include "src/gpu/cl/operators/ClConv2d.h"
35
36 #include "src/common/utils/Log.h"
37 #include "support/Cast.h"
38
39 namespace arm_compute
40 {
41 using namespace arm_compute::misc::shape_calculator;
42 using namespace arm_compute::experimental;
43 struct CLConvolutionLayer::Impl
44 {
45 MemoryGroup memory_group{};
46 std::shared_ptr<IMemoryManager> memory_manager{};
47 std::unique_ptr<opencl::IClOperator> op{ nullptr };
48 ITensorPack run_pack{};
49 ITensorPack prep_pack{};
50 WorkspaceData<CLTensor> workspace{};
51 experimental::MemoryRequirements aux_mem_req{};
52 std::unique_ptr<IFunction> func{ nullptr };
53 };
54
CLConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)55 CLConvolutionLayer::CLConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
56 : _impl(std::make_unique<Impl>())
57 {
58 _impl->memory_manager = std::move(memory_manager);
59 }
60
61 CLConvolutionLayer::~CLConvolutionLayer() = default;
62
configure(ICLTensor * input,const ICLTensor * weights,const ICLTensor * biases,ICLTensor * output,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const Size2D & dilation,const ActivationLayerInfo & act_info,bool enable_fast_math,unsigned int num_groups,const experimental::PostOpList<ICLTensor * > & post_ops)63 void CLConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
64 const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups, const experimental::PostOpList<ICLTensor *> &post_ops)
65 {
66 configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, weights_info, dilation, act_info, enable_fast_math, num_groups, post_ops);
67 }
68
configure(const CLCompileContext & compile_context,ICLTensor * input,const ICLTensor * weights,const ICLTensor * biases,ICLTensor * output,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const Size2D & dilation,const ActivationLayerInfo & act_info,bool enable_fast_math,unsigned int num_groups,const experimental::PostOpList<ICLTensor * > & post_ops)69 void CLConvolutionLayer::configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
70 const WeightsInfo &weights_info,
71 const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups, const experimental::PostOpList<ICLTensor *> &post_ops)
72 {
73 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
74 ARM_COMPUTE_ERROR_THROW_ON(CLConvolutionLayer::validate(input->info(), weights->info(), ((biases != nullptr) ? biases->info() : nullptr), output->info(), conv_info, weights_info, dilation, act_info,
75 enable_fast_math, num_groups));
76 ARM_COMPUTE_LOG_PARAMS(input, weights, biases, output, conv_info, weights_info, dilation, act_info, enable_fast_math, num_groups, post_ops);
77
78 // Convert post op arguments to ITensorInfo
79 auto transformed_post_ops = experimental::transform_post_op_list_arguments<ICLTensor *, ITensorInfo *>(post_ops, [](auto tensor)
80 {
81 return tensor->info();
82 });
83 const Conv2dInfo conv2d_info = Conv2dInfo(conv_info, dilation, act_info, enable_fast_math, num_groups, transformed_post_ops);
84
85 switch(opencl::ClConv2d::get_convolution_method(input->info(), weights->info(), output->info(), conv2d_info,
86 weights_info, CLScheduler::get().target()))
87 {
88 case ConvolutionMethod::WINOGRAD:
89 case ConvolutionMethod::DIRECT:
90 case ConvolutionMethod::INDIRECT:
91 case ConvolutionMethod::GEMM:
92 {
93 auto f = std::make_unique<opencl::ClConv2d>();
94 f->configure(compile_context, input->info(), weights->info(), ((biases != nullptr) ? biases->info() : nullptr), output->info(), conv2d_info, weights_info);
95 _impl->op = std::move(f);
96 break;
97 }
98 case ConvolutionMethod::FFT:
99 {
100 ARM_COMPUTE_ERROR_ON_MSG(post_ops.size() > 0, "CLFFTConvolutionLayer does not support post ops");
101 auto f = std::make_unique<CLFFTConvolutionLayer>(_impl->memory_manager);
102 f->configure(compile_context, input, weights, biases, output, conv_info, act_info, enable_fast_math);
103 _impl->func = std::move(f);
104 break;
105 }
106 default:
107 ARM_COMPUTE_ERROR("Not supported.");
108 break;
109 }
110
111 if(_impl->op)
112 {
113 _impl->memory_group = MemoryGroup(std::move(_impl->memory_manager));
114 _impl->aux_mem_req = _impl->op->workspace();
115 _impl->run_pack = { { ACL_SRC_0, input }, { ACL_SRC_1, weights }, { ACL_SRC_2, biases }, { ACL_DST, output } };
116 size_t post_op_tensor_index = 0;
117 for(const auto &op : post_ops.get_list())
118 {
119 for(auto &tensor : op->arguments())
120 {
121 _impl->run_pack.add_const_tensor(experimental::get_post_op_arg_type(post_op_tensor_index++), *tensor);
122 }
123 }
124 _impl->prep_pack = { { ACL_SRC_1, weights }, { ACL_SRC_2, biases } };
125 _impl->workspace = manage_workspace<CLTensor>(_impl->aux_mem_req, _impl->memory_group, _impl->run_pack, _impl->prep_pack);
126 }
127 }
128
validate(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const Size2D & dilation,const ActivationLayerInfo & act_info,bool enable_fast_math,unsigned int num_groups,const experimental::PostOpList<ITensorInfo * > & post_ops)129 Status CLConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
130 const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups, const experimental::PostOpList<ITensorInfo *> &post_ops)
131 {
132 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
133 ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_layout() != DataLayout::NCHW), "Grouping (num_groups != 1) with NHWC data layout is not supported");
134
135 const GPUTarget gpu_target = CLScheduler::get().target();
136 const Conv2dInfo conv2d_info = Conv2dInfo(conv_info, dilation, act_info, enable_fast_math, num_groups, post_ops);
137
138 switch(opencl::ClConv2d::get_convolution_method(input, weights, output, conv2d_info, weights_info, gpu_target))
139 {
140 case ConvolutionMethod::WINOGRAD:
141 case ConvolutionMethod::DIRECT:
142 case ConvolutionMethod::INDIRECT:
143 case ConvolutionMethod::GEMM:
144 {
145 ARM_COMPUTE_RETURN_ON_ERROR(opencl::ClConv2d::validate(input, weights, biases, output, conv2d_info, weights_info));
146 break;
147 }
148 case ConvolutionMethod::FFT:
149 {
150 // Validate FFT-based convolution layer
151 ARM_COMPUTE_RETURN_ERROR_ON_MSG(post_ops.size() > 0, "CLFFTConvolutionLayer does not support post ops");
152 ARM_COMPUTE_RETURN_ON_ERROR(CLFFTConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info, enable_fast_math));
153 break;
154 }
155 default:
156 ARM_COMPUTE_ERROR("Not supported.");
157 break;
158 }
159
160 return Status{};
161 }
162
get_convolution_method(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * output,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const ActivationLayerInfo & act_info,const GPUTarget gpu_target,const Size2D & dilation,bool enable_fast_math)163 ConvolutionMethod CLConvolutionLayer::get_convolution_method(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const PadStrideInfo &conv_info,
164 const WeightsInfo &weights_info, const ActivationLayerInfo &act_info, const GPUTarget gpu_target, const Size2D &dilation, bool enable_fast_math)
165 {
166 const Conv2dInfo conv2d_info = Conv2dInfo(conv_info, dilation, act_info, enable_fast_math, 1);
167 return opencl::ClConv2d::get_convolution_method(input, weights, output, conv2d_info, weights_info, gpu_target);
168 }
169
run()170 void CLConvolutionLayer::run()
171 {
172 prepare();
173
174 MemoryGroupResourceScope scope_mg(_impl->memory_group);
175
176 if(_impl->func)
177 {
178 _impl->func->run();
179 }
180 else
181 {
182 _impl->op->run(_impl->run_pack);
183 }
184 }
185
prepare()186 void CLConvolutionLayer::prepare()
187 {
188 if(_impl->func)
189 {
190 _impl->func->prepare();
191 }
192 else
193 {
194 _impl->op->prepare(_impl->prep_pack);
195
196 // Release temporary tensors that are only used in prepare stage
197 release_temporaries(_impl->aux_mem_req, _impl->workspace);
198 }
199 }
200 } // namespace arm_compute
201