xref: /aosp_15_r20/external/ComputeLibrary/src/runtime/CPP/functions/CPPDetectionOutputLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CPP/functions/CPPDetectionOutputLayer.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/Validate.h"
29 #include "src/core/helpers/AutoConfiguration.h"
30 
31 #include "src/common/utils/Log.h"
32 
33 #include <list>
34 
35 namespace arm_compute
36 {
37 namespace
38 {
validate_arguments(const ITensorInfo * input_loc,const ITensorInfo * input_conf,const ITensorInfo * input_priorbox,const ITensorInfo * output,DetectionOutputLayerInfo info)39 Status validate_arguments(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
40 {
41     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
42     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_loc, 1, DataType::F32);
43     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, input_conf, input_priorbox);
44     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_loc->num_dimensions() > 2, "The location input tensor should be [C1, N].");
45     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_conf->num_dimensions() > 2, "The location input tensor should be [C2, N].");
46     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_priorbox->num_dimensions() > 3, "The priorbox input tensor should be [C3, 2, N].");
47 
48     ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.eta() <= 0.f && info.eta() > 1.f, "Eta should be between 0 and 1");
49 
50     const int num_priors = input_priorbox->tensor_shape()[0] / 4;
51     ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_loc_classes() * 4)) != input_loc->tensor_shape()[0], "Number of priors must match number of location predictions.");
52     ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_classes())) != input_conf->tensor_shape()[0], "Number of priors must match number of confidence predictions.");
53 
54     // Validate configured output
55     if(output->total_size() != 0)
56     {
57         const unsigned int max_size = info.keep_top_k() * (input_loc->num_dimensions() > 1 ? input_loc->dimension(1) : 1);
58         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), TensorShape(7U, max_size));
59         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, output);
60     }
61 
62     return Status{};
63 }
64 
65 /** Function used to sort pair<float, T> in descend order based on the score (first) value.
66  */
67 template <typename T>
SortScorePairDescend(const std::pair<float,T> & pair1,const std::pair<float,T> & pair2)68 bool SortScorePairDescend(const std::pair<float, T> &pair1,
69                           const std::pair<float, T> &pair2)
70 {
71     return pair1.first > pair2.first;
72 }
73 
74 /** Get location predictions from input_loc.
75  *
76  * @param[in]  input_loc                The input location prediction.
77  * @param[in]  num                      The number of images.
78  * @param[in]  num_priors               number of predictions per class.
79  * @param[in]  num_loc_classes          number of location classes. It is 1 if share_location is true,
80  *                                      and is equal to number of classes needed to predict otherwise.
81  * @param[in]  share_location           If true, all classes share the same location prediction.
82  * @param[out] all_location_predictions All the location predictions.
83  *
84  */
retrieve_all_loc_predictions(const ITensor * input_loc,const int num,const int num_priors,const int num_loc_classes,const bool share_location,std::vector<LabelBBox> & all_location_predictions)85 void retrieve_all_loc_predictions(const ITensor *input_loc, const int num,
86                                   const int num_priors, const int num_loc_classes,
87                                   const bool share_location, std::vector<LabelBBox> &all_location_predictions)
88 {
89     for(int i = 0; i < num; ++i)
90     {
91         for(int c = 0; c < num_loc_classes; ++c)
92         {
93             int label = share_location ? -1 : c;
94             if(all_location_predictions[i].find(label) == all_location_predictions[i].end())
95             {
96                 all_location_predictions[i][label].resize(num_priors);
97             }
98             else
99             {
100                 ARM_COMPUTE_ERROR_ON(all_location_predictions[i][label].size() != static_cast<size_t>(num_priors));
101                 break;
102             }
103         }
104     }
105     for(int i = 0; i < num; ++i)
106     {
107         for(int p = 0; p < num_priors; ++p)
108         {
109             for(int c = 0; c < num_loc_classes; ++c)
110             {
111                 const int label    = share_location ? -1 : c;
112                 const int base_ptr = i * num_priors * num_loc_classes * 4 + p * num_loc_classes * 4 + c * 4;
113                 //xmin, ymin, xmax, ymax
114                 all_location_predictions[i][label][p][0] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr)));
115                 all_location_predictions[i][label][p][1] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 1)));
116                 all_location_predictions[i][label][p][2] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 2)));
117                 all_location_predictions[i][label][p][3] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 3)));
118             }
119         }
120     }
121 }
122 
123 /** Get confidence predictions from input_conf.
124  *
125  * @param[in]  input_loc                The input location prediction.
126  * @param[in]  num                      The number of images.
127  * @param[in]  num_priors               Number of predictions per class.
128  * @param[in]  num_loc_classes          Number of location classes. It is 1 if share_location is true,
129  *                                      and is equal to number of classes needed to predict otherwise.
130  * @param[out] all_location_predictions All the location predictions.
131  *
132  */
retrieve_all_conf_scores(const ITensor * input_conf,const int num,const int num_priors,const int num_classes,std::vector<std::map<int,std::vector<float>>> & all_confidence_scores)133 void retrieve_all_conf_scores(const ITensor *input_conf, const int num,
134                               const int num_priors, const int                 num_classes,
135                               std::vector<std::map<int, std::vector<float>>> &all_confidence_scores)
136 {
137     std::vector<float> tmp_buffer;
138     tmp_buffer.resize(num * num_priors * num_classes);
139     for(int i = 0; i < num; ++i)
140     {
141         for(int c = 0; c < num_classes; ++c)
142         {
143             for(int p = 0; p < num_priors; ++p)
144             {
145                 tmp_buffer[i * num_classes * num_priors + c * num_priors + p] =
146                     *reinterpret_cast<float *>(input_conf->ptr_to_element(Coordinates(i * num_classes * num_priors + p * num_classes + c)));
147             }
148         }
149     }
150     for(int i = 0; i < num; ++i)
151     {
152         for(int c = 0; c < num_classes; ++c)
153         {
154             all_confidence_scores[i][c].resize(num_priors);
155             all_confidence_scores[i][c].assign(&tmp_buffer[i * num_classes * num_priors + c * num_priors],
156                                                &tmp_buffer[i * num_classes * num_priors + c * num_priors + num_priors]);
157         }
158     }
159 }
160 
161 /** Get prior boxes from input_priorbox.
162  *
163  * @param[in]  input_priorbox           The input location prediction.
164  * @param[in]  num_priors               Number of priors.
165  * @param[in]  num_loc_classes          number of location classes. It is 1 if share_location is true,
166  *                                      and is equal to number of classes needed to predict otherwise.
167  * @param[out] all_prior_bboxes         If true, all classes share the same location prediction.
168  * @param[out] all_location_predictions All the location predictions.
169  *
170  */
retrieve_all_priorbox(const ITensor * input_priorbox,const int num_priors,std::vector<BBox> & all_prior_bboxes,std::vector<std::array<float,4>> & all_prior_variances)171 void retrieve_all_priorbox(const ITensor     *input_priorbox,
172                            const int          num_priors,
173                            std::vector<BBox> &all_prior_bboxes,
174                            std::vector<std::array<float, 4>> &all_prior_variances)
175 {
176     for(int i = 0; i < num_priors; ++i)
177     {
178         all_prior_bboxes[i] =
179         {
180             {
181                 *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4))),
182                 *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 1))),
183                 *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 2))),
184                 *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 3)))
185             }
186         };
187     }
188 
189     std::array<float, 4> var({ { 0, 0, 0, 0 } });
190     for(int i = 0; i < num_priors; ++i)
191     {
192         for(int j = 0; j < 4; ++j)
193         {
194             var[j] = *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates((num_priors + i) * 4 + j)));
195         }
196         all_prior_variances[i] = var;
197     }
198 }
199 
200 /** Decode a bbox according to a prior bbox.
201  *
202  * @param[in]  prior_bbox                 The input prior bounding boxes.
203  * @param[in]  prior_variance             The corresponding input variance.
204  * @param[in]  code_type                  The detection output code type used to decode the results.
205  * @param[in]  variance_encoded_in_target If true, the variance is encoded in target.
206  * @param[in]  clip_bbox                  If true, the results should be between 0.f and 1.f.
207  * @param[in]  bbox                       The input bbox to decode
208  * @param[out] decode_bbox                The decoded bboxes.
209  *
210  */
DecodeBBox(const BBox & prior_bbox,const std::array<float,4> & prior_variance,const DetectionOutputLayerCodeType code_type,const bool variance_encoded_in_target,const bool clip_bbox,const BBox & bbox,BBox & decode_bbox)211 void DecodeBBox(const BBox &prior_bbox, const std::array<float, 4> &prior_variance,
212                 const DetectionOutputLayerCodeType code_type, const bool variance_encoded_in_target,
213                 const bool clip_bbox, const BBox &bbox, BBox &decode_bbox)
214 {
215     // if the variance is encoded in target, we simply need to add the offset predictions
216     // otherwise we need to scale the offset accordingly.
217     switch(code_type)
218     {
219         case DetectionOutputLayerCodeType::CORNER:
220         {
221             decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]);
222             decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]);
223             decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]);
224             decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]);
225 
226             break;
227         }
228         case DetectionOutputLayerCodeType::CENTER_SIZE:
229         {
230             const float prior_width  = prior_bbox[2] - prior_bbox[0];
231             const float prior_height = prior_bbox[3] - prior_bbox[1];
232 
233             // Check if the prior width and height are right
234             ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
235             ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
236 
237             const float prior_center_x = (prior_bbox[0] + prior_bbox[2]) / 2.;
238             const float prior_center_y = (prior_bbox[1] + prior_bbox[3]) / 2.;
239 
240             const float decode_bbox_center_x = (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width + prior_center_x;
241             const float decode_bbox_center_y = (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height + prior_center_y;
242             const float decode_bbox_width    = (variance_encoded_in_target ? std::exp(bbox[2]) : std::exp(prior_variance[2] * bbox[2])) * prior_width;
243             const float decode_bbox_height   = (variance_encoded_in_target ? std::exp(bbox[3]) : std::exp(prior_variance[3] * bbox[3])) * prior_height;
244 
245             decode_bbox[0] = (decode_bbox_center_x - decode_bbox_width / 2.f);
246             decode_bbox[1] = (decode_bbox_center_y - decode_bbox_height / 2.f);
247             decode_bbox[2] = (decode_bbox_center_x + decode_bbox_width / 2.f);
248             decode_bbox[3] = (decode_bbox_center_y + decode_bbox_height / 2.f);
249 
250             break;
251         }
252         case DetectionOutputLayerCodeType::CORNER_SIZE:
253         {
254             const float prior_width  = prior_bbox[2] - prior_bbox[0];
255             const float prior_height = prior_bbox[3] - prior_bbox[1];
256 
257             // Check if the prior width and height are greater than 0
258             ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
259             ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
260 
261             decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width;
262             decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height;
263             decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]) * prior_width;
264             decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]) * prior_height;
265 
266             break;
267         }
268         default:
269             ARM_COMPUTE_ERROR("Unsupported Detection Output Code Type.");
270     }
271 
272     if(clip_bbox)
273     {
274         for(auto &d_bbox : decode_bbox)
275         {
276             d_bbox = utility::clamp(d_bbox, 0.f, 1.f);
277         }
278     }
279 }
280 
281 /** Do non maximum suppression given bboxes and scores.
282  *
283  * @param[in]  bboxes          The input bounding boxes.
284  * @param[in]  scores          The corresponding input confidence.
285  * @param[in]  score_threshold The threshold used to filter detection results.
286  * @param[in]  nms_threshold   The threshold used in non maximum suppression.
287  * @param[in]  eta             Adaptation rate for nms threshold.
288  * @param[in]  top_k           If not -1, keep at most top_k picked indices.
289  * @param[out] indices         The kept indices of bboxes after nms.
290  *
291  */
ApplyNMSFast(const std::vector<BBox> & bboxes,const std::vector<float> & scores,const float score_threshold,const float nms_threshold,const float eta,const int top_k,std::vector<int> & indices)292 void ApplyNMSFast(const std::vector<BBox> &bboxes,
293                   const std::vector<float> &scores, const float score_threshold,
294                   const float nms_threshold, const float eta, const int top_k,
295                   std::vector<int> &indices)
296 {
297     ARM_COMPUTE_ERROR_ON_MSG(bboxes.size() != scores.size(), "bboxes and scores have different size.");
298 
299     // Get top_k scores (with corresponding indices).
300     std::list<std::pair<float, int>> score_index_vec;
301 
302     // Generate index score pairs.
303     for(size_t i = 0; i < scores.size(); ++i)
304     {
305         if(scores[i] > score_threshold)
306         {
307             score_index_vec.emplace_back(std::make_pair(scores[i], i));
308         }
309     }
310 
311     // Sort the score pair according to the scores in descending order
312     score_index_vec.sort(SortScorePairDescend<int>);
313 
314     // Keep top_k scores if needed.
315     const int score_index_vec_size = score_index_vec.size();
316     if(top_k > -1 && top_k < score_index_vec_size)
317     {
318         score_index_vec.resize(top_k);
319     }
320 
321     // Do nms.
322     float adaptive_threshold = nms_threshold;
323     indices.clear();
324 
325     while(!score_index_vec.empty())
326     {
327         const int idx  = score_index_vec.front().second;
328         bool      keep = true;
329         for(int kept_idx : indices)
330         {
331             if(keep)
332             {
333                 // Compute the jaccard (intersection over union IoU) overlap between two bboxes.
334                 BBox intersect_bbox = std::array<float, 4>({ 0, 0, 0, 0 });
335                 if(bboxes[kept_idx][0] > bboxes[idx][2] || bboxes[kept_idx][2] < bboxes[idx][0] || bboxes[kept_idx][1] > bboxes[idx][3] || bboxes[kept_idx][3] < bboxes[idx][1])
336                 {
337                     intersect_bbox = std::array<float, 4>({ { 0, 0, 0, 0 } });
338                 }
339                 else
340                 {
341                     intersect_bbox = std::array<float, 4>({ {
342                             std::max(bboxes[idx][0], bboxes[kept_idx][0]),
343                             std::max(bboxes[idx][1], bboxes[kept_idx][1]),
344                             std::min(bboxes[idx][2], bboxes[kept_idx][2]),
345                             std::min(bboxes[idx][3], bboxes[kept_idx][3])
346                         }
347                     });
348                 }
349 
350                 float intersect_width  = intersect_bbox[2] - intersect_bbox[0];
351                 float intersect_height = intersect_bbox[3] - intersect_bbox[1];
352 
353                 float overlap = 0.f;
354                 if(intersect_width > 0 && intersect_height > 0)
355                 {
356                     float intersect_size = intersect_width * intersect_height;
357                     float bbox1_size     = (bboxes[idx][2] < bboxes[idx][0]
358                                             || bboxes[idx][3] < bboxes[idx][1]) ?
359                                            0.f :
360                                            (bboxes[idx][2] - bboxes[idx][0]) * (bboxes[idx][3] - bboxes[idx][1]); //BBoxSize(bboxes[idx]);
361                     float bbox2_size = (bboxes[kept_idx][2] < bboxes[kept_idx][0]
362                                         || bboxes[kept_idx][3] < bboxes[kept_idx][1]) ?
363                                        0.f :
364                                        (bboxes[kept_idx][2] - bboxes[kept_idx][0]) * (bboxes[kept_idx][3] - bboxes[kept_idx][1]); // BBoxSize(bboxes[kept_idx]);
365                     overlap = intersect_size / (bbox1_size + bbox2_size - intersect_size);
366                 }
367                 keep = (overlap <= adaptive_threshold);
368             }
369             else
370             {
371                 break;
372             }
373         }
374         if(keep)
375         {
376             indices.push_back(idx);
377         }
378         score_index_vec.erase(score_index_vec.begin());
379         if(keep && eta < 1.f && adaptive_threshold > 0.5f)
380         {
381             adaptive_threshold *= eta;
382         }
383     }
384 }
385 } // namespace
386 
CPPDetectionOutputLayer()387 CPPDetectionOutputLayer::CPPDetectionOutputLayer()
388     : _input_loc(nullptr), _input_conf(nullptr), _input_priorbox(nullptr), _output(nullptr), _info(), _num_priors(), _num(), _all_location_predictions(), _all_confidence_scores(), _all_prior_bboxes(),
389       _all_prior_variances(), _all_decode_bboxes(), _all_indices()
390 {
391 }
392 
configure(const ITensor * input_loc,const ITensor * input_conf,const ITensor * input_priorbox,ITensor * output,DetectionOutputLayerInfo info)393 void CPPDetectionOutputLayer::configure(const ITensor *input_loc, const ITensor *input_conf, const ITensor *input_priorbox,
394                                         ITensor *output, DetectionOutputLayerInfo info)
395 {
396     ARM_COMPUTE_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
397     ARM_COMPUTE_LOG_PARAMS(input_loc, input_conf, input_priorbox, output, info);
398 
399     // Output auto initialization if not yet initialized
400     // Since the number of bboxes to kept is unknown before nms, the shape is set to the maximum
401     // The maximum is keep_top_k * input_loc_size[1]
402     // Each row is a 7 dimension std::vector, which stores [image_id, label, confidence, xmin, ymin, xmax, ymax]
403     const unsigned int max_size = info.keep_top_k() * (input_loc->info()->num_dimensions() > 1 ? input_loc->info()->dimension(1) : 1);
404     auto_init_if_empty(*output->info(), input_loc->info()->clone()->set_tensor_shape(TensorShape(7U, max_size)));
405 
406     // Perform validation step
407     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_loc->info(), input_conf->info(), input_priorbox->info(), output->info(), info));
408 
409     _input_loc      = input_loc;
410     _input_conf     = input_conf;
411     _input_priorbox = input_priorbox;
412     _output         = output;
413     _info           = info;
414     _num_priors     = input_priorbox->info()->dimension(0) / 4;
415     _num            = (_input_loc->info()->num_dimensions() > 1 ? _input_loc->info()->dimension(1) : 1);
416 
417     _all_location_predictions.resize(_num);
418     _all_confidence_scores.resize(_num);
419     _all_prior_bboxes.resize(_num_priors);
420     _all_prior_variances.resize(_num_priors);
421     _all_decode_bboxes.resize(_num);
422 
423     for(int i = 0; i < _num; ++i)
424     {
425         for(int c = 0; c < _info.num_loc_classes(); ++c)
426         {
427             const int label = _info.share_location() ? -1 : c;
428             if(label == _info.background_label_id())
429             {
430                 // Ignore background class.
431                 continue;
432             }
433             _all_decode_bboxes[i][label].resize(_num_priors);
434         }
435     }
436     _all_indices.resize(_num);
437 
438     Coordinates coord;
439     coord.set_num_dimensions(output->info()->num_dimensions());
440     output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
441 }
442 
validate(const ITensorInfo * input_loc,const ITensorInfo * input_conf,const ITensorInfo * input_priorbox,const ITensorInfo * output,DetectionOutputLayerInfo info)443 Status CPPDetectionOutputLayer::validate(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
444 {
445     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_loc, input_conf, input_priorbox, output, info));
446     return Status{};
447 }
448 
run()449 void CPPDetectionOutputLayer::run()
450 {
451     // Retrieve all location predictions.
452     retrieve_all_loc_predictions(_input_loc, _num, _num_priors, _info.num_loc_classes(), _info.share_location(), _all_location_predictions);
453 
454     // Retrieve all confidences.
455     retrieve_all_conf_scores(_input_conf, _num, _num_priors, _info.num_classes(), _all_confidence_scores);
456 
457     // Retrieve all prior bboxes.
458     retrieve_all_priorbox(_input_priorbox, _num_priors, _all_prior_bboxes, _all_prior_variances);
459 
460     // Decode all loc predictions to bboxes
461     const bool clip_bbox = false;
462     for(int i = 0; i < _num; ++i)
463     {
464         for(int c = 0; c < _info.num_loc_classes(); ++c)
465         {
466             const int label = _info.share_location() ? -1 : c;
467             if(label == _info.background_label_id())
468             {
469                 // Ignore background class.
470                 continue;
471             }
472             ARM_COMPUTE_ERROR_ON_MSG_VAR(_all_location_predictions[i].find(label) == _all_location_predictions[i].end(), "Could not find location predictions for label %d.", label);
473 
474             const std::vector<BBox> &label_loc_preds = _all_location_predictions[i].find(label)->second;
475 
476             const int num_bboxes = _all_prior_bboxes.size();
477             ARM_COMPUTE_ERROR_ON(_all_prior_variances[i].size() != 4);
478 
479             for(int j = 0; j < num_bboxes; ++j)
480             {
481                 DecodeBBox(_all_prior_bboxes[j], _all_prior_variances[j], _info.code_type(), _info.variance_encoded_in_target(), clip_bbox, label_loc_preds[j], _all_decode_bboxes[i][label][j]);
482             }
483         }
484     }
485 
486     int num_kept = 0;
487 
488     for(int i = 0; i < _num; ++i)
489     {
490         const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
491         const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
492 
493         std::map<int, std::vector<int>> indices;
494         int num_det = 0;
495         for(int c = 0; c < _info.num_classes(); ++c)
496         {
497             if(c == _info.background_label_id())
498             {
499                 // Ignore background class
500                 continue;
501             }
502             const int label = _info.share_location() ? -1 : c;
503             if(conf_scores.find(c) == conf_scores.end() || decode_bboxes.find(label) == decode_bboxes.end())
504             {
505                 ARM_COMPUTE_ERROR_VAR("Could not find predictions for label %d.", label);
506             }
507             const std::vector<float> &scores = conf_scores.find(c)->second;
508             const std::vector<BBox> &bboxes = decode_bboxes.find(label)->second;
509 
510             ApplyNMSFast(bboxes, scores, _info.confidence_threshold(), _info.nms_threshold(), _info.eta(), _info.top_k(), indices[c]);
511 
512             num_det += indices[c].size();
513         }
514 
515         int num_to_add = 0;
516         if(_info.keep_top_k() > -1 && num_det > _info.keep_top_k())
517         {
518             std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
519             for(auto const &it : indices)
520             {
521                 const int               label         = it.first;
522                 const std::vector<int> &label_indices = it.second;
523 
524                 if(conf_scores.find(label) == conf_scores.end())
525                 {
526                     ARM_COMPUTE_ERROR_VAR("Could not find predictions for label %d.", label);
527                 }
528 
529                 const std::vector<float> &scores = conf_scores.find(label)->second;
530                 for(auto idx : label_indices)
531                 {
532                     ARM_COMPUTE_ERROR_ON(idx > static_cast<int>(scores.size()));
533                     score_index_pairs.emplace_back(std::make_pair(scores[idx], std::make_pair(label, idx)));
534                 }
535             }
536 
537             // Keep top k results per image.
538             std::sort(score_index_pairs.begin(), score_index_pairs.end(), SortScorePairDescend<std::pair<int, int>>);
539             score_index_pairs.resize(_info.keep_top_k());
540 
541             // Store the new indices.
542 
543             std::map<int, std::vector<int>> new_indices;
544             for(auto score_index_pair : score_index_pairs)
545             {
546                 int label = score_index_pair.second.first;
547                 int idx   = score_index_pair.second.second;
548                 new_indices[label].push_back(idx);
549             }
550             _all_indices[i] = new_indices;
551             num_to_add      = _info.keep_top_k();
552         }
553         else
554         {
555             _all_indices[i] = indices;
556             num_to_add      = num_det;
557         }
558         num_kept += num_to_add;
559     }
560 
561     //Update the valid region of the ouput to mark the exact number of detection
562     _output->info()->set_valid_region(ValidRegion(Coordinates(0, 0), TensorShape(7, num_kept)));
563 
564     int count = 0;
565     for(int i = 0; i < _num; ++i)
566     {
567         const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
568         const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
569         for(auto &it : _all_indices[i])
570         {
571             const int                 label     = it.first;
572             const std::vector<float> &scores    = conf_scores.find(label)->second;
573             const int                 loc_label = _info.share_location() ? -1 : label;
574             if(conf_scores.find(label) == conf_scores.end() || decode_bboxes.find(loc_label) == decode_bboxes.end())
575             {
576                 // Either if there are no confidence predictions
577                 // or there are no location predictions for current label.
578                 ARM_COMPUTE_ERROR_VAR("Could not find predictions for the label %d.", label);
579             }
580             const std::vector<BBox> &bboxes  = decode_bboxes.find(loc_label)->second;
581             const std::vector<int> &indices = it.second;
582 
583             for(auto idx : indices)
584             {
585                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7))))     = i;
586                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 1)))) = label;
587                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 2)))) = scores[idx];
588                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 3)))) = bboxes[idx][0];
589                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 4)))) = bboxes[idx][1];
590                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 5)))) = bboxes[idx][2];
591                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 6)))) = bboxes[idx][3];
592 
593                 ++count;
594             }
595         }
596     }
597 }
598 } // namespace arm_compute
599