1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2018-2021 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "arm_compute/runtime/CPP/functions/CPPDetectionOutputLayer.h"
25*c217d954SCole Faust
26*c217d954SCole Faust #include "arm_compute/core/Error.h"
27*c217d954SCole Faust #include "arm_compute/core/Helpers.h"
28*c217d954SCole Faust #include "arm_compute/core/Validate.h"
29*c217d954SCole Faust #include "src/core/helpers/AutoConfiguration.h"
30*c217d954SCole Faust
31*c217d954SCole Faust #include "src/common/utils/Log.h"
32*c217d954SCole Faust
33*c217d954SCole Faust #include <list>
34*c217d954SCole Faust
35*c217d954SCole Faust namespace arm_compute
36*c217d954SCole Faust {
37*c217d954SCole Faust namespace
38*c217d954SCole Faust {
validate_arguments(const ITensorInfo * input_loc,const ITensorInfo * input_conf,const ITensorInfo * input_priorbox,const ITensorInfo * output,DetectionOutputLayerInfo info)39*c217d954SCole Faust Status validate_arguments(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
40*c217d954SCole Faust {
41*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
42*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_loc, 1, DataType::F32);
43*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, input_conf, input_priorbox);
44*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_loc->num_dimensions() > 2, "The location input tensor should be [C1, N].");
45*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_conf->num_dimensions() > 2, "The location input tensor should be [C2, N].");
46*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_priorbox->num_dimensions() > 3, "The priorbox input tensor should be [C3, 2, N].");
47*c217d954SCole Faust
48*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.eta() <= 0.f && info.eta() > 1.f, "Eta should be between 0 and 1");
49*c217d954SCole Faust
50*c217d954SCole Faust const int num_priors = input_priorbox->tensor_shape()[0] / 4;
51*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_loc_classes() * 4)) != input_loc->tensor_shape()[0], "Number of priors must match number of location predictions.");
52*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_classes())) != input_conf->tensor_shape()[0], "Number of priors must match number of confidence predictions.");
53*c217d954SCole Faust
54*c217d954SCole Faust // Validate configured output
55*c217d954SCole Faust if(output->total_size() != 0)
56*c217d954SCole Faust {
57*c217d954SCole Faust const unsigned int max_size = info.keep_top_k() * (input_loc->num_dimensions() > 1 ? input_loc->dimension(1) : 1);
58*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), TensorShape(7U, max_size));
59*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, output);
60*c217d954SCole Faust }
61*c217d954SCole Faust
62*c217d954SCole Faust return Status{};
63*c217d954SCole Faust }
64*c217d954SCole Faust
65*c217d954SCole Faust /** Function used to sort pair<float, T> in descend order based on the score (first) value.
66*c217d954SCole Faust */
67*c217d954SCole Faust template <typename T>
SortScorePairDescend(const std::pair<float,T> & pair1,const std::pair<float,T> & pair2)68*c217d954SCole Faust bool SortScorePairDescend(const std::pair<float, T> &pair1,
69*c217d954SCole Faust const std::pair<float, T> &pair2)
70*c217d954SCole Faust {
71*c217d954SCole Faust return pair1.first > pair2.first;
72*c217d954SCole Faust }
73*c217d954SCole Faust
74*c217d954SCole Faust /** Get location predictions from input_loc.
75*c217d954SCole Faust *
76*c217d954SCole Faust * @param[in] input_loc The input location prediction.
77*c217d954SCole Faust * @param[in] num The number of images.
78*c217d954SCole Faust * @param[in] num_priors number of predictions per class.
79*c217d954SCole Faust * @param[in] num_loc_classes number of location classes. It is 1 if share_location is true,
80*c217d954SCole Faust * and is equal to number of classes needed to predict otherwise.
81*c217d954SCole Faust * @param[in] share_location If true, all classes share the same location prediction.
82*c217d954SCole Faust * @param[out] all_location_predictions All the location predictions.
83*c217d954SCole Faust *
84*c217d954SCole Faust */
retrieve_all_loc_predictions(const ITensor * input_loc,const int num,const int num_priors,const int num_loc_classes,const bool share_location,std::vector<LabelBBox> & all_location_predictions)85*c217d954SCole Faust void retrieve_all_loc_predictions(const ITensor *input_loc, const int num,
86*c217d954SCole Faust const int num_priors, const int num_loc_classes,
87*c217d954SCole Faust const bool share_location, std::vector<LabelBBox> &all_location_predictions)
88*c217d954SCole Faust {
89*c217d954SCole Faust for(int i = 0; i < num; ++i)
90*c217d954SCole Faust {
91*c217d954SCole Faust for(int c = 0; c < num_loc_classes; ++c)
92*c217d954SCole Faust {
93*c217d954SCole Faust int label = share_location ? -1 : c;
94*c217d954SCole Faust if(all_location_predictions[i].find(label) == all_location_predictions[i].end())
95*c217d954SCole Faust {
96*c217d954SCole Faust all_location_predictions[i][label].resize(num_priors);
97*c217d954SCole Faust }
98*c217d954SCole Faust else
99*c217d954SCole Faust {
100*c217d954SCole Faust ARM_COMPUTE_ERROR_ON(all_location_predictions[i][label].size() != static_cast<size_t>(num_priors));
101*c217d954SCole Faust break;
102*c217d954SCole Faust }
103*c217d954SCole Faust }
104*c217d954SCole Faust }
105*c217d954SCole Faust for(int i = 0; i < num; ++i)
106*c217d954SCole Faust {
107*c217d954SCole Faust for(int p = 0; p < num_priors; ++p)
108*c217d954SCole Faust {
109*c217d954SCole Faust for(int c = 0; c < num_loc_classes; ++c)
110*c217d954SCole Faust {
111*c217d954SCole Faust const int label = share_location ? -1 : c;
112*c217d954SCole Faust const int base_ptr = i * num_priors * num_loc_classes * 4 + p * num_loc_classes * 4 + c * 4;
113*c217d954SCole Faust //xmin, ymin, xmax, ymax
114*c217d954SCole Faust all_location_predictions[i][label][p][0] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr)));
115*c217d954SCole Faust all_location_predictions[i][label][p][1] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 1)));
116*c217d954SCole Faust all_location_predictions[i][label][p][2] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 2)));
117*c217d954SCole Faust all_location_predictions[i][label][p][3] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 3)));
118*c217d954SCole Faust }
119*c217d954SCole Faust }
120*c217d954SCole Faust }
121*c217d954SCole Faust }
122*c217d954SCole Faust
123*c217d954SCole Faust /** Get confidence predictions from input_conf.
124*c217d954SCole Faust *
125*c217d954SCole Faust * @param[in] input_loc The input location prediction.
126*c217d954SCole Faust * @param[in] num The number of images.
127*c217d954SCole Faust * @param[in] num_priors Number of predictions per class.
128*c217d954SCole Faust * @param[in] num_loc_classes Number of location classes. It is 1 if share_location is true,
129*c217d954SCole Faust * and is equal to number of classes needed to predict otherwise.
130*c217d954SCole Faust * @param[out] all_location_predictions All the location predictions.
131*c217d954SCole Faust *
132*c217d954SCole Faust */
retrieve_all_conf_scores(const ITensor * input_conf,const int num,const int num_priors,const int num_classes,std::vector<std::map<int,std::vector<float>>> & all_confidence_scores)133*c217d954SCole Faust void retrieve_all_conf_scores(const ITensor *input_conf, const int num,
134*c217d954SCole Faust const int num_priors, const int num_classes,
135*c217d954SCole Faust std::vector<std::map<int, std::vector<float>>> &all_confidence_scores)
136*c217d954SCole Faust {
137*c217d954SCole Faust std::vector<float> tmp_buffer;
138*c217d954SCole Faust tmp_buffer.resize(num * num_priors * num_classes);
139*c217d954SCole Faust for(int i = 0; i < num; ++i)
140*c217d954SCole Faust {
141*c217d954SCole Faust for(int c = 0; c < num_classes; ++c)
142*c217d954SCole Faust {
143*c217d954SCole Faust for(int p = 0; p < num_priors; ++p)
144*c217d954SCole Faust {
145*c217d954SCole Faust tmp_buffer[i * num_classes * num_priors + c * num_priors + p] =
146*c217d954SCole Faust *reinterpret_cast<float *>(input_conf->ptr_to_element(Coordinates(i * num_classes * num_priors + p * num_classes + c)));
147*c217d954SCole Faust }
148*c217d954SCole Faust }
149*c217d954SCole Faust }
150*c217d954SCole Faust for(int i = 0; i < num; ++i)
151*c217d954SCole Faust {
152*c217d954SCole Faust for(int c = 0; c < num_classes; ++c)
153*c217d954SCole Faust {
154*c217d954SCole Faust all_confidence_scores[i][c].resize(num_priors);
155*c217d954SCole Faust all_confidence_scores[i][c].assign(&tmp_buffer[i * num_classes * num_priors + c * num_priors],
156*c217d954SCole Faust &tmp_buffer[i * num_classes * num_priors + c * num_priors + num_priors]);
157*c217d954SCole Faust }
158*c217d954SCole Faust }
159*c217d954SCole Faust }
160*c217d954SCole Faust
161*c217d954SCole Faust /** Get prior boxes from input_priorbox.
162*c217d954SCole Faust *
163*c217d954SCole Faust * @param[in] input_priorbox The input location prediction.
164*c217d954SCole Faust * @param[in] num_priors Number of priors.
165*c217d954SCole Faust * @param[in] num_loc_classes number of location classes. It is 1 if share_location is true,
166*c217d954SCole Faust * and is equal to number of classes needed to predict otherwise.
167*c217d954SCole Faust * @param[out] all_prior_bboxes If true, all classes share the same location prediction.
168*c217d954SCole Faust * @param[out] all_location_predictions All the location predictions.
169*c217d954SCole Faust *
170*c217d954SCole Faust */
retrieve_all_priorbox(const ITensor * input_priorbox,const int num_priors,std::vector<BBox> & all_prior_bboxes,std::vector<std::array<float,4>> & all_prior_variances)171*c217d954SCole Faust void retrieve_all_priorbox(const ITensor *input_priorbox,
172*c217d954SCole Faust const int num_priors,
173*c217d954SCole Faust std::vector<BBox> &all_prior_bboxes,
174*c217d954SCole Faust std::vector<std::array<float, 4>> &all_prior_variances)
175*c217d954SCole Faust {
176*c217d954SCole Faust for(int i = 0; i < num_priors; ++i)
177*c217d954SCole Faust {
178*c217d954SCole Faust all_prior_bboxes[i] =
179*c217d954SCole Faust {
180*c217d954SCole Faust {
181*c217d954SCole Faust *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4))),
182*c217d954SCole Faust *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 1))),
183*c217d954SCole Faust *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 2))),
184*c217d954SCole Faust *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 3)))
185*c217d954SCole Faust }
186*c217d954SCole Faust };
187*c217d954SCole Faust }
188*c217d954SCole Faust
189*c217d954SCole Faust std::array<float, 4> var({ { 0, 0, 0, 0 } });
190*c217d954SCole Faust for(int i = 0; i < num_priors; ++i)
191*c217d954SCole Faust {
192*c217d954SCole Faust for(int j = 0; j < 4; ++j)
193*c217d954SCole Faust {
194*c217d954SCole Faust var[j] = *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates((num_priors + i) * 4 + j)));
195*c217d954SCole Faust }
196*c217d954SCole Faust all_prior_variances[i] = var;
197*c217d954SCole Faust }
198*c217d954SCole Faust }
199*c217d954SCole Faust
200*c217d954SCole Faust /** Decode a bbox according to a prior bbox.
201*c217d954SCole Faust *
202*c217d954SCole Faust * @param[in] prior_bbox The input prior bounding boxes.
203*c217d954SCole Faust * @param[in] prior_variance The corresponding input variance.
204*c217d954SCole Faust * @param[in] code_type The detection output code type used to decode the results.
205*c217d954SCole Faust * @param[in] variance_encoded_in_target If true, the variance is encoded in target.
206*c217d954SCole Faust * @param[in] clip_bbox If true, the results should be between 0.f and 1.f.
207*c217d954SCole Faust * @param[in] bbox The input bbox to decode
208*c217d954SCole Faust * @param[out] decode_bbox The decoded bboxes.
209*c217d954SCole Faust *
210*c217d954SCole Faust */
DecodeBBox(const BBox & prior_bbox,const std::array<float,4> & prior_variance,const DetectionOutputLayerCodeType code_type,const bool variance_encoded_in_target,const bool clip_bbox,const BBox & bbox,BBox & decode_bbox)211*c217d954SCole Faust void DecodeBBox(const BBox &prior_bbox, const std::array<float, 4> &prior_variance,
212*c217d954SCole Faust const DetectionOutputLayerCodeType code_type, const bool variance_encoded_in_target,
213*c217d954SCole Faust const bool clip_bbox, const BBox &bbox, BBox &decode_bbox)
214*c217d954SCole Faust {
215*c217d954SCole Faust // if the variance is encoded in target, we simply need to add the offset predictions
216*c217d954SCole Faust // otherwise we need to scale the offset accordingly.
217*c217d954SCole Faust switch(code_type)
218*c217d954SCole Faust {
219*c217d954SCole Faust case DetectionOutputLayerCodeType::CORNER:
220*c217d954SCole Faust {
221*c217d954SCole Faust decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]);
222*c217d954SCole Faust decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]);
223*c217d954SCole Faust decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]);
224*c217d954SCole Faust decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]);
225*c217d954SCole Faust
226*c217d954SCole Faust break;
227*c217d954SCole Faust }
228*c217d954SCole Faust case DetectionOutputLayerCodeType::CENTER_SIZE:
229*c217d954SCole Faust {
230*c217d954SCole Faust const float prior_width = prior_bbox[2] - prior_bbox[0];
231*c217d954SCole Faust const float prior_height = prior_bbox[3] - prior_bbox[1];
232*c217d954SCole Faust
233*c217d954SCole Faust // Check if the prior width and height are right
234*c217d954SCole Faust ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
235*c217d954SCole Faust ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
236*c217d954SCole Faust
237*c217d954SCole Faust const float prior_center_x = (prior_bbox[0] + prior_bbox[2]) / 2.;
238*c217d954SCole Faust const float prior_center_y = (prior_bbox[1] + prior_bbox[3]) / 2.;
239*c217d954SCole Faust
240*c217d954SCole Faust const float decode_bbox_center_x = (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width + prior_center_x;
241*c217d954SCole Faust const float decode_bbox_center_y = (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height + prior_center_y;
242*c217d954SCole Faust const float decode_bbox_width = (variance_encoded_in_target ? std::exp(bbox[2]) : std::exp(prior_variance[2] * bbox[2])) * prior_width;
243*c217d954SCole Faust const float decode_bbox_height = (variance_encoded_in_target ? std::exp(bbox[3]) : std::exp(prior_variance[3] * bbox[3])) * prior_height;
244*c217d954SCole Faust
245*c217d954SCole Faust decode_bbox[0] = (decode_bbox_center_x - decode_bbox_width / 2.f);
246*c217d954SCole Faust decode_bbox[1] = (decode_bbox_center_y - decode_bbox_height / 2.f);
247*c217d954SCole Faust decode_bbox[2] = (decode_bbox_center_x + decode_bbox_width / 2.f);
248*c217d954SCole Faust decode_bbox[3] = (decode_bbox_center_y + decode_bbox_height / 2.f);
249*c217d954SCole Faust
250*c217d954SCole Faust break;
251*c217d954SCole Faust }
252*c217d954SCole Faust case DetectionOutputLayerCodeType::CORNER_SIZE:
253*c217d954SCole Faust {
254*c217d954SCole Faust const float prior_width = prior_bbox[2] - prior_bbox[0];
255*c217d954SCole Faust const float prior_height = prior_bbox[3] - prior_bbox[1];
256*c217d954SCole Faust
257*c217d954SCole Faust // Check if the prior width and height are greater than 0
258*c217d954SCole Faust ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
259*c217d954SCole Faust ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
260*c217d954SCole Faust
261*c217d954SCole Faust decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width;
262*c217d954SCole Faust decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height;
263*c217d954SCole Faust decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]) * prior_width;
264*c217d954SCole Faust decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]) * prior_height;
265*c217d954SCole Faust
266*c217d954SCole Faust break;
267*c217d954SCole Faust }
268*c217d954SCole Faust default:
269*c217d954SCole Faust ARM_COMPUTE_ERROR("Unsupported Detection Output Code Type.");
270*c217d954SCole Faust }
271*c217d954SCole Faust
272*c217d954SCole Faust if(clip_bbox)
273*c217d954SCole Faust {
274*c217d954SCole Faust for(auto &d_bbox : decode_bbox)
275*c217d954SCole Faust {
276*c217d954SCole Faust d_bbox = utility::clamp(d_bbox, 0.f, 1.f);
277*c217d954SCole Faust }
278*c217d954SCole Faust }
279*c217d954SCole Faust }
280*c217d954SCole Faust
281*c217d954SCole Faust /** Do non maximum suppression given bboxes and scores.
282*c217d954SCole Faust *
283*c217d954SCole Faust * @param[in] bboxes The input bounding boxes.
284*c217d954SCole Faust * @param[in] scores The corresponding input confidence.
285*c217d954SCole Faust * @param[in] score_threshold The threshold used to filter detection results.
286*c217d954SCole Faust * @param[in] nms_threshold The threshold used in non maximum suppression.
287*c217d954SCole Faust * @param[in] eta Adaptation rate for nms threshold.
288*c217d954SCole Faust * @param[in] top_k If not -1, keep at most top_k picked indices.
289*c217d954SCole Faust * @param[out] indices The kept indices of bboxes after nms.
290*c217d954SCole Faust *
291*c217d954SCole Faust */
ApplyNMSFast(const std::vector<BBox> & bboxes,const std::vector<float> & scores,const float score_threshold,const float nms_threshold,const float eta,const int top_k,std::vector<int> & indices)292*c217d954SCole Faust void ApplyNMSFast(const std::vector<BBox> &bboxes,
293*c217d954SCole Faust const std::vector<float> &scores, const float score_threshold,
294*c217d954SCole Faust const float nms_threshold, const float eta, const int top_k,
295*c217d954SCole Faust std::vector<int> &indices)
296*c217d954SCole Faust {
297*c217d954SCole Faust ARM_COMPUTE_ERROR_ON_MSG(bboxes.size() != scores.size(), "bboxes and scores have different size.");
298*c217d954SCole Faust
299*c217d954SCole Faust // Get top_k scores (with corresponding indices).
300*c217d954SCole Faust std::list<std::pair<float, int>> score_index_vec;
301*c217d954SCole Faust
302*c217d954SCole Faust // Generate index score pairs.
303*c217d954SCole Faust for(size_t i = 0; i < scores.size(); ++i)
304*c217d954SCole Faust {
305*c217d954SCole Faust if(scores[i] > score_threshold)
306*c217d954SCole Faust {
307*c217d954SCole Faust score_index_vec.emplace_back(std::make_pair(scores[i], i));
308*c217d954SCole Faust }
309*c217d954SCole Faust }
310*c217d954SCole Faust
311*c217d954SCole Faust // Sort the score pair according to the scores in descending order
312*c217d954SCole Faust score_index_vec.sort(SortScorePairDescend<int>);
313*c217d954SCole Faust
314*c217d954SCole Faust // Keep top_k scores if needed.
315*c217d954SCole Faust const int score_index_vec_size = score_index_vec.size();
316*c217d954SCole Faust if(top_k > -1 && top_k < score_index_vec_size)
317*c217d954SCole Faust {
318*c217d954SCole Faust score_index_vec.resize(top_k);
319*c217d954SCole Faust }
320*c217d954SCole Faust
321*c217d954SCole Faust // Do nms.
322*c217d954SCole Faust float adaptive_threshold = nms_threshold;
323*c217d954SCole Faust indices.clear();
324*c217d954SCole Faust
325*c217d954SCole Faust while(!score_index_vec.empty())
326*c217d954SCole Faust {
327*c217d954SCole Faust const int idx = score_index_vec.front().second;
328*c217d954SCole Faust bool keep = true;
329*c217d954SCole Faust for(int kept_idx : indices)
330*c217d954SCole Faust {
331*c217d954SCole Faust if(keep)
332*c217d954SCole Faust {
333*c217d954SCole Faust // Compute the jaccard (intersection over union IoU) overlap between two bboxes.
334*c217d954SCole Faust BBox intersect_bbox = std::array<float, 4>({ 0, 0, 0, 0 });
335*c217d954SCole Faust if(bboxes[kept_idx][0] > bboxes[idx][2] || bboxes[kept_idx][2] < bboxes[idx][0] || bboxes[kept_idx][1] > bboxes[idx][3] || bboxes[kept_idx][3] < bboxes[idx][1])
336*c217d954SCole Faust {
337*c217d954SCole Faust intersect_bbox = std::array<float, 4>({ { 0, 0, 0, 0 } });
338*c217d954SCole Faust }
339*c217d954SCole Faust else
340*c217d954SCole Faust {
341*c217d954SCole Faust intersect_bbox = std::array<float, 4>({ {
342*c217d954SCole Faust std::max(bboxes[idx][0], bboxes[kept_idx][0]),
343*c217d954SCole Faust std::max(bboxes[idx][1], bboxes[kept_idx][1]),
344*c217d954SCole Faust std::min(bboxes[idx][2], bboxes[kept_idx][2]),
345*c217d954SCole Faust std::min(bboxes[idx][3], bboxes[kept_idx][3])
346*c217d954SCole Faust }
347*c217d954SCole Faust });
348*c217d954SCole Faust }
349*c217d954SCole Faust
350*c217d954SCole Faust float intersect_width = intersect_bbox[2] - intersect_bbox[0];
351*c217d954SCole Faust float intersect_height = intersect_bbox[3] - intersect_bbox[1];
352*c217d954SCole Faust
353*c217d954SCole Faust float overlap = 0.f;
354*c217d954SCole Faust if(intersect_width > 0 && intersect_height > 0)
355*c217d954SCole Faust {
356*c217d954SCole Faust float intersect_size = intersect_width * intersect_height;
357*c217d954SCole Faust float bbox1_size = (bboxes[idx][2] < bboxes[idx][0]
358*c217d954SCole Faust || bboxes[idx][3] < bboxes[idx][1]) ?
359*c217d954SCole Faust 0.f :
360*c217d954SCole Faust (bboxes[idx][2] - bboxes[idx][0]) * (bboxes[idx][3] - bboxes[idx][1]); //BBoxSize(bboxes[idx]);
361*c217d954SCole Faust float bbox2_size = (bboxes[kept_idx][2] < bboxes[kept_idx][0]
362*c217d954SCole Faust || bboxes[kept_idx][3] < bboxes[kept_idx][1]) ?
363*c217d954SCole Faust 0.f :
364*c217d954SCole Faust (bboxes[kept_idx][2] - bboxes[kept_idx][0]) * (bboxes[kept_idx][3] - bboxes[kept_idx][1]); // BBoxSize(bboxes[kept_idx]);
365*c217d954SCole Faust overlap = intersect_size / (bbox1_size + bbox2_size - intersect_size);
366*c217d954SCole Faust }
367*c217d954SCole Faust keep = (overlap <= adaptive_threshold);
368*c217d954SCole Faust }
369*c217d954SCole Faust else
370*c217d954SCole Faust {
371*c217d954SCole Faust break;
372*c217d954SCole Faust }
373*c217d954SCole Faust }
374*c217d954SCole Faust if(keep)
375*c217d954SCole Faust {
376*c217d954SCole Faust indices.push_back(idx);
377*c217d954SCole Faust }
378*c217d954SCole Faust score_index_vec.erase(score_index_vec.begin());
379*c217d954SCole Faust if(keep && eta < 1.f && adaptive_threshold > 0.5f)
380*c217d954SCole Faust {
381*c217d954SCole Faust adaptive_threshold *= eta;
382*c217d954SCole Faust }
383*c217d954SCole Faust }
384*c217d954SCole Faust }
385*c217d954SCole Faust } // namespace
386*c217d954SCole Faust
CPPDetectionOutputLayer()387*c217d954SCole Faust CPPDetectionOutputLayer::CPPDetectionOutputLayer()
388*c217d954SCole Faust : _input_loc(nullptr), _input_conf(nullptr), _input_priorbox(nullptr), _output(nullptr), _info(), _num_priors(), _num(), _all_location_predictions(), _all_confidence_scores(), _all_prior_bboxes(),
389*c217d954SCole Faust _all_prior_variances(), _all_decode_bboxes(), _all_indices()
390*c217d954SCole Faust {
391*c217d954SCole Faust }
392*c217d954SCole Faust
configure(const ITensor * input_loc,const ITensor * input_conf,const ITensor * input_priorbox,ITensor * output,DetectionOutputLayerInfo info)393*c217d954SCole Faust void CPPDetectionOutputLayer::configure(const ITensor *input_loc, const ITensor *input_conf, const ITensor *input_priorbox,
394*c217d954SCole Faust ITensor *output, DetectionOutputLayerInfo info)
395*c217d954SCole Faust {
396*c217d954SCole Faust ARM_COMPUTE_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
397*c217d954SCole Faust ARM_COMPUTE_LOG_PARAMS(input_loc, input_conf, input_priorbox, output, info);
398*c217d954SCole Faust
399*c217d954SCole Faust // Output auto initialization if not yet initialized
400*c217d954SCole Faust // Since the number of bboxes to kept is unknown before nms, the shape is set to the maximum
401*c217d954SCole Faust // The maximum is keep_top_k * input_loc_size[1]
402*c217d954SCole Faust // Each row is a 7 dimension std::vector, which stores [image_id, label, confidence, xmin, ymin, xmax, ymax]
403*c217d954SCole Faust const unsigned int max_size = info.keep_top_k() * (input_loc->info()->num_dimensions() > 1 ? input_loc->info()->dimension(1) : 1);
404*c217d954SCole Faust auto_init_if_empty(*output->info(), input_loc->info()->clone()->set_tensor_shape(TensorShape(7U, max_size)));
405*c217d954SCole Faust
406*c217d954SCole Faust // Perform validation step
407*c217d954SCole Faust ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_loc->info(), input_conf->info(), input_priorbox->info(), output->info(), info));
408*c217d954SCole Faust
409*c217d954SCole Faust _input_loc = input_loc;
410*c217d954SCole Faust _input_conf = input_conf;
411*c217d954SCole Faust _input_priorbox = input_priorbox;
412*c217d954SCole Faust _output = output;
413*c217d954SCole Faust _info = info;
414*c217d954SCole Faust _num_priors = input_priorbox->info()->dimension(0) / 4;
415*c217d954SCole Faust _num = (_input_loc->info()->num_dimensions() > 1 ? _input_loc->info()->dimension(1) : 1);
416*c217d954SCole Faust
417*c217d954SCole Faust _all_location_predictions.resize(_num);
418*c217d954SCole Faust _all_confidence_scores.resize(_num);
419*c217d954SCole Faust _all_prior_bboxes.resize(_num_priors);
420*c217d954SCole Faust _all_prior_variances.resize(_num_priors);
421*c217d954SCole Faust _all_decode_bboxes.resize(_num);
422*c217d954SCole Faust
423*c217d954SCole Faust for(int i = 0; i < _num; ++i)
424*c217d954SCole Faust {
425*c217d954SCole Faust for(int c = 0; c < _info.num_loc_classes(); ++c)
426*c217d954SCole Faust {
427*c217d954SCole Faust const int label = _info.share_location() ? -1 : c;
428*c217d954SCole Faust if(label == _info.background_label_id())
429*c217d954SCole Faust {
430*c217d954SCole Faust // Ignore background class.
431*c217d954SCole Faust continue;
432*c217d954SCole Faust }
433*c217d954SCole Faust _all_decode_bboxes[i][label].resize(_num_priors);
434*c217d954SCole Faust }
435*c217d954SCole Faust }
436*c217d954SCole Faust _all_indices.resize(_num);
437*c217d954SCole Faust
438*c217d954SCole Faust Coordinates coord;
439*c217d954SCole Faust coord.set_num_dimensions(output->info()->num_dimensions());
440*c217d954SCole Faust output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
441*c217d954SCole Faust }
442*c217d954SCole Faust
validate(const ITensorInfo * input_loc,const ITensorInfo * input_conf,const ITensorInfo * input_priorbox,const ITensorInfo * output,DetectionOutputLayerInfo info)443*c217d954SCole Faust Status CPPDetectionOutputLayer::validate(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
444*c217d954SCole Faust {
445*c217d954SCole Faust ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_loc, input_conf, input_priorbox, output, info));
446*c217d954SCole Faust return Status{};
447*c217d954SCole Faust }
448*c217d954SCole Faust
run()449*c217d954SCole Faust void CPPDetectionOutputLayer::run()
450*c217d954SCole Faust {
451*c217d954SCole Faust // Retrieve all location predictions.
452*c217d954SCole Faust retrieve_all_loc_predictions(_input_loc, _num, _num_priors, _info.num_loc_classes(), _info.share_location(), _all_location_predictions);
453*c217d954SCole Faust
454*c217d954SCole Faust // Retrieve all confidences.
455*c217d954SCole Faust retrieve_all_conf_scores(_input_conf, _num, _num_priors, _info.num_classes(), _all_confidence_scores);
456*c217d954SCole Faust
457*c217d954SCole Faust // Retrieve all prior bboxes.
458*c217d954SCole Faust retrieve_all_priorbox(_input_priorbox, _num_priors, _all_prior_bboxes, _all_prior_variances);
459*c217d954SCole Faust
460*c217d954SCole Faust // Decode all loc predictions to bboxes
461*c217d954SCole Faust const bool clip_bbox = false;
462*c217d954SCole Faust for(int i = 0; i < _num; ++i)
463*c217d954SCole Faust {
464*c217d954SCole Faust for(int c = 0; c < _info.num_loc_classes(); ++c)
465*c217d954SCole Faust {
466*c217d954SCole Faust const int label = _info.share_location() ? -1 : c;
467*c217d954SCole Faust if(label == _info.background_label_id())
468*c217d954SCole Faust {
469*c217d954SCole Faust // Ignore background class.
470*c217d954SCole Faust continue;
471*c217d954SCole Faust }
472*c217d954SCole Faust ARM_COMPUTE_ERROR_ON_MSG_VAR(_all_location_predictions[i].find(label) == _all_location_predictions[i].end(), "Could not find location predictions for label %d.", label);
473*c217d954SCole Faust
474*c217d954SCole Faust const std::vector<BBox> &label_loc_preds = _all_location_predictions[i].find(label)->second;
475*c217d954SCole Faust
476*c217d954SCole Faust const int num_bboxes = _all_prior_bboxes.size();
477*c217d954SCole Faust ARM_COMPUTE_ERROR_ON(_all_prior_variances[i].size() != 4);
478*c217d954SCole Faust
479*c217d954SCole Faust for(int j = 0; j < num_bboxes; ++j)
480*c217d954SCole Faust {
481*c217d954SCole Faust DecodeBBox(_all_prior_bboxes[j], _all_prior_variances[j], _info.code_type(), _info.variance_encoded_in_target(), clip_bbox, label_loc_preds[j], _all_decode_bboxes[i][label][j]);
482*c217d954SCole Faust }
483*c217d954SCole Faust }
484*c217d954SCole Faust }
485*c217d954SCole Faust
486*c217d954SCole Faust int num_kept = 0;
487*c217d954SCole Faust
488*c217d954SCole Faust for(int i = 0; i < _num; ++i)
489*c217d954SCole Faust {
490*c217d954SCole Faust const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
491*c217d954SCole Faust const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
492*c217d954SCole Faust
493*c217d954SCole Faust std::map<int, std::vector<int>> indices;
494*c217d954SCole Faust int num_det = 0;
495*c217d954SCole Faust for(int c = 0; c < _info.num_classes(); ++c)
496*c217d954SCole Faust {
497*c217d954SCole Faust if(c == _info.background_label_id())
498*c217d954SCole Faust {
499*c217d954SCole Faust // Ignore background class
500*c217d954SCole Faust continue;
501*c217d954SCole Faust }
502*c217d954SCole Faust const int label = _info.share_location() ? -1 : c;
503*c217d954SCole Faust if(conf_scores.find(c) == conf_scores.end() || decode_bboxes.find(label) == decode_bboxes.end())
504*c217d954SCole Faust {
505*c217d954SCole Faust ARM_COMPUTE_ERROR_VAR("Could not find predictions for label %d.", label);
506*c217d954SCole Faust }
507*c217d954SCole Faust const std::vector<float> &scores = conf_scores.find(c)->second;
508*c217d954SCole Faust const std::vector<BBox> &bboxes = decode_bboxes.find(label)->second;
509*c217d954SCole Faust
510*c217d954SCole Faust ApplyNMSFast(bboxes, scores, _info.confidence_threshold(), _info.nms_threshold(), _info.eta(), _info.top_k(), indices[c]);
511*c217d954SCole Faust
512*c217d954SCole Faust num_det += indices[c].size();
513*c217d954SCole Faust }
514*c217d954SCole Faust
515*c217d954SCole Faust int num_to_add = 0;
516*c217d954SCole Faust if(_info.keep_top_k() > -1 && num_det > _info.keep_top_k())
517*c217d954SCole Faust {
518*c217d954SCole Faust std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
519*c217d954SCole Faust for(auto const &it : indices)
520*c217d954SCole Faust {
521*c217d954SCole Faust const int label = it.first;
522*c217d954SCole Faust const std::vector<int> &label_indices = it.second;
523*c217d954SCole Faust
524*c217d954SCole Faust if(conf_scores.find(label) == conf_scores.end())
525*c217d954SCole Faust {
526*c217d954SCole Faust ARM_COMPUTE_ERROR_VAR("Could not find predictions for label %d.", label);
527*c217d954SCole Faust }
528*c217d954SCole Faust
529*c217d954SCole Faust const std::vector<float> &scores = conf_scores.find(label)->second;
530*c217d954SCole Faust for(auto idx : label_indices)
531*c217d954SCole Faust {
532*c217d954SCole Faust ARM_COMPUTE_ERROR_ON(idx > static_cast<int>(scores.size()));
533*c217d954SCole Faust score_index_pairs.emplace_back(std::make_pair(scores[idx], std::make_pair(label, idx)));
534*c217d954SCole Faust }
535*c217d954SCole Faust }
536*c217d954SCole Faust
537*c217d954SCole Faust // Keep top k results per image.
538*c217d954SCole Faust std::sort(score_index_pairs.begin(), score_index_pairs.end(), SortScorePairDescend<std::pair<int, int>>);
539*c217d954SCole Faust score_index_pairs.resize(_info.keep_top_k());
540*c217d954SCole Faust
541*c217d954SCole Faust // Store the new indices.
542*c217d954SCole Faust
543*c217d954SCole Faust std::map<int, std::vector<int>> new_indices;
544*c217d954SCole Faust for(auto score_index_pair : score_index_pairs)
545*c217d954SCole Faust {
546*c217d954SCole Faust int label = score_index_pair.second.first;
547*c217d954SCole Faust int idx = score_index_pair.second.second;
548*c217d954SCole Faust new_indices[label].push_back(idx);
549*c217d954SCole Faust }
550*c217d954SCole Faust _all_indices[i] = new_indices;
551*c217d954SCole Faust num_to_add = _info.keep_top_k();
552*c217d954SCole Faust }
553*c217d954SCole Faust else
554*c217d954SCole Faust {
555*c217d954SCole Faust _all_indices[i] = indices;
556*c217d954SCole Faust num_to_add = num_det;
557*c217d954SCole Faust }
558*c217d954SCole Faust num_kept += num_to_add;
559*c217d954SCole Faust }
560*c217d954SCole Faust
561*c217d954SCole Faust //Update the valid region of the ouput to mark the exact number of detection
562*c217d954SCole Faust _output->info()->set_valid_region(ValidRegion(Coordinates(0, 0), TensorShape(7, num_kept)));
563*c217d954SCole Faust
564*c217d954SCole Faust int count = 0;
565*c217d954SCole Faust for(int i = 0; i < _num; ++i)
566*c217d954SCole Faust {
567*c217d954SCole Faust const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
568*c217d954SCole Faust const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
569*c217d954SCole Faust for(auto &it : _all_indices[i])
570*c217d954SCole Faust {
571*c217d954SCole Faust const int label = it.first;
572*c217d954SCole Faust const std::vector<float> &scores = conf_scores.find(label)->second;
573*c217d954SCole Faust const int loc_label = _info.share_location() ? -1 : label;
574*c217d954SCole Faust if(conf_scores.find(label) == conf_scores.end() || decode_bboxes.find(loc_label) == decode_bboxes.end())
575*c217d954SCole Faust {
576*c217d954SCole Faust // Either if there are no confidence predictions
577*c217d954SCole Faust // or there are no location predictions for current label.
578*c217d954SCole Faust ARM_COMPUTE_ERROR_VAR("Could not find predictions for the label %d.", label);
579*c217d954SCole Faust }
580*c217d954SCole Faust const std::vector<BBox> &bboxes = decode_bboxes.find(loc_label)->second;
581*c217d954SCole Faust const std::vector<int> &indices = it.second;
582*c217d954SCole Faust
583*c217d954SCole Faust for(auto idx : indices)
584*c217d954SCole Faust {
585*c217d954SCole Faust *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7)))) = i;
586*c217d954SCole Faust *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 1)))) = label;
587*c217d954SCole Faust *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 2)))) = scores[idx];
588*c217d954SCole Faust *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 3)))) = bboxes[idx][0];
589*c217d954SCole Faust *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 4)))) = bboxes[idx][1];
590*c217d954SCole Faust *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 5)))) = bboxes[idx][2];
591*c217d954SCole Faust *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 6)))) = bboxes[idx][3];
592*c217d954SCole Faust
593*c217d954SCole Faust ++count;
594*c217d954SCole Faust }
595*c217d954SCole Faust }
596*c217d954SCole Faust }
597*c217d954SCole Faust }
598*c217d954SCole Faust } // namespace arm_compute
599