1 /*
2 * Copyright (c) 2017-2020, 2023 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "tests/AssetsLibrary.h"
25
26 #include "Utils.h"
27 #include "utils/TypePrinter.h"
28
29 #include "arm_compute/core/ITensor.h"
30
31 #pragma GCC diagnostic push
32 #pragma GCC diagnostic ignored "-Wunused-parameter"
33 #include "libnpy/npy.hpp"
34 #pragma GCC diagnostic pop
35
36 #include <cctype>
37 #include <fstream>
38 #include <limits>
39 #include <map>
40 #include <mutex>
41 #include <sstream>
42 #include <stdexcept>
43 #include <tuple>
44 #include <unordered_map>
45 #include <utility>
46
47 namespace arm_compute
48 {
49 namespace test
50 {
51 namespace
52 {
53 template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
rgb_to_luminance(const RawTensor & src,RawTensor & dst)54 void rgb_to_luminance(const RawTensor &src, RawTensor &dst)
55 {
56 // Ensure in/out tensors have same image dimensions (independent of element size and number of channels)
57 ARM_COMPUTE_ERROR_ON_MSG(src.num_elements() != dst.num_elements(), "Input and output images must have equal dimensions");
58
59 const size_t num_elements = dst.num_elements();
60
61 // Currently, input is always RGB888 (3 U8 channels per element). Output can be U8, U16/S16 or U32
62 // Note that src.data()[i] returns pointer to first channel of element[i], so RGB values have [0,1,2] offsets
63 for(size_t i = 0, j = 0; j < num_elements; i += 3, ++j)
64 {
65 reinterpret_cast<T *>(dst.data())[j] = 0.2126f * src.data()[i] + 0.7152f * src.data()[i + 1] + 0.0722f * src.data()[i + 2];
66 }
67 }
68
extract_r_from_rgb(const RawTensor & src,RawTensor & dst)69 void extract_r_from_rgb(const RawTensor &src, RawTensor &dst)
70 {
71 ARM_COMPUTE_ERROR_ON(src.size() != 3 * dst.size());
72
73 const size_t num_elements = dst.num_elements();
74
75 for(size_t i = 0, j = 0; j < num_elements; i += 3, ++j)
76 {
77 dst.data()[j] = src.data()[i];
78 }
79 }
80
extract_g_from_rgb(const RawTensor & src,RawTensor & dst)81 void extract_g_from_rgb(const RawTensor &src, RawTensor &dst)
82 {
83 ARM_COMPUTE_ERROR_ON(src.size() != 3 * dst.size());
84
85 const size_t num_elements = dst.num_elements();
86
87 for(size_t i = 1, j = 0; j < num_elements; i += 3, ++j)
88 {
89 dst.data()[j] = src.data()[i];
90 }
91 }
92
extract_b_from_rgb(const RawTensor & src,RawTensor & dst)93 void extract_b_from_rgb(const RawTensor &src, RawTensor &dst)
94 {
95 ARM_COMPUTE_ERROR_ON(src.size() != 3 * dst.size());
96
97 const size_t num_elements = dst.num_elements();
98
99 for(size_t i = 2, j = 0; j < num_elements; i += 3, ++j)
100 {
101 dst.data()[j] = src.data()[i];
102 }
103 }
104
discard_comments(std::ifstream & fs)105 void discard_comments(std::ifstream &fs)
106 {
107 while(fs.peek() == '#')
108 {
109 fs.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
110 }
111 }
112
discard_comments_and_spaces(std::ifstream & fs)113 void discard_comments_and_spaces(std::ifstream &fs)
114 {
115 while(true)
116 {
117 discard_comments(fs);
118
119 if(isspace(fs.peek()) == 0)
120 {
121 break;
122 }
123
124 fs.ignore(1);
125 }
126 }
127
parse_netpbm_format_header(std::ifstream & fs,char number)128 std::tuple<unsigned int, unsigned int, int> parse_netpbm_format_header(std::ifstream &fs, char number)
129 {
130 // check file type magic number is valid
131 std::array<char, 2> magic_number{ { 0 } };
132 fs >> magic_number[0] >> magic_number[1];
133
134 if(magic_number[0] != 'P' || magic_number[1] != number)
135 {
136 throw std::runtime_error("File type magic number not supported");
137 }
138
139 discard_comments_and_spaces(fs);
140
141 unsigned int width = 0;
142 fs >> width;
143
144 discard_comments_and_spaces(fs);
145
146 unsigned int height = 0;
147 fs >> height;
148
149 discard_comments_and_spaces(fs);
150
151 int max_value = 0;
152 fs >> max_value;
153
154 if(!fs.good())
155 {
156 throw std::runtime_error("Cannot read image dimensions");
157 }
158
159 if(max_value != 255)
160 {
161 throw std::runtime_error("RawTensor doesn't have 8-bit values");
162 }
163
164 discard_comments(fs);
165
166 if(isspace(fs.peek()) == 0)
167 {
168 throw std::runtime_error("Invalid image header");
169 }
170
171 fs.ignore(1);
172
173 return std::make_tuple(width, height, max_value);
174 }
175
parse_ppm_header(std::ifstream & fs)176 std::tuple<unsigned int, unsigned int, int> parse_ppm_header(std::ifstream &fs)
177 {
178 return parse_netpbm_format_header(fs, '6');
179 }
180
parse_pgm_header(std::ifstream & fs)181 std::tuple<unsigned int, unsigned int, int> parse_pgm_header(std::ifstream &fs)
182 {
183 return parse_netpbm_format_header(fs, '5');
184 }
185
check_image_size(std::ifstream & fs,size_t raw_size)186 void check_image_size(std::ifstream &fs, size_t raw_size)
187 {
188 const size_t current_position = fs.tellg();
189 fs.seekg(0, std::ios_base::end);
190 const size_t end_position = fs.tellg();
191 fs.seekg(current_position, std::ios_base::beg);
192
193 if((end_position - current_position) < raw_size)
194 {
195 throw std::runtime_error("Not enough data in file");
196 }
197 }
198
read_image_buffer(std::ifstream & fs,RawTensor & raw)199 void read_image_buffer(std::ifstream &fs, RawTensor &raw)
200 {
201 fs.read(reinterpret_cast<std::fstream::char_type *>(raw.data()), raw.size());
202
203 if(!fs.good())
204 {
205 throw std::runtime_error("Failure while reading image buffer");
206 }
207 }
208
load_ppm(const std::string & path)209 RawTensor load_ppm(const std::string &path)
210 {
211 std::ifstream file(path, std::ios::in | std::ios::binary);
212
213 if(!file.good())
214 {
215 throw framework::FileNotFound("Could not load PPM image: " + path);
216 }
217
218 unsigned int width = 0;
219 unsigned int height = 0;
220
221 std::tie(width, height, std::ignore) = parse_ppm_header(file);
222
223 RawTensor raw(TensorShape(width, height), Format::RGB888);
224
225 check_image_size(file, raw.size());
226 read_image_buffer(file, raw);
227
228 return raw;
229 }
230
load_pgm(const std::string & path)231 RawTensor load_pgm(const std::string &path)
232 {
233 std::ifstream file(path, std::ios::in | std::ios::binary);
234
235 if(!file.good())
236 {
237 throw framework::FileNotFound("Could not load PGM image: " + path);
238 }
239
240 unsigned int width = 0;
241 unsigned int height = 0;
242
243 std::tie(width, height, std::ignore) = parse_pgm_header(file);
244
245 RawTensor raw(TensorShape(width, height), Format::U8);
246
247 check_image_size(file, raw.size());
248 read_image_buffer(file, raw);
249
250 return raw;
251 }
252 } // namespace
253
AssetsLibrary(std::string path,std::random_device::result_type seed)254 AssetsLibrary::AssetsLibrary(std::string path, std::random_device::result_type seed) //NOLINT
255 : _library_path(std::move(path)),
256 _seed{ seed }
257 {
258 }
259
path() const260 std::string AssetsLibrary::path() const
261 {
262 return _library_path;
263 }
264
seed() const265 std::random_device::result_type AssetsLibrary::seed() const
266 {
267 return _seed;
268 }
269
fill(RawTensor & raw,const std::string & name,Format format) const270 void AssetsLibrary::fill(RawTensor &raw, const std::string &name, Format format) const
271 {
272 //FIXME: Should be done by swapping cached buffers
273 const RawTensor &src = get(name, format);
274 std::copy_n(src.data(), raw.size(), raw.data());
275 }
276
fill(RawTensor & raw,const std::string & name,Channel channel) const277 void AssetsLibrary::fill(RawTensor &raw, const std::string &name, Channel channel) const
278 {
279 fill(raw, name, get_format_for_channel(channel), channel);
280 }
281
fill(RawTensor & raw,const std::string & name,Format format,Channel channel) const282 void AssetsLibrary::fill(RawTensor &raw, const std::string &name, Format format, Channel channel) const
283 {
284 const RawTensor &src = get(name, format, channel);
285 std::copy_n(src.data(), raw.size(), raw.data());
286 }
287
get_loader(const std::string & extension) const288 const AssetsLibrary::Loader &AssetsLibrary::get_loader(const std::string &extension) const
289 {
290 static std::unordered_map<std::string, Loader> loaders =
291 {
292 { "ppm", load_ppm },
293 { "pgm", load_pgm }
294 };
295
296 const auto it = loaders.find(extension);
297
298 if(it != loaders.end())
299 {
300 return it->second;
301 }
302 else
303 {
304 throw std::invalid_argument("Cannot load image with extension '" + extension + "'");
305 }
306 }
307
get_converter(Format src,Format dst) const308 const AssetsLibrary::Converter &AssetsLibrary::get_converter(Format src, Format dst) const
309 {
310 static std::map<std::pair<Format, Format>, Converter> converters =
311 {
312 { std::make_pair(Format::RGB888, Format::U8), rgb_to_luminance<uint8_t> },
313 { std::make_pair(Format::RGB888, Format::U16), rgb_to_luminance<uint16_t> },
314 { std::make_pair(Format::RGB888, Format::S16), rgb_to_luminance<int16_t> },
315 { std::make_pair(Format::RGB888, Format::U32), rgb_to_luminance<uint32_t> }
316 };
317
318 const auto it = converters.find(std::make_pair(src, dst));
319
320 if(it != converters.end())
321 {
322 return it->second;
323 }
324 else
325 {
326 std::stringstream msg;
327 msg << "Cannot convert from format '" << src << "' to format '" << dst << "'\n";
328 throw std::invalid_argument(msg.str());
329 }
330 }
331
get_converter(DataType src,Format dst) const332 const AssetsLibrary::Converter &AssetsLibrary::get_converter(DataType src, Format dst) const
333 {
334 static std::map<std::pair<DataType, Format>, Converter> converters = {};
335
336 const auto it = converters.find(std::make_pair(src, dst));
337
338 if(it != converters.end())
339 {
340 return it->second;
341 }
342 else
343 {
344 std::stringstream msg;
345 msg << "Cannot convert from data type '" << src << "' to format '" << dst << "'\n";
346 throw std::invalid_argument(msg.str());
347 }
348 }
349
get_converter(DataType src,DataType dst) const350 const AssetsLibrary::Converter &AssetsLibrary::get_converter(DataType src, DataType dst) const
351 {
352 static std::map<std::pair<DataType, DataType>, Converter> converters = {};
353
354 const auto it = converters.find(std::make_pair(src, dst));
355
356 if(it != converters.end())
357 {
358 return it->second;
359 }
360 else
361 {
362 std::stringstream msg;
363 msg << "Cannot convert from data type '" << src << "' to data type '" << dst << "'\n";
364 throw std::invalid_argument(msg.str());
365 }
366 }
367
get_converter(Format src,DataType dst) const368 const AssetsLibrary::Converter &AssetsLibrary::get_converter(Format src, DataType dst) const
369 {
370 static std::map<std::pair<Format, DataType>, Converter> converters = {};
371
372 const auto it = converters.find(std::make_pair(src, dst));
373
374 if(it != converters.end())
375 {
376 return it->second;
377 }
378 else
379 {
380 std::stringstream msg;
381 msg << "Cannot convert from format '" << src << "' to data type '" << dst << "'\n";
382 throw std::invalid_argument(msg.str());
383 }
384 }
385
get_extractor(Format format,Channel channel) const386 const AssetsLibrary::Extractor &AssetsLibrary::get_extractor(Format format, Channel channel) const
387 {
388 static std::map<std::pair<Format, Channel>, Extractor> extractors =
389 {
390 { std::make_pair(Format::RGB888, Channel::R), extract_r_from_rgb },
391 { std::make_pair(Format::RGB888, Channel::G), extract_g_from_rgb },
392 { std::make_pair(Format::RGB888, Channel::B), extract_b_from_rgb }
393 };
394
395 const auto it = extractors.find(std::make_pair(format, channel));
396
397 if(it != extractors.end())
398 {
399 return it->second;
400 }
401 else
402 {
403 std::stringstream msg;
404 msg << "Cannot extract channel '" << channel << "' from format '" << format << "'\n";
405 throw std::invalid_argument(msg.str());
406 }
407 }
408
load_image(const std::string & name) const409 RawTensor AssetsLibrary::load_image(const std::string &name) const
410 {
411 #ifdef _WIN32
412 const std::string image_path = ("\\images\\");
413 #else /* _WIN32 */
414 const std::string image_path = ("/images/");
415 #endif /* _WIN32 */
416
417 const std::string path = _library_path + image_path + name;
418 const std::string extension = path.substr(path.find_last_of('.') + 1);
419 return (*get_loader(extension))(path);
420 }
421
find_or_create_raw_tensor(const std::string & name,Format format) const422 const RawTensor &AssetsLibrary::find_or_create_raw_tensor(const std::string &name, Format format) const
423 {
424 std::lock_guard<arm_compute::Mutex> guard(_format_lock);
425
426 const RawTensor *ptr = _cache.find(std::forward_as_tuple(name, format));
427
428 if(ptr != nullptr)
429 {
430 return *ptr;
431 }
432
433 RawTensor raw = load_image(name);
434
435 if(raw.format() != format)
436 {
437 //FIXME: Remove unnecessary copy
438 RawTensor dst(raw.shape(), format);
439 (*get_converter(raw.format(), format))(raw, dst);
440 raw = std::move(dst);
441 }
442
443 return _cache.add(std::forward_as_tuple(name, format), std::move(raw));
444 }
445
find_or_create_raw_tensor(const std::string & name,Format format,Channel channel) const446 const RawTensor &AssetsLibrary::find_or_create_raw_tensor(const std::string &name, Format format, Channel channel) const
447 {
448 std::lock_guard<arm_compute::Mutex> guard(_channel_lock);
449
450 const RawTensor *ptr = _cache.find(std::forward_as_tuple(name, format, channel));
451
452 if(ptr != nullptr)
453 {
454 return *ptr;
455 }
456
457 const RawTensor &src = get(name, format);
458 //FIXME: Need to change shape to match channel
459 RawTensor dst(src.shape(), get_channel_format(channel));
460
461 (*get_extractor(format, channel))(src, dst);
462
463 return _cache.add(std::forward_as_tuple(name, format, channel), std::move(dst));
464 }
465
get_image_shape(const std::string & name)466 TensorShape AssetsLibrary::get_image_shape(const std::string &name)
467 {
468 return load_image(name).shape();
469 }
470
get(const std::string & name) const471 const RawTensor &AssetsLibrary::get(const std::string &name) const
472 {
473 //FIXME: Format should be derived from the image name. Not be fixed to RGB.
474 return find_or_create_raw_tensor(name, Format::RGB888);
475 }
476
get(const std::string & name)477 RawTensor AssetsLibrary::get(const std::string &name)
478 {
479 //FIXME: Format should be derived from the image name. Not be fixed to RGB.
480 return RawTensor(find_or_create_raw_tensor(name, Format::RGB888));
481 }
482
get(const std::string & name,DataType data_type,int num_channels) const483 RawTensor AssetsLibrary::get(const std::string &name, DataType data_type, int num_channels) const
484 {
485 const RawTensor &raw = get(name);
486
487 return RawTensor(raw.shape(), data_type, num_channels);
488 }
489
get(const std::string & name,Format format) const490 const RawTensor &AssetsLibrary::get(const std::string &name, Format format) const
491 {
492 return find_or_create_raw_tensor(name, format);
493 }
494
get(const std::string & name,Format format)495 RawTensor AssetsLibrary::get(const std::string &name, Format format)
496 {
497 return RawTensor(find_or_create_raw_tensor(name, format));
498 }
499
get(const std::string & name,Channel channel) const500 const RawTensor &AssetsLibrary::get(const std::string &name, Channel channel) const
501 {
502 return get(name, get_format_for_channel(channel), channel);
503 }
504
get(const std::string & name,Channel channel)505 RawTensor AssetsLibrary::get(const std::string &name, Channel channel)
506 {
507 return RawTensor(get(name, get_format_for_channel(channel), channel));
508 }
509
get(const std::string & name,Format format,Channel channel) const510 const RawTensor &AssetsLibrary::get(const std::string &name, Format format, Channel channel) const
511 {
512 return find_or_create_raw_tensor(name, format, channel);
513 }
514
get(const std::string & name,Format format,Channel channel)515 RawTensor AssetsLibrary::get(const std::string &name, Format format, Channel channel)
516 {
517 return RawTensor(find_or_create_raw_tensor(name, format, channel));
518 }
519
520 namespace detail
521 {
validate_npy_header(std::ifstream & stream,const std::string & expect_typestr,const TensorShape & expect_shape)522 inline void validate_npy_header(std::ifstream &stream, const std::string &expect_typestr, const TensorShape &expect_shape)
523 {
524 ARM_COMPUTE_UNUSED(expect_typestr);
525 ARM_COMPUTE_UNUSED(expect_shape);
526
527 std::string header_s = npy::read_header(stream);
528
529 // Parse header
530 npy::header_t header = npy::parse_header(header_s);
531
532 std::vector<unsigned long> shape = header.shape;
533 bool fortran_order = header.fortran_order;
534 std::string typestr = header.dtype.str();
535
536 // Check if the typestring matches the given one
537 ARM_COMPUTE_ERROR_ON_MSG(typestr != expect_typestr, "Typestrings mismatch");
538
539 // Validate tensor shape
540 ARM_COMPUTE_ERROR_ON_MSG(shape.size() != expect_shape.num_dimensions(), "Tensor ranks mismatch");
541 if(fortran_order)
542 {
543 for(size_t i = 0; i < shape.size(); ++i)
544 {
545 ARM_COMPUTE_ERROR_ON_MSG(expect_shape[i] != shape[i], "Tensor dimensions mismatch");
546 }
547 }
548 else
549 {
550 for(size_t i = 0; i < shape.size(); ++i)
551 {
552 ARM_COMPUTE_ERROR_ON_MSG(expect_shape[i] != shape[shape.size() - i - 1], "Tensor dimensions mismatch");
553 }
554 }
555 }
556 } // namespace detail
557 } // namespace test
558 } // namespace arm_compute
559