xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/fixtures/BatchNormalizationLayerFixture.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_BATCH_NORMALIZATION_LAYER_FIXTURE
25 #define ARM_COMPUTE_TEST_BATCH_NORMALIZATION_LAYER_FIXTURE
26 
27 #include "arm_compute/core/TensorShape.h"
28 #include "arm_compute/core/Types.h"
29 #include "tests/AssetsLibrary.h"
30 #include "tests/Globals.h"
31 #include "tests/IAccessor.h"
32 #include "tests/framework/Asserts.h"
33 #include "tests/framework/Fixture.h"
34 #include "tests/validation/Helpers.h"
35 #include "tests/validation/reference/BatchNormalizationLayer.h"
36 
37 namespace arm_compute
38 {
39 namespace test
40 {
41 namespace validation
42 {
43 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
44 class BatchNormalizationLayerValidationFixture : public framework::Fixture
45 {
46 public:
47     template <typename...>
setup(TensorShape shape0,TensorShape shape1,float epsilon,bool use_beta,bool use_gamma,ActivationLayerInfo act_info,DataType dt,DataLayout data_layout)48     void setup(TensorShape shape0, TensorShape shape1, float epsilon, bool use_beta, bool use_gamma, ActivationLayerInfo act_info, DataType dt, DataLayout data_layout)
49     {
50         _data_type = dt;
51         _use_beta  = use_beta;
52         _use_gamma = use_gamma;
53 
54         _target    = compute_target(shape0, shape1, epsilon, act_info, dt, data_layout);
55         _reference = compute_reference(shape0, shape1, epsilon, act_info, dt);
56     }
57 
58 protected:
59     template <typename U>
fill(U && src_tensor,U && mean_tensor,U && var_tensor,U && beta_tensor,U && gamma_tensor)60     void fill(U &&src_tensor, U &&mean_tensor, U &&var_tensor, U &&beta_tensor, U &&gamma_tensor)
61     {
62         static_assert(std::is_floating_point<T>::value || std::is_same<T, half>::value, "Only floating point data types supported.");
63         using DistributionType = typename std::conditional<std::is_same<T, half>::value, arm_compute::utils::uniform_real_distribution_16bit<T>, std::uniform_real_distribution<T>>::type;
64 
65         const T          min_bound = T(-1.f);
66         const T          max_bound = T(1.f);
67         DistributionType distribution{ min_bound, max_bound };
68         DistributionType distribution_var{ T(0.f), max_bound };
69 
70         library->fill(src_tensor, distribution, 0);
71         library->fill(mean_tensor, distribution, 1);
72         library->fill(var_tensor, distribution_var, 0);
73         if(_use_beta)
74         {
75             library->fill(beta_tensor, distribution, 3);
76         }
77         else
78         {
79             // Fill with default value 0.f
80             library->fill_tensor_value(beta_tensor, T(0.f));
81         }
82         if(_use_gamma)
83         {
84             library->fill(gamma_tensor, distribution, 4);
85         }
86         else
87         {
88             // Fill with default value 1.f
89             library->fill_tensor_value(gamma_tensor, T(1.f));
90         }
91     }
92 
compute_target(TensorShape shape0,const TensorShape & shape1,float epsilon,ActivationLayerInfo act_info,DataType dt,DataLayout data_layout)93     TensorType compute_target(TensorShape shape0, const TensorShape &shape1, float epsilon, ActivationLayerInfo act_info, DataType dt, DataLayout data_layout)
94     {
95         if(data_layout == DataLayout::NHWC)
96         {
97             permute(shape0, PermutationVector(2U, 0U, 1U));
98         }
99 
100         // Create tensors
101         TensorType src   = create_tensor<TensorType>(shape0, dt, 1, QuantizationInfo(), data_layout);
102         TensorType dst   = create_tensor<TensorType>(shape0, dt, 1, QuantizationInfo(), data_layout);
103         TensorType mean  = create_tensor<TensorType>(shape1, dt, 1);
104         TensorType var   = create_tensor<TensorType>(shape1, dt, 1);
105         TensorType beta  = create_tensor<TensorType>(shape1, dt, 1);
106         TensorType gamma = create_tensor<TensorType>(shape1, dt, 1);
107 
108         // Create and configure function
109         FunctionType norm;
110         TensorType *beta_ptr  = _use_beta ? &beta : nullptr;
111         TensorType *gamma_ptr = _use_gamma ? &gamma : nullptr;
112         norm.configure(&src, &dst, &mean, &var, beta_ptr, gamma_ptr, epsilon, act_info);
113 
114         ARM_COMPUTE_ASSERT(src.info()->is_resizable());
115         ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
116         ARM_COMPUTE_ASSERT(mean.info()->is_resizable());
117         ARM_COMPUTE_ASSERT(var.info()->is_resizable());
118         ARM_COMPUTE_ASSERT(beta.info()->is_resizable());
119         ARM_COMPUTE_ASSERT(gamma.info()->is_resizable());
120 
121         // Allocate tensors
122         src.allocator()->allocate();
123         dst.allocator()->allocate();
124         mean.allocator()->allocate();
125         var.allocator()->allocate();
126         beta.allocator()->allocate();
127         gamma.allocator()->allocate();
128 
129         ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
130         ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
131         ARM_COMPUTE_ASSERT(!mean.info()->is_resizable());
132         ARM_COMPUTE_ASSERT(!var.info()->is_resizable());
133         ARM_COMPUTE_ASSERT(!beta.info()->is_resizable());
134         ARM_COMPUTE_ASSERT(!gamma.info()->is_resizable());
135 
136         // Fill tensors
137         fill(AccessorType(src), AccessorType(mean), AccessorType(var), AccessorType(beta), AccessorType(gamma));
138 
139         // Compute function
140         norm.run();
141 
142         return dst;
143     }
144 
compute_reference(const TensorShape & shape0,const TensorShape & shape1,float epsilon,ActivationLayerInfo act_info,DataType dt)145     SimpleTensor<T> compute_reference(const TensorShape &shape0, const TensorShape &shape1, float epsilon, ActivationLayerInfo act_info, DataType dt)
146     {
147         // Create reference
148         SimpleTensor<T> ref_src{ shape0, dt, 1 };
149         SimpleTensor<T> ref_mean{ shape1, dt, 1 };
150         SimpleTensor<T> ref_var{ shape1, dt, 1 };
151         SimpleTensor<T> ref_beta{ shape1, dt, 1 };
152         SimpleTensor<T> ref_gamma{ shape1, dt, 1 };
153 
154         // Fill reference
155         fill(ref_src, ref_mean, ref_var, ref_beta, ref_gamma);
156 
157         return reference::batch_normalization_layer(ref_src, ref_mean, ref_var, ref_beta, ref_gamma, epsilon, act_info);
158     }
159 
160     TensorType      _target{};
161     SimpleTensor<T> _reference{};
162     DataType        _data_type{};
163     bool            _use_beta{};
164     bool            _use_gamma{};
165 };
166 } // namespace validation
167 } // namespace test
168 } // namespace arm_compute
169 #endif /* ARM_COMPUTE_TEST_BATCH_NORMALIZATION_LAYER_FIXTURE */
170