xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/fixtures/DirectConvolution3DFixture.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
25 #include "tests/framework/Fixture.h"
26 #include "tests/validation/reference/ActivationLayer.h"
27 #include "tests/validation/reference/Conv3D.h"
28 
29 #include <random>
30 
31 namespace arm_compute
32 {
33 namespace test
34 {
35 namespace validation
36 {
37 using namespace arm_compute::misc::shape_calculator;
38 
39 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
40 class DirectConvolution3DValidationGenericFixture : public framework::Fixture
41 {
42 public:
43     using TBias = typename std::conditional < std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, int32_t, T >::type;
44 
45     template <typename...>
46     void setup(const TensorShape &input_shape, int stride_x, int stride_y, int stride_z, int pad_x, int pad_y, int pad_z, unsigned int kernel_width, int kernel_height, int kernel_depth,
47                unsigned int num_kernels, bool has_bias, const ActivationLayerInfo &act_info, const DataType &data_type, const DataLayout &data_layout,
48                const QuantizationInfo &src_qinfo = QuantizationInfo(), const QuantizationInfo &weights_qinfo = QuantizationInfo(), const QuantizationInfo &dst_qinfo = QuantizationInfo())
49     {
50         ARM_COMPUTE_ERROR_ON(data_layout != DataLayout::NDHWC);
51 
52         const TensorShape weights_shape(num_kernels, input_shape[0], kernel_width, kernel_height, kernel_depth);
53         const TensorShape bias_shape(num_kernels);
54         const DataType    bias_data_type = is_data_type_quantized(data_type) ? DataType::S32 : data_type;
55         const Conv3dInfo  conv3d_info(Size3D(stride_x, stride_y, stride_z), Padding3D(pad_x, pad_y, pad_z), act_info, Size3D(1U, 1U, 1U), DimensionRoundingType::FLOOR, false);
56         const TensorShape output_shape = compute_conv3d_shape(input_shape, weights_shape, conv3d_info);
57 
58         _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, conv3d_info, has_bias, data_type, bias_data_type, data_layout, src_qinfo, weights_qinfo, dst_qinfo);
59         _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, conv3d_info, has_bias, data_type, bias_data_type, src_qinfo, weights_qinfo, dst_qinfo);
60     }
61 
62 protected:
63     template <typename U>
fill(U && tensor,int i)64     void fill(U &&tensor, int i)
65     {
66         switch(tensor.data_type())
67         {
68             case DataType::F16:
69             {
70                 arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
71                 library->fill(tensor, distribution, i);
72                 break;
73             }
74             case DataType::F32:
75             {
76                 std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
77                 library->fill(tensor, distribution, i);
78                 break;
79             }
80             default:
81                 library->fill_tensor_uniform(tensor, i);
82         }
83     }
84 
compute_target(const TensorShape & input_shape,const TensorShape & weights_shape,const TensorShape & bias_shape,const TensorShape & output_shape,const Conv3dInfo & conv3d_info,bool has_bias,const DataType & data_type,const DataType & bias_data_type,const DataLayout & data_layout,const QuantizationInfo & src_qinfo,const QuantizationInfo & weights_qinfo,const QuantizationInfo & dst_qinfo)85     TensorType compute_target(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const Conv3dInfo &conv3d_info,
86                               bool has_bias, const DataType &data_type, const DataType &bias_data_type, const DataLayout &data_layout, const QuantizationInfo &src_qinfo,
87                               const QuantizationInfo &weights_qinfo, const QuantizationInfo &dst_qinfo)
88     {
89         // Create tensors
90         TensorType src     = create_tensor<TensorType>(input_shape, data_type, 1, src_qinfo, data_layout);
91         TensorType weights = create_tensor<TensorType>(weights_shape, data_type, 1, weights_qinfo, data_layout);
92         TensorType bias    = has_bias ? create_tensor<TensorType>(bias_shape, bias_data_type, 1, QuantizationInfo()) : TensorType();
93         TensorType dst     = create_tensor<TensorType>(output_shape, data_type, 1, dst_qinfo, data_layout);
94 
95         // Create and configure function
96         FunctionType conv{};
97         conv.configure(&src, &weights, has_bias ? &bias : nullptr, &dst, conv3d_info);
98 
99         ARM_COMPUTE_ASSERT(src.info()->is_resizable());
100         ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
101         ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
102 
103         // Allocate tensors
104         src.allocator()->allocate();
105         weights.allocator()->allocate();
106         dst.allocator()->allocate();
107 
108         ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
109         ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
110         ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
111 
112         // Fill tensors
113         fill(AccessorType(src), 0);
114         fill(AccessorType(weights), 1);
115 
116         if(has_bias)
117         {
118             ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
119             bias.allocator()->allocate();
120             ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
121             fill(AccessorType(bias), 2);
122         }
123 
124         // Compute Direct Convolution 3D function
125         conv.run();
126 
127         return dst;
128     }
129 
compute_reference(const TensorShape & input_shape,const TensorShape & weights_shape,const TensorShape & bias_shape,const TensorShape & output_shape,const Conv3dInfo & conv3d_info,bool has_bias,const DataType & data_type,const DataType & bias_data_type,const QuantizationInfo & src_qinfo,const QuantizationInfo & weights_qinfo,const QuantizationInfo & dst_qinfo)130     SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape,
131                                       const Conv3dInfo &conv3d_info, bool has_bias, const DataType &data_type, const DataType &bias_data_type, const QuantizationInfo &src_qinfo,
132                                       const QuantizationInfo &weights_qinfo, const QuantizationInfo &dst_qinfo)
133     {
134         // Create reference
135         SimpleTensor<T>     src{ input_shape, data_type, 1, src_qinfo };
136         SimpleTensor<T>     weights{ weights_shape, data_type, 1, weights_qinfo };
137         SimpleTensor<TBias> bias{ bias_shape, bias_data_type };
138         SimpleTensor<T>     dst{ output_shape, data_type, 1, dst_qinfo };
139 
140         // Fill reference
141         fill(src, 0);
142         fill(weights, 1);
143 
144         if(has_bias)
145         {
146             fill(bias, 2);
147         }
148 
149         return reference::activation_layer(reference::conv3d<T, TBias>(src, weights, bias, dst, conv3d_info), conv3d_info.act_info);
150     }
151 
152     TensorType      _target{};
153     SimpleTensor<T> _reference{};
154 };
155 
156 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
157 class DirectConvolution3DValidationFixture : public DirectConvolution3DValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
158 {
159 public:
160     template <typename...>
setup(TensorShape input_shape,int stride_x,int stride_y,int stride_z,int pad_x,int pad_y,int pad_z,unsigned int kernel_width,int kernel_height,int kernel_depth,unsigned int num_kernels,bool has_bias,ActivationLayerInfo act_info,DataType data_type,DataLayout data_layout)161     void setup(TensorShape input_shape, int stride_x, int stride_y, int stride_z, int pad_x, int pad_y, int pad_z, unsigned int kernel_width, int kernel_height, int kernel_depth,
162                unsigned int num_kernels, bool has_bias, ActivationLayerInfo act_info, DataType data_type, DataLayout data_layout)
163     {
164         DirectConvolution3DValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, stride_z, pad_x, pad_y, pad_z, kernel_width, kernel_height,
165                                                                                                       kernel_depth, num_kernels, has_bias, act_info, data_type, data_layout);
166     }
167 };
168 
169 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
170 class DirectConvolution3DValidationQuantizedFixture : public DirectConvolution3DValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
171 {
172 public:
173     template <typename...>
setup(TensorShape input_shape,int stride_x,int stride_y,int stride_z,int pad_x,int pad_y,int pad_z,unsigned int kernel_width,int kernel_height,int kernel_depth,unsigned int num_kernels,bool has_bias,ActivationLayerInfo act_info,DataType data_type,DataLayout data_layout,QuantizationInfo src_qinfo,QuantizationInfo weights_qinfo,QuantizationInfo dst_qinfo)174     void setup(TensorShape input_shape, int stride_x, int stride_y, int stride_z, int pad_x, int pad_y, int pad_z, unsigned int kernel_width, int kernel_height, int kernel_depth,
175                unsigned int num_kernels, bool has_bias, ActivationLayerInfo act_info, DataType data_type, DataLayout data_layout, QuantizationInfo src_qinfo, QuantizationInfo weights_qinfo,
176                QuantizationInfo dst_qinfo)
177     {
178         DirectConvolution3DValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, stride_z, pad_x, pad_y, pad_z, kernel_width, kernel_height,
179                                                                                                       kernel_depth, num_kernels, has_bias, act_info, data_type, data_layout, src_qinfo,
180                                                                                                       weights_qinfo, dst_qinfo);
181     }
182 };
183 } // namespace validation
184 } // namespace test
185 } // namespace arm_compute
186