xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/fixtures/DirectConvolutionLayerFixture.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Helpers.h"
25 #include "arm_compute/core/TensorShape.h"
26 #include "arm_compute/core/Types.h"
27 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
28 #include "tests/AssetsLibrary.h"
29 #include "tests/Globals.h"
30 #include "tests/IAccessor.h"
31 #include "tests/framework/Asserts.h"
32 #include "tests/framework/Fixture.h"
33 #include "tests/validation/Helpers.h"
34 #include "tests/validation/fixtures/ConvolutionLayerFixture.h"
35 #include "tests/validation/reference/ConvolutionLayer.h"
36 #include "tests/validation/reference/Permute.h"
37 
38 #include <random>
39 
40 namespace arm_compute
41 {
42 namespace test
43 {
44 namespace validation
45 {
46 using namespace arm_compute::misc::shape_calculator;
47 
48 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
49 class DirectConvolutionValidationGenericFixture : public framework::Fixture
50 {
51 public:
52     using TBias = typename std::conditional < std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, int32_t, T >::type;
53 
54     template <typename...>
55     void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels,
56                DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout, bool mixed_layout = false)
57     {
58         _quantization_info = quantization_info;
59         _data_type         = data_type;
60         _mixed_layout      = mixed_layout;
61 
62         TensorShape         weights_shape(kernel_size, kernel_size, input_shape.z(), num_kernels);
63         const TensorShape   bias_shape(num_kernels);
64         const PadStrideInfo info(stride_x, stride_y, pad_x, pad_y, DimensionRoundingType::FLOOR);
65         const DataType      bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;
66 
67         TensorInfo input_info   = TensorInfo(input_shape, 1, data_type);
68         TensorInfo weights_info = TensorInfo(weights_shape, 1, data_type);
69 
70         const TensorShape output_shape = compute_deep_convolution_shape(input_info, weights_info, info);
71 
72         _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, quantization_info, act_info, data_layout);
73         _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, quantization_info, act_info);
74     }
75 
76     template <typename...>
setup(TensorShape input_shape,TensorShape weights_shape,TensorShape bias_shape,TensorShape output_shape,PadStrideInfo info,Size2D dilation,DataType data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info,DataLayout data_layout)77     void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
78                DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout)
79     {
80         ARM_COMPUTE_ERROR_ON(data_layout == DataLayout::UNKNOWN);
81         ARM_COMPUTE_UNUSED(dilation);
82 
83         _quantization_info = quantization_info;
84         _data_type         = data_type;
85 
86         const DataType bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;
87 
88         _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, quantization_info, act_info, data_layout);
89         _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, quantization_info, act_info);
90     }
91 
92 protected:
mix_layout(FunctionType & layer,TensorType & src,TensorType & dst)93     void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
94     {
95         DataLayout data_layout = src.info()->data_layout();
96         // Test Multi DataLayout graph cases, when the data layout changes after configure
97         src.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
98         dst.info()->set_data_layout(data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
99 
100         // Compute Convolution function
101         layer.run();
102 
103         // Reinstating original data layout for the test suite to properly check the values
104         src.info()->set_data_layout(data_layout);
105         dst.info()->set_data_layout(data_layout);
106     }
107 
108     template <typename U>
fill(U && tensor,int i)109     void fill(U &&tensor, int i)
110     {
111         switch(tensor.data_type())
112         {
113             case DataType::QASYMM8:
114             {
115                 std::uniform_int_distribution<uint32_t> distribution(0, 50);
116                 library->fill(tensor, distribution, i);
117                 break;
118             }
119             case DataType::QASYMM8_SIGNED:
120             {
121                 // Use small input range to avoid all the test results being saturated at the end.
122                 std::uniform_int_distribution<int32_t> distribution(-25, 25);
123                 library->fill(tensor, distribution, i);
124                 break;
125             }
126             case DataType::F16:
127             {
128                 arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
129                 library->fill(tensor, distribution, i);
130                 break;
131             }
132             case DataType::F32:
133             {
134                 std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
135                 library->fill(tensor, distribution, i);
136                 break;
137             }
138             case DataType::S32:
139             {
140                 std::uniform_int_distribution<int32_t> distribution(-5, 5);
141                 library->fill(tensor, distribution, i);
142                 break;
143             }
144             default:
145                 library->fill_tensor_uniform(tensor, i);
146         }
147     }
148 
compute_target(TensorShape input_shape,TensorShape weights_shape,const TensorShape & bias_shape,TensorShape output_shape,const PadStrideInfo & info,DataType data_type,DataType bias_data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info,const DataLayout & data_layout)149     TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info,
150                               DataType data_type, DataType bias_data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, const DataLayout &data_layout)
151     {
152         if(data_layout == DataLayout::NHWC)
153         {
154             permute(input_shape, PermutationVector(2U, 0U, 1U));
155             permute(weights_shape, PermutationVector(2U, 0U, 1U));
156             permute(output_shape, PermutationVector(2U, 0U, 1U));
157         }
158 
159         // Create tensors
160         TensorType src     = create_tensor<TensorType>(input_shape, data_type, 1, quantization_info, data_layout);
161         TensorType weights = create_tensor<TensorType>(weights_shape, data_type, 1, quantization_info, data_layout);
162         TensorType bias    = create_tensor<TensorType>(bias_shape, bias_data_type, 1, quantization_info);
163         TensorType dst     = create_tensor<TensorType>(output_shape, data_type, 1, quantization_info, data_layout);
164 
165         add_padding_x({ &src, &bias, &dst }, data_layout);
166         add_padding_x({ &weights }, data_layout, input_shape[0] % 4 == 0); // Don't add left padding if cl image will be used
167 
168         // Create and configure function
169         FunctionType conv;
170         conv.configure(&src, &weights, &bias, &dst, info, act_info);
171 
172         ARM_COMPUTE_ASSERT(src.info()->is_resizable());
173         ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
174         ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
175         ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
176 
177         // Allocate tensors
178         src.allocator()->allocate();
179         weights.allocator()->allocate();
180         bias.allocator()->allocate();
181         dst.allocator()->allocate();
182 
183         ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
184         ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
185         ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
186         ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
187 
188         // Fill tensors
189         fill(AccessorType(src), 0);
190         fill(AccessorType(weights), 1);
191         fill(AccessorType(bias), 2);
192 
193         if(_mixed_layout)
194         {
195             mix_layout(conv, src, dst);
196         }
197         else
198         {
199             // Compute Convolution function
200             conv.run();
201         }
202 
203         return dst;
204     }
205 
compute_reference(const TensorShape & input_shape,const TensorShape & weights_shape,const TensorShape & bias_shape,const TensorShape & output_shape,const PadStrideInfo & info,DataType data_type,DataType bias_data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info)206     SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
207                                       DataType data_type, DataType bias_data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info)
208     {
209         // Create reference
210         SimpleTensor<T>     src{ input_shape, data_type, 1, quantization_info };
211         SimpleTensor<T>     weights{ weights_shape, data_type, 1, quantization_info };
212         SimpleTensor<TBias> bias{ bias_shape, bias_data_type, 1, quantization_info };
213 
214         // Fill reference
215         fill(src, 0);
216         fill(weights, 1);
217         fill(bias, 2);
218 
219         SimpleTensor<T> dst = reference::convolution_layer<T>(src, weights, bias, output_shape, info);
220         return (act_info.enabled()) ? reference::activation_layer<T>(dst, act_info) : dst;
221     }
222     TensorType       _target{};
223     SimpleTensor<T>  _reference{};
224     QuantizationInfo _quantization_info{};
225     DataType         _data_type{};
226     bool             _mixed_layout{ false };
227 };
228 
229 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
230 class DirectConvolutionValidationFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
231 {
232 public:
233     template <typename...>
setup(TensorShape input_shape,int stride_x,int stride_y,int pad_x,int pad_y,unsigned int kernel_size,unsigned int num_kernels,DataType data_type,ActivationLayerInfo act_info,DataLayout data_layout)234     void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, ActivationLayerInfo act_info,
235                DataLayout data_layout)
236     {
237         DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, QuantizationInfo(),
238                                                                                                     act_info, data_layout, mixed_layout);
239     }
240 };
241 
242 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
243 class DirectConvolutionValidationQuantizedFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
244 {
245 public:
246     template <typename...>
setup(TensorShape input_shape,int stride_x,int stride_y,int pad_x,int pad_y,unsigned int kernel_size,unsigned int num_kernels,DataType data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info,DataLayout data_layout)247     void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, QuantizationInfo quantization_info,
248                ActivationLayerInfo act_info, DataLayout data_layout)
249     {
250         DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, quantization_info,
251                                                                                                     act_info, data_layout, mixed_layout);
252     }
253 };
254 
255 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
256 class DirectConvolutionValidationWithTensorShapesQuantizedFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
257 {
258 public:
259     template <typename...>
setup(TensorShape input_shape,TensorShape weights_shape,TensorShape bias_shape,TensorShape output_shape,PadStrideInfo info,Size2D dilation,DataType data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info,DataLayout data_layout)260     void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
261                DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout)
262     {
263         DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, quantization_info,
264                                                                                                     act_info, data_layout);
265     }
266 };
267 
268 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
269 class DirectConvolutionValidationWithTensorShapesFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
270 {
271 public:
272     template <typename...>
setup(TensorShape input_shape,TensorShape weights_shape,TensorShape bias_shape,TensorShape output_shape,PadStrideInfo info,Size2D dilation,DataType data_type,ActivationLayerInfo act_info)273     void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
274                DataType data_type, ActivationLayerInfo act_info)
275     {
276         DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, QuantizationInfo(),
277                                                                                                     act_info, DataLayout::NCHW);
278     }
279 };
280 
281 } // namespace validation
282 } // namespace test
283 } // namespace arm_compute
284