xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/fixtures/PadLayerFixture.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_PADLAYER_FIXTURE
25 #define ARM_COMPUTE_TEST_PADLAYER_FIXTURE
26 
27 #include "arm_compute/core/TensorShape.h"
28 #include "arm_compute/core/Types.h"
29 #include "tests/AssetsLibrary.h"
30 #include "tests/Globals.h"
31 #include "tests/IAccessor.h"
32 #include "tests/framework/Asserts.h"
33 #include "tests/framework/Fixture.h"
34 #include "tests/validation/Helpers.h"
35 #include "tests/validation/reference/PadLayer.h"
36 
37 namespace arm_compute
38 {
39 namespace test
40 {
41 namespace validation
42 {
43 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
44 class PaddingFixture : public framework::Fixture
45 {
46 public:
47     template <typename...>
setup(TensorShape shape,DataType data_type,const PaddingList & padding,const PaddingMode mode)48     void setup(TensorShape shape, DataType data_type, const PaddingList &padding, const PaddingMode mode)
49     {
50         PaddingList clamped_padding = padding;
51         if(mode != PaddingMode::CONSTANT)
52         {
53             // Clamp padding to prevent applying more than is possible.
54             for(uint32_t i = 0; i < padding.size(); ++i)
55             {
56                 if(mode == PaddingMode::REFLECT)
57                 {
58                     clamped_padding[i].first  = std::min(static_cast<uint64_t>(padding[i].first), static_cast<uint64_t>(shape[i] - 1));
59                     clamped_padding[i].second = std::min(static_cast<uint64_t>(padding[i].second), static_cast<uint64_t>(shape[i] - 1));
60                 }
61                 else
62                 {
63                     clamped_padding[i].first  = std::min(static_cast<uint64_t>(padding[i].first), static_cast<uint64_t>(shape[i]));
64                     clamped_padding[i].second = std::min(static_cast<uint64_t>(padding[i].second), static_cast<uint64_t>(shape[i]));
65                 }
66             }
67         }
68         _target    = compute_target(shape, data_type, clamped_padding, mode);
69         _reference = compute_reference(shape, data_type, clamped_padding, mode);
70     }
71 
72 protected:
73     template <typename U>
fill(U && tensor,int i)74     void fill(U &&tensor, int i)
75     {
76         library->fill_tensor_uniform(tensor, i);
77     }
78 
compute_target(const TensorShape & shape,DataType data_type,const PaddingList & paddings,const PaddingMode mode)79     TensorType compute_target(const TensorShape &shape,
80                               DataType           data_type,
81                               const PaddingList &paddings,
82                               const PaddingMode  mode)
83     {
84         // Create tensors
85         TensorType src = create_tensor<TensorType>(shape, data_type);
86         TensorType dst;
87 
88         TensorType const_val = create_tensor<TensorType>(TensorShape(1), data_type);
89         const_val.allocator()->allocate();
90         fill(AccessorType(const_val), 1);
91         T const_value = *static_cast<T *>(AccessorType(const_val)(Coordinates(0)));
92 
93         // Create and configure function
94         FunctionType padding;
95         padding.configure(&src, &dst, paddings, const_value, mode);
96 
97         ARM_COMPUTE_ASSERT(src.info()->is_resizable());
98         ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
99 
100         // Allocate tensors
101         src.allocator()->allocate();
102         dst.allocator()->allocate();
103 
104         ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
105         ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
106 
107         // Fill tensors
108         fill(AccessorType(src), 0);
109 
110         // Compute function
111         padding.run();
112         return dst;
113     }
114 
compute_reference(const TensorShape & shape,DataType data_type,const PaddingList & paddings,const PaddingMode mode)115     SimpleTensor<T> compute_reference(const TensorShape &shape, DataType data_type,
116                                       const PaddingList &paddings, const PaddingMode mode)
117     {
118         // Create reference tensor
119         SimpleTensor<T> src{ shape, data_type };
120         SimpleTensor<T> const_val{ TensorShape(1), data_type };
121 
122         // Fill reference tensor
123         fill(src, 0);
124         fill(const_val, 1);
125 
126         return reference::pad_layer(src, paddings, const_val[0], mode);
127     }
128 
129     TensorType      _target{};
130     SimpleTensor<T> _reference{};
131 };
132 
133 } // namespace validation
134 } // namespace test
135 } // namespace arm_compute
136 #endif /* ARM_COMPUTE_TEST_PADLAYER_FIXTURE */
137