1 /*
2 * Copyright (c) 2017-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "PixelWiseMultiplication.h"
25
26 #include "tests/validation/Helpers.h"
27
28 namespace arm_compute
29 {
30 namespace test
31 {
32 namespace validation
33 {
34 namespace reference
35 {
36 template <class T>
37 struct is_floating_point
38 : std::integral_constant < bool,
39 std::is_same<float, typename std::remove_cv<T>::type>::value || std::is_same<half_float::half, typename std::remove_cv<T>::type>::value
40 || std::is_same<double, typename std::remove_cv<T>::type>::value || std::is_same<long double, typename std::remove_cv<T>::type>::value >
41 {
42 };
43
44 namespace
45 {
46 constexpr float scale1_constant = 1.f;
47
48 /** Compute the result of `src1 * src2 * scale`. The result type always matches the type of @p src2.
49 *
50 * @param[in] src1 An input value. Data types supported: U8/S16/F16/F32.
51 * @param[in] src2 An input value. Data types supported: same as @p src1.
52 * @param[in] scale Scale to apply after multiplication.
53 * Scale must be positive and its value must be either 1/255 or 1/2^n where n is between 0 and 15.
54 * @param[in] convert_policy Overflow policy. Supported overflow policies: Wrap, Saturate
55 * @param[in] rounding_policy Rounding policy. Supported rounding modes: to zero, to nearest even.
56 */
57 template <typename T1, typename T2, typename T3>
mul(const T1 src1,const T2 src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy)58 T3 mul(const T1 src1, const T2 src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
59 {
60 using intermediate_type = typename common_promoted_signed_type<T1, T2, T3>::intermediate_type;
61
62 const double val = static_cast<intermediate_type>(src1) * static_cast<intermediate_type>(src2) * static_cast<double>(scale);
63
64 if(is_floating_point<T3>::value)
65 {
66 const auto result = static_cast<T3>(val);
67
68 return result;
69 }
70 else
71 {
72 double rounded_val = 0;
73 switch(rounding_policy)
74 {
75 case(RoundingPolicy::TO_ZERO):
76 rounded_val = support::cpp11::trunc(val);
77 break;
78 case(RoundingPolicy::TO_NEAREST_UP):
79 rounded_val = round_half_up(val);
80 break;
81 case(RoundingPolicy::TO_NEAREST_EVEN):
82 rounded_val = round_half_even(val);
83 break;
84 default:
85 ARM_COMPUTE_ERROR("Unsupported rounding policy");
86 }
87
88 const auto result = static_cast<T3>((convert_policy == ConvertPolicy::SATURATE) ? saturate_cast<T3>(rounded_val) : rounded_val);
89
90 return result;
91 }
92 }
93
94 template <>
mul(const int32_t src1,const int32_t src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy)95 int32_t mul(const int32_t src1, const int32_t src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
96 {
97 const int64_t intermediate_val = static_cast<int64_t>(src1) * static_cast<int64_t>(src2);
98
99 if(std::abs(scale - scale1_constant) < 0.00001f)
100 {
101 // Use bit-accurate integer arithmetic for scale == 1
102 // Apply conversion
103 if(convert_policy == ConvertPolicy::SATURATE)
104 {
105 return saturate_cast<int32_t>(intermediate_val);
106 }
107 else
108 {
109 // Correct wrapping behaviour for int32_t
110 const auto i32_hi = static_cast<int64_t>(std::numeric_limits<int32_t>::max());
111 const auto i32_lo = static_cast<int64_t>(std::numeric_limits<int32_t>::lowest());
112 const auto i32_wi = static_cast<int64_t>(1) << 32;
113 int64_t wrapped_rounded_val = intermediate_val - i32_wi * static_cast<int64_t>(support::cpp11::trunc(static_cast<double>(intermediate_val) / i32_wi));
114 if(wrapped_rounded_val <= i32_hi)
115 {
116 return static_cast<int32_t>(wrapped_rounded_val);
117 }
118 else
119 {
120 // Values beyond i32_hi wrap around to negatives
121 return static_cast<int32_t>((wrapped_rounded_val - i32_hi) + i32_lo - 1);
122 }
123 }
124 }
125 else
126 {
127 // Use double arithmetic for scale != 1; may not be bit-accurate
128 // Apply scaling
129 // scale == 1 / 2^scale_exponent
130 int scale_exponent = 0;
131 std::frexp(scale, &scale_exponent);
132 // Store the positive exponent. We know that we compute 1/2^n
133 // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
134 scale_exponent = std::abs(scale_exponent - 1);
135 const double scale_inv = static_cast<int64_t>(1) << scale_exponent;
136 const double val = intermediate_val / scale_inv;
137 // Apply rounding
138 double rounded_val = 0;
139 switch(rounding_policy)
140 {
141 case(RoundingPolicy::TO_ZERO):
142 rounded_val = support::cpp11::trunc(val);
143 break;
144 case(RoundingPolicy::TO_NEAREST_UP):
145 rounded_val = round_half_up(val);
146 break;
147 case(RoundingPolicy::TO_NEAREST_EVEN):
148 rounded_val = round_half_even(val);
149 break;
150 default:
151 ARM_COMPUTE_ERROR("Unsupported rounding policy");
152 }
153 // Apply conversion
154 if(convert_policy == ConvertPolicy::SATURATE)
155 {
156 return saturate_cast<int32_t>(rounded_val);
157 }
158 else
159 {
160 // Correct wrapping behaviour for int32_t
161 const auto i32_hi = static_cast<double>(std::numeric_limits<int32_t>::max());
162 const auto i32_lo = static_cast<double>(std::numeric_limits<int32_t>::lowest());
163 const auto i32_wi = static_cast<double>(static_cast<int64_t>(1) << 32);
164 double wrapped_rounded_val = rounded_val - i32_wi * std::floor(rounded_val / i32_wi);
165 if(wrapped_rounded_val <= i32_hi)
166 {
167 return static_cast<int32_t>(wrapped_rounded_val);
168 }
169 else
170 {
171 // Values beyond i32_hi wrap around to negatives
172 return static_cast<int32_t>((wrapped_rounded_val - i32_hi) + i32_lo - 1);
173 }
174 }
175 }
176 }
177
178 template <size_t dim>
179 struct BroadcastUnroll
180 {
181 template <typename T1, typename T2, typename T3>
unrollarm_compute::test::validation::reference::__anon60c5b57b0111::BroadcastUnroll182 static void unroll(const SimpleTensor<T1> &src1, const SimpleTensor<T2> &src2, SimpleTensor<T3> &dst,
183 float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
184 Coordinates &id_src1, Coordinates &id_src2, Coordinates &id_dst)
185 {
186 const bool src1_is_broadcast = (src1.shape()[dim - 1] != dst.shape()[dim - 1]);
187 const bool src2_is_broadcast = (src2.shape()[dim - 1] != dst.shape()[dim - 1]);
188
189 id_src1.set(dim - 1, 0);
190 id_src2.set(dim - 1, 0);
191 id_dst.set(dim - 1, 0);
192
193 for(size_t i = 0; i < dst.shape()[dim - 1]; ++i, ++id_dst[dim - 1])
194 {
195 BroadcastUnroll < dim - 1 >::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
196
197 id_src1[dim - 1] += !src1_is_broadcast;
198 id_src2[dim - 1] += !src2_is_broadcast;
199 }
200 }
201 };
202
203 template <>
204 struct BroadcastUnroll<0>
205 {
206 template <typename T1, typename T2, typename T3>
unrollarm_compute::test::validation::reference::__anon60c5b57b0111::BroadcastUnroll207 static void unroll(const SimpleTensor<T1> &src1, const SimpleTensor<T2> &src2, SimpleTensor<T3> &dst,
208 float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
209 Coordinates &id_src1, Coordinates &id_src2, Coordinates &id_dst)
210 {
211 dst[coord2index(dst.shape(), id_dst)] = mul<T1, T2, T3>(src1[coord2index(src1.shape(), id_src1)], src2[coord2index(src2.shape(), id_src2)], scale, convert_policy, rounding_policy);
212 }
213 };
214 } // namespace
215
216 template <typename T1, typename T2, typename T3>
pixel_wise_multiplication(const SimpleTensor<T1> & src1,const SimpleTensor<T2> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)217 SimpleTensor<T3> pixel_wise_multiplication(const SimpleTensor<T1> &src1, const SimpleTensor<T2> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
218 DataType dt_out, const QuantizationInfo &qout)
219 {
220 ARM_COMPUTE_UNUSED(qout);
221
222 SimpleTensor<T3> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out);
223
224 if(scale < 0)
225 {
226 ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
227 }
228
229 Coordinates id_src1{};
230 Coordinates id_src2{};
231 Coordinates id_dst{};
232
233 BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
234
235 return dst;
236 }
237
238 template <>
pixel_wise_multiplication(const SimpleTensor<uint8_t> & src1,const SimpleTensor<uint8_t> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)239 SimpleTensor<uint8_t> pixel_wise_multiplication(const SimpleTensor<uint8_t> &src1, const SimpleTensor<uint8_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
240 DataType dt_out, const QuantizationInfo &qout)
241 {
242 SimpleTensor<uint8_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
243
244 if(src1.data_type() == DataType::QASYMM8 && src2.data_type() == DataType::QASYMM8)
245 {
246 SimpleTensor<float> src1_tmp = convert_from_asymmetric(src1);
247 SimpleTensor<float> src2_tmp = convert_from_asymmetric(src2);
248 SimpleTensor<float> dst_tmp = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
249 dst = convert_to_asymmetric<uint8_t>(dst_tmp, qout);
250 }
251 else
252 {
253 if(scale < 0)
254 {
255 ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
256 }
257
258 Coordinates id_src1{};
259 Coordinates id_src2{};
260 Coordinates id_dst{};
261 BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
262 }
263 return dst;
264 }
265
266 template <>
pixel_wise_multiplication(const SimpleTensor<uint8_t> & src1,const SimpleTensor<uint8_t> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)267 SimpleTensor<int16_t> pixel_wise_multiplication(const SimpleTensor<uint8_t> &src1, const SimpleTensor<uint8_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
268 DataType dt_out, const QuantizationInfo &qout)
269 {
270 SimpleTensor<int16_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
271
272 if(src1.data_type() == DataType::QASYMM8 && src2.data_type() == DataType::QASYMM8)
273 {
274 SimpleTensor<float> src1_tmp = convert_from_asymmetric(src1);
275 SimpleTensor<float> src2_tmp = convert_from_asymmetric(src2);
276 SimpleTensor<float> dst_tmp = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
277 dst = convert_to_symmetric<int16_t>(dst_tmp, qout);
278 }
279 else
280 {
281 if(scale < 0)
282 {
283 ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
284 }
285
286 Coordinates id_src1{};
287 Coordinates id_src2{};
288 Coordinates id_dst{};
289 BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
290 }
291 return dst;
292 }
293
294 template <>
pixel_wise_multiplication(const SimpleTensor<int8_t> & src1,const SimpleTensor<int8_t> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)295 SimpleTensor<int8_t> pixel_wise_multiplication(const SimpleTensor<int8_t> &src1, const SimpleTensor<int8_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
296 DataType dt_out, const QuantizationInfo &qout)
297 {
298 SimpleTensor<int8_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
299
300 if(src1.data_type() == DataType::QASYMM8_SIGNED && src2.data_type() == DataType::QASYMM8_SIGNED)
301 {
302 SimpleTensor<float> src1_tmp = convert_from_asymmetric(src1);
303 SimpleTensor<float> src2_tmp = convert_from_asymmetric(src2);
304 SimpleTensor<float> dst_tmp = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
305 dst = convert_to_asymmetric<int8_t>(dst_tmp, qout);
306 }
307 else
308 {
309 if(scale < 0)
310 {
311 ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
312 }
313
314 Coordinates id_src1{};
315 Coordinates id_src2{};
316 Coordinates id_dst{};
317 BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
318 }
319 return dst;
320 }
321
322 template <>
pixel_wise_multiplication(const SimpleTensor<int16_t> & src1,const SimpleTensor<int16_t> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)323 SimpleTensor<int16_t> pixel_wise_multiplication(const SimpleTensor<int16_t> &src1, const SimpleTensor<int16_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
324 DataType dt_out, const QuantizationInfo &qout)
325 {
326 SimpleTensor<int16_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
327
328 if(src1.data_type() == DataType::QSYMM16 && src2.data_type() == DataType::QSYMM16)
329 {
330 SimpleTensor<float> src1_tmp = convert_from_symmetric<int16_t>(src1);
331 SimpleTensor<float> src2_tmp = convert_from_symmetric<int16_t>(src2);
332 SimpleTensor<float> dst_tmp = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
333 dst = convert_to_symmetric<int16_t>(dst_tmp, qout);
334 }
335 else
336 {
337 if(scale < 0)
338 {
339 ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
340 }
341
342 Coordinates id_src1{};
343 Coordinates id_src2{};
344 Coordinates id_dst{};
345 BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
346 }
347 return dst;
348 }
349 // *INDENT-OFF*
350 // clang-format off
351 template SimpleTensor<int16_t> pixel_wise_multiplication(const SimpleTensor<uint8_t> &src1, const SimpleTensor<int16_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
352 template SimpleTensor<int32_t> pixel_wise_multiplication(const SimpleTensor<int16_t> &src1, const SimpleTensor<int16_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
353 template SimpleTensor<int32_t> pixel_wise_multiplication(const SimpleTensor<int32_t> &src1, const SimpleTensor<int32_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
354 template SimpleTensor<float> pixel_wise_multiplication(const SimpleTensor<float> &src1, const SimpleTensor<float> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
355 template SimpleTensor<half_float::half> pixel_wise_multiplication(const SimpleTensor<half_float::half> &src1, const SimpleTensor<half_float::half> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
356 // clang-format on
357 // *INDENT-ON*
358 } // namespace reference
359 } // namespace validation
360 } // namespace test
361 } // namespace arm_compute
362