xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/PixelWiseMultiplication.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "PixelWiseMultiplication.h"
25 
26 #include "tests/validation/Helpers.h"
27 
28 namespace arm_compute
29 {
30 namespace test
31 {
32 namespace validation
33 {
34 namespace reference
35 {
36 template <class T>
37 struct is_floating_point
38     : std::integral_constant < bool,
39       std::is_same<float, typename std::remove_cv<T>::type>::value || std::is_same<half_float::half, typename std::remove_cv<T>::type>::value
40       || std::is_same<double, typename std::remove_cv<T>::type>::value || std::is_same<long double, typename std::remove_cv<T>::type>::value >
41 {
42 };
43 
44 namespace
45 {
46 constexpr float scale1_constant = 1.f;
47 
48 /** Compute the result of `src1 * src2 * scale`. The result type always matches the type of @p src2.
49  *
50  * @param[in] src1            An input value. Data types supported: U8/S16/F16/F32.
51  * @param[in] src2            An input value. Data types supported: same as @p src1.
52  * @param[in] scale           Scale to apply after multiplication.
53  *                            Scale must be positive and its value must be either 1/255 or 1/2^n where n is between 0 and 15.
54  * @param[in] convert_policy  Overflow policy. Supported overflow policies: Wrap, Saturate
55  * @param[in] rounding_policy Rounding policy. Supported rounding modes: to zero, to nearest even.
56  */
57 template <typename T1, typename T2, typename T3>
mul(const T1 src1,const T2 src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy)58 T3 mul(const T1 src1, const T2 src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
59 {
60     using intermediate_type = typename common_promoted_signed_type<T1, T2, T3>::intermediate_type;
61 
62     const double val = static_cast<intermediate_type>(src1) * static_cast<intermediate_type>(src2) * static_cast<double>(scale);
63 
64     if(is_floating_point<T3>::value)
65     {
66         const auto result = static_cast<T3>(val);
67 
68         return result;
69     }
70     else
71     {
72         double rounded_val = 0;
73         switch(rounding_policy)
74         {
75             case(RoundingPolicy::TO_ZERO):
76                 rounded_val = support::cpp11::trunc(val);
77                 break;
78             case(RoundingPolicy::TO_NEAREST_UP):
79                 rounded_val = round_half_up(val);
80                 break;
81             case(RoundingPolicy::TO_NEAREST_EVEN):
82                 rounded_val = round_half_even(val);
83                 break;
84             default:
85                 ARM_COMPUTE_ERROR("Unsupported rounding policy");
86         }
87 
88         const auto result = static_cast<T3>((convert_policy == ConvertPolicy::SATURATE) ? saturate_cast<T3>(rounded_val) : rounded_val);
89 
90         return result;
91     }
92 }
93 
94 template <>
mul(const int32_t src1,const int32_t src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy)95 int32_t mul(const int32_t src1, const int32_t src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
96 {
97     const int64_t intermediate_val = static_cast<int64_t>(src1) * static_cast<int64_t>(src2);
98 
99     if(std::abs(scale - scale1_constant) < 0.00001f)
100     {
101         // Use bit-accurate integer arithmetic for scale == 1
102         // Apply conversion
103         if(convert_policy == ConvertPolicy::SATURATE)
104         {
105             return saturate_cast<int32_t>(intermediate_val);
106         }
107         else
108         {
109             // Correct wrapping behaviour for int32_t
110             const auto i32_hi              = static_cast<int64_t>(std::numeric_limits<int32_t>::max());
111             const auto i32_lo              = static_cast<int64_t>(std::numeric_limits<int32_t>::lowest());
112             const auto i32_wi              = static_cast<int64_t>(1) << 32;
113             int64_t    wrapped_rounded_val = intermediate_val - i32_wi * static_cast<int64_t>(support::cpp11::trunc(static_cast<double>(intermediate_val) / i32_wi));
114             if(wrapped_rounded_val <= i32_hi)
115             {
116                 return static_cast<int32_t>(wrapped_rounded_val);
117             }
118             else
119             {
120                 // Values beyond i32_hi wrap around to negatives
121                 return static_cast<int32_t>((wrapped_rounded_val - i32_hi) + i32_lo - 1);
122             }
123         }
124     }
125     else
126     {
127         // Use double arithmetic for scale != 1; may not be bit-accurate
128         // Apply scaling
129         // scale == 1 / 2^scale_exponent
130         int scale_exponent = 0;
131         std::frexp(scale, &scale_exponent);
132         // Store the positive exponent. We know that we compute 1/2^n
133         // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
134         scale_exponent         = std::abs(scale_exponent - 1);
135         const double scale_inv = static_cast<int64_t>(1) << scale_exponent;
136         const double val       = intermediate_val / scale_inv;
137         // Apply rounding
138         double rounded_val = 0;
139         switch(rounding_policy)
140         {
141             case(RoundingPolicy::TO_ZERO):
142                 rounded_val = support::cpp11::trunc(val);
143                 break;
144             case(RoundingPolicy::TO_NEAREST_UP):
145                 rounded_val = round_half_up(val);
146                 break;
147             case(RoundingPolicy::TO_NEAREST_EVEN):
148                 rounded_val = round_half_even(val);
149                 break;
150             default:
151                 ARM_COMPUTE_ERROR("Unsupported rounding policy");
152         }
153         // Apply conversion
154         if(convert_policy == ConvertPolicy::SATURATE)
155         {
156             return saturate_cast<int32_t>(rounded_val);
157         }
158         else
159         {
160             // Correct wrapping behaviour for int32_t
161             const auto i32_hi              = static_cast<double>(std::numeric_limits<int32_t>::max());
162             const auto i32_lo              = static_cast<double>(std::numeric_limits<int32_t>::lowest());
163             const auto i32_wi              = static_cast<double>(static_cast<int64_t>(1) << 32);
164             double     wrapped_rounded_val = rounded_val - i32_wi * std::floor(rounded_val / i32_wi);
165             if(wrapped_rounded_val <= i32_hi)
166             {
167                 return static_cast<int32_t>(wrapped_rounded_val);
168             }
169             else
170             {
171                 // Values beyond i32_hi wrap around to negatives
172                 return static_cast<int32_t>((wrapped_rounded_val - i32_hi) + i32_lo - 1);
173             }
174         }
175     }
176 }
177 
178 template <size_t dim>
179 struct BroadcastUnroll
180 {
181     template <typename T1, typename T2, typename T3>
unrollarm_compute::test::validation::reference::__anon60c5b57b0111::BroadcastUnroll182     static void unroll(const SimpleTensor<T1> &src1, const SimpleTensor<T2> &src2, SimpleTensor<T3> &dst,
183                        float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
184                        Coordinates &id_src1, Coordinates &id_src2, Coordinates &id_dst)
185     {
186         const bool src1_is_broadcast = (src1.shape()[dim - 1] != dst.shape()[dim - 1]);
187         const bool src2_is_broadcast = (src2.shape()[dim - 1] != dst.shape()[dim - 1]);
188 
189         id_src1.set(dim - 1, 0);
190         id_src2.set(dim - 1, 0);
191         id_dst.set(dim - 1, 0);
192 
193         for(size_t i = 0; i < dst.shape()[dim - 1]; ++i, ++id_dst[dim - 1])
194         {
195             BroadcastUnroll < dim - 1 >::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
196 
197             id_src1[dim - 1] += !src1_is_broadcast;
198             id_src2[dim - 1] += !src2_is_broadcast;
199         }
200     }
201 };
202 
203 template <>
204 struct BroadcastUnroll<0>
205 {
206     template <typename T1, typename T2, typename T3>
unrollarm_compute::test::validation::reference::__anon60c5b57b0111::BroadcastUnroll207     static void unroll(const SimpleTensor<T1> &src1, const SimpleTensor<T2> &src2, SimpleTensor<T3> &dst,
208                        float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
209                        Coordinates &id_src1, Coordinates &id_src2, Coordinates &id_dst)
210     {
211         dst[coord2index(dst.shape(), id_dst)] = mul<T1, T2, T3>(src1[coord2index(src1.shape(), id_src1)], src2[coord2index(src2.shape(), id_src2)], scale, convert_policy, rounding_policy);
212     }
213 };
214 } // namespace
215 
216 template <typename T1, typename T2, typename T3>
pixel_wise_multiplication(const SimpleTensor<T1> & src1,const SimpleTensor<T2> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)217 SimpleTensor<T3> pixel_wise_multiplication(const SimpleTensor<T1> &src1, const SimpleTensor<T2> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
218                                            DataType dt_out, const QuantizationInfo &qout)
219 {
220     ARM_COMPUTE_UNUSED(qout);
221 
222     SimpleTensor<T3> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out);
223 
224     if(scale < 0)
225     {
226         ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
227     }
228 
229     Coordinates id_src1{};
230     Coordinates id_src2{};
231     Coordinates id_dst{};
232 
233     BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
234 
235     return dst;
236 }
237 
238 template <>
pixel_wise_multiplication(const SimpleTensor<uint8_t> & src1,const SimpleTensor<uint8_t> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)239 SimpleTensor<uint8_t> pixel_wise_multiplication(const SimpleTensor<uint8_t> &src1, const SimpleTensor<uint8_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
240                                                 DataType dt_out, const QuantizationInfo &qout)
241 {
242     SimpleTensor<uint8_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
243 
244     if(src1.data_type() == DataType::QASYMM8 && src2.data_type() == DataType::QASYMM8)
245     {
246         SimpleTensor<float> src1_tmp = convert_from_asymmetric(src1);
247         SimpleTensor<float> src2_tmp = convert_from_asymmetric(src2);
248         SimpleTensor<float> dst_tmp  = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
249         dst                          = convert_to_asymmetric<uint8_t>(dst_tmp, qout);
250     }
251     else
252     {
253         if(scale < 0)
254         {
255             ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
256         }
257 
258         Coordinates id_src1{};
259         Coordinates id_src2{};
260         Coordinates id_dst{};
261         BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
262     }
263     return dst;
264 }
265 
266 template <>
pixel_wise_multiplication(const SimpleTensor<uint8_t> & src1,const SimpleTensor<uint8_t> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)267 SimpleTensor<int16_t> pixel_wise_multiplication(const SimpleTensor<uint8_t> &src1, const SimpleTensor<uint8_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
268                                                 DataType dt_out, const QuantizationInfo &qout)
269 {
270     SimpleTensor<int16_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
271 
272     if(src1.data_type() == DataType::QASYMM8 && src2.data_type() == DataType::QASYMM8)
273     {
274         SimpleTensor<float> src1_tmp = convert_from_asymmetric(src1);
275         SimpleTensor<float> src2_tmp = convert_from_asymmetric(src2);
276         SimpleTensor<float> dst_tmp  = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
277         dst                          = convert_to_symmetric<int16_t>(dst_tmp, qout);
278     }
279     else
280     {
281         if(scale < 0)
282         {
283             ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
284         }
285 
286         Coordinates id_src1{};
287         Coordinates id_src2{};
288         Coordinates id_dst{};
289         BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
290     }
291     return dst;
292 }
293 
294 template <>
pixel_wise_multiplication(const SimpleTensor<int8_t> & src1,const SimpleTensor<int8_t> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)295 SimpleTensor<int8_t> pixel_wise_multiplication(const SimpleTensor<int8_t> &src1, const SimpleTensor<int8_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
296                                                DataType dt_out, const QuantizationInfo &qout)
297 {
298     SimpleTensor<int8_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
299 
300     if(src1.data_type() == DataType::QASYMM8_SIGNED && src2.data_type() == DataType::QASYMM8_SIGNED)
301     {
302         SimpleTensor<float> src1_tmp = convert_from_asymmetric(src1);
303         SimpleTensor<float> src2_tmp = convert_from_asymmetric(src2);
304         SimpleTensor<float> dst_tmp  = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
305         dst                          = convert_to_asymmetric<int8_t>(dst_tmp, qout);
306     }
307     else
308     {
309         if(scale < 0)
310         {
311             ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
312         }
313 
314         Coordinates id_src1{};
315         Coordinates id_src2{};
316         Coordinates id_dst{};
317         BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
318     }
319     return dst;
320 }
321 
322 template <>
pixel_wise_multiplication(const SimpleTensor<int16_t> & src1,const SimpleTensor<int16_t> & src2,float scale,ConvertPolicy convert_policy,RoundingPolicy rounding_policy,DataType dt_out,const QuantizationInfo & qout)323 SimpleTensor<int16_t> pixel_wise_multiplication(const SimpleTensor<int16_t> &src1, const SimpleTensor<int16_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy,
324                                                 DataType dt_out, const QuantizationInfo &qout)
325 {
326     SimpleTensor<int16_t> dst(TensorShape::broadcast_shape(src1.shape(), src2.shape()), dt_out, 1, qout);
327 
328     if(src1.data_type() == DataType::QSYMM16 && src2.data_type() == DataType::QSYMM16)
329     {
330         SimpleTensor<float> src1_tmp = convert_from_symmetric<int16_t>(src1);
331         SimpleTensor<float> src2_tmp = convert_from_symmetric<int16_t>(src2);
332         SimpleTensor<float> dst_tmp  = pixel_wise_multiplication<float, float, float>(src1_tmp, src2_tmp, scale, convert_policy, rounding_policy, DataType::F32, qout);
333         dst                          = convert_to_symmetric<int16_t>(dst_tmp, qout);
334     }
335     else
336     {
337         if(scale < 0)
338         {
339             ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
340         }
341 
342         Coordinates id_src1{};
343         Coordinates id_src2{};
344         Coordinates id_dst{};
345         BroadcastUnroll<Coordinates::num_max_dimensions>::unroll(src1, src2, dst, scale, convert_policy, rounding_policy, id_src1, id_src2, id_dst);
346     }
347     return dst;
348 }
349 // *INDENT-OFF*
350 // clang-format off
351 template SimpleTensor<int16_t> pixel_wise_multiplication(const SimpleTensor<uint8_t> &src1, const SimpleTensor<int16_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
352 template SimpleTensor<int32_t> pixel_wise_multiplication(const SimpleTensor<int16_t> &src1, const SimpleTensor<int16_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
353 template SimpleTensor<int32_t> pixel_wise_multiplication(const SimpleTensor<int32_t> &src1, const SimpleTensor<int32_t> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
354 template SimpleTensor<float> pixel_wise_multiplication(const SimpleTensor<float> &src1, const SimpleTensor<float> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
355 template SimpleTensor<half_float::half> pixel_wise_multiplication(const SimpleTensor<half_float::half> &src1, const SimpleTensor<half_float::half> &src2, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy, DataType dt_out, const QuantizationInfo &qout);
356 // clang-format on
357 // *INDENT-ON*
358 } // namespace reference
359 } // namespace validation
360 } // namespace test
361 } // namespace arm_compute
362