1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 #include "allocation_functions.h"
17 #include "allocation_fill.h"
18
19
20 static cl_image_format image_format = { CL_RGBA, CL_UNSIGNED_INT32 };
21
allocate_buffer(cl_context context,cl_command_queue * queue,cl_device_id device_id,cl_mem * mem,size_t size_to_allocate,cl_bool blocking_write)22 int allocate_buffer(cl_context context, cl_command_queue *queue, cl_device_id device_id, cl_mem *mem, size_t size_to_allocate, cl_bool blocking_write) {
23 int error;
24 // log_info("\t\tAttempting to allocate a %gMB array and fill with %s writes.\n", (size_to_allocate/(1024.0*1024.0)), (blocking_write ? "blocking" : "non-blocking"));
25 *mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size_to_allocate, NULL, &error);
26 return check_allocation_error(context, device_id, error, queue);
27 }
28
29
find_good_image_size(cl_device_id device_id,size_t size_to_allocate,size_t * width,size_t * height,size_t * max_size)30 int find_good_image_size(cl_device_id device_id, size_t size_to_allocate, size_t *width, size_t *height, size_t* max_size) {
31 size_t max_width, max_height, num_pixels, found_width, found_height;
32 int error;
33
34 if (checkForImageSupport(device_id)) {
35 log_info("Can not allocate an image on this device because it does not support images.");
36 return FAILED_ABORT;
37 }
38
39 if (size_to_allocate == 0) {
40 log_error("Trying to allocate a zero sized image.\n");
41 return FAILED_ABORT;
42 }
43
44 error = clGetDeviceInfo( device_id, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( max_width ), &max_width, NULL );
45 test_error_abort(error, "clGetDeviceInfo failed.");
46 error = clGetDeviceInfo( device_id, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( max_height ), &max_height, NULL );
47 test_error_abort(error, "clGetDeviceInfo failed.");
48
49 num_pixels = size_to_allocate / (sizeof(cl_uint)*4);
50
51 // Use a 64-bit variable to avoid overflow in 32-bit architectures
52 long long unsigned max_pixels = (long long unsigned)max_width * max_height;
53
54 if (num_pixels > max_pixels) {
55 if(NULL != max_size) {
56 *max_size = max_width * max_height * sizeof(cl_uint) * 4;
57 }
58 return FAILED_TOO_BIG;
59 }
60
61 // We want a close-to-square aspect ratio.
62 // Note that this implicitly assumes that max width >= max height
63 found_width = (int)sqrt( (double) num_pixels );
64 if( found_width > max_width ) {
65 found_width = max_width;
66 }
67 if (found_width == 0)
68 found_width = 1;
69
70 found_height = (size_t)num_pixels/found_width;
71 if (found_height > max_height) {
72 found_height = max_height;
73 }
74 if (found_height == 0)
75 found_height = 1;
76
77 *width = found_width;
78 *height = found_height;
79
80 if(NULL != max_size) {
81 *max_size = found_width * found_height * sizeof(cl_uint) * 4;
82 }
83
84 return SUCCEEDED;
85 }
86
87
allocate_image2d_read(cl_context context,cl_command_queue * queue,cl_device_id device_id,cl_mem * mem,size_t size_to_allocate,cl_bool blocking_write)88 int allocate_image2d_read(cl_context context, cl_command_queue *queue, cl_device_id device_id, cl_mem *mem, size_t size_to_allocate, cl_bool blocking_write) {
89 size_t width, height;
90 int error;
91
92 error = find_good_image_size(device_id, size_to_allocate, &width, &height, NULL);
93 if (error != SUCCEEDED)
94 return error;
95
96 log_info("\t\tAttempting to allocate a %gMB read-only image (%d x %d) and fill with %s writes.\n",
97 (size_to_allocate/(1024.0*1024.0)), (int)width, (int)height, (blocking_write ? "blocking" : "non-blocking"));
98 *mem = create_image_2d(context, CL_MEM_READ_ONLY, &image_format, width, height, 0, NULL, &error);
99
100 return check_allocation_error(context, device_id, error, queue);
101 }
102
103
allocate_image2d_write(cl_context context,cl_command_queue * queue,cl_device_id device_id,cl_mem * mem,size_t size_to_allocate,cl_bool blocking_write)104 int allocate_image2d_write(cl_context context, cl_command_queue *queue, cl_device_id device_id, cl_mem *mem, size_t size_to_allocate, cl_bool blocking_write) {
105 size_t width, height;
106 int error;
107
108 error = find_good_image_size(device_id, size_to_allocate, &width, &height, NULL);
109 if (error != SUCCEEDED)
110 return error;
111
112 //log_info("\t\tAttempting to allocate a %gMB write-only image (%d x %d) and fill with %s writes.\n",
113 //(size_to_allocate/(1024.0*1024.0)), (int)width, (int)height, (blocking_write ? "blocking" : "non-blocking"));
114 *mem = create_image_2d(context, CL_MEM_WRITE_ONLY, &image_format, width, height, 0, NULL, &error);
115
116 return check_allocation_error(context, device_id, error, queue);
117 }
118
do_allocation(cl_context context,cl_command_queue * queue,cl_device_id device_id,size_t size_to_allocate,int type,cl_mem * mem)119 int do_allocation(cl_context context, cl_command_queue *queue, cl_device_id device_id, size_t size_to_allocate, int type, cl_mem *mem) {
120 if (type == BUFFER) return allocate_buffer(context, queue, device_id, mem, size_to_allocate, true);
121 if (type == IMAGE_READ) return allocate_image2d_read(context, queue, device_id, mem, size_to_allocate, true);
122 if (type == IMAGE_WRITE) return allocate_image2d_write(context, queue, device_id, mem, size_to_allocate, true);
123 if (type == BUFFER_NON_BLOCKING) return allocate_buffer(context, queue, device_id, mem, size_to_allocate, false);
124 if (type == IMAGE_READ_NON_BLOCKING) return allocate_image2d_read(context, queue, device_id, mem, size_to_allocate, false);
125 if (type == IMAGE_WRITE_NON_BLOCKING) return allocate_image2d_write(context, queue, device_id, mem, size_to_allocate, false);
126 log_error("Invalid allocation type: %d\n", type);
127 return FAILED_ABORT;
128 }
129
130
allocate_size(cl_context context,cl_command_queue * queue,cl_device_id device_id,int multiple_allocations,size_t size_to_allocate,int type,cl_mem mems[],int * number_of_mems,size_t * final_size,int force_fill,MTdata d)131 int allocate_size(cl_context context, cl_command_queue *queue, cl_device_id device_id, int multiple_allocations, size_t size_to_allocate,
132 int type, cl_mem mems[], int *number_of_mems, size_t *final_size, int force_fill, MTdata d) {
133
134 cl_ulong max_individual_allocation_size, global_mem_size;
135 int error, result;
136 size_t amount_allocated;
137 size_t reduction_amount;
138 int current_allocation;
139 size_t allocation_this_time, actual_allocation;
140
141 // Set the number of mems used to 0 so if we fail to create even a single one we don't end up returning a garbage value
142 *number_of_mems = 0;
143
144 error = clGetDeviceInfo(device_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(max_individual_allocation_size), &max_individual_allocation_size, NULL);
145 test_error_abort( error, "clGetDeviceInfo failed for CL_DEVICE_MAX_MEM_ALLOC_SIZE");
146 error = clGetDeviceInfo(device_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(global_mem_size), &global_mem_size, NULL);
147 test_error_abort( error, "clGetDeviceInfo failed for CL_DEVICE_GLOBAL_MEM_SIZE");
148
149 if (global_mem_size > (cl_ulong)SIZE_MAX) {
150 global_mem_size = (cl_ulong)SIZE_MAX;
151 }
152
153 // log_info("Device reports CL_DEVICE_MAX_MEM_ALLOC_SIZE=%llu bytes (%gMB), CL_DEVICE_GLOBAL_MEM_SIZE=%llu bytes (%gMB).\n",
154 // max_individual_allocation_size, toMB(max_individual_allocation_size),
155 // global_mem_size, toMB(global_mem_size));
156
157 if (size_to_allocate > global_mem_size) {
158 log_error("Can not allocate more than the global memory size.\n");
159 return FAILED_ABORT;
160 }
161
162 amount_allocated = 0;
163 current_allocation = 0;
164
165 // If allocating for images, reduce the maximum allocation size to the maximum image size.
166 // If we don't do this, then the value of CL_DEVICE_MAX_MEM_ALLOC_SIZE / 4 can be higher
167 // than the maximum image size on systems with 16GB or RAM or more. In this case, we
168 // succeed in allocating an image but its size is less than CL_DEVICE_MAX_MEM_ALLOC_SIZE / 4
169 // (min_allocation_allowed) and thus we fail the allocation below.
170 if(type == IMAGE_READ || type == IMAGE_READ_NON_BLOCKING || type == IMAGE_WRITE || type == IMAGE_WRITE_NON_BLOCKING) {
171 size_t width;
172 size_t height;
173 size_t max_size;
174 error = find_good_image_size(device_id, size_to_allocate, &width, &height, &max_size);
175 if (!(error == SUCCEEDED || error == FAILED_TOO_BIG))
176 return error;
177 if(max_size < max_individual_allocation_size)
178 max_individual_allocation_size = max_size;
179 }
180
181 reduction_amount = (size_t)max_individual_allocation_size/16;
182
183 if (type == BUFFER || type == BUFFER_NON_BLOCKING) log_info("\tAttempting to allocate a buffer of size %gMB.\n", toMB(size_to_allocate));
184 else if (type == IMAGE_READ || type == IMAGE_READ_NON_BLOCKING) log_info("\tAttempting to allocate a read-only image of size %gMB.\n", toMB(size_to_allocate));
185 else if (type == IMAGE_WRITE || type == IMAGE_WRITE_NON_BLOCKING) log_info("\tAttempting to allocate a write-only image of size %gMB.\n", toMB(size_to_allocate));
186
187 // log_info("\t\t(Reduction size is %gMB per iteration, minimum allowable individual allocation size is %gMB.)\n",
188 // toMB(reduction_amount), toMB(min_allocation_allowed));
189 // if (force_fill && type != IMAGE_WRITE && type != IMAGE_WRITE_NON_BLOCKING) log_info("\t\t(Allocations will be filled with random data for checksum calculation.)\n");
190
191 // If we are only doing a single allocation, only allow 1
192 int max_to_allocate = multiple_allocations ? MAX_NUMBER_TO_ALLOCATE : 1;
193
194 // Make sure that the maximum number of images allocated is constrained by the
195 // maximum that may be passed to a kernel
196 if (type != BUFFER && type != BUFFER_NON_BLOCKING) {
197 cl_device_info param_name = (type == IMAGE_READ || type == IMAGE_READ_NON_BLOCKING) ?
198 CL_DEVICE_MAX_READ_IMAGE_ARGS : CL_DEVICE_MAX_WRITE_IMAGE_ARGS;
199
200 cl_uint max_image_args;
201 error = clGetDeviceInfo(device_id, param_name, sizeof(max_image_args), &max_image_args, NULL);
202 test_error( error, "clGetDeviceInfo failed for CL_DEVICE_MAX IMAGE_ARGS");
203
204 if ((int)max_image_args < max_to_allocate) {
205 log_info("\t\tMaximum number of images per kernel limited to %d\n",(int)max_image_args);
206 max_to_allocate = max_image_args;
207 }
208 }
209
210
211 // Try to allocate the requested amount.
212 while (amount_allocated != size_to_allocate && current_allocation < max_to_allocate) {
213
214 // Determine how much more is needed
215 allocation_this_time = size_to_allocate - amount_allocated;
216
217 // Bound by the individual allocation size
218 if (allocation_this_time > max_individual_allocation_size)
219 allocation_this_time = (size_t)max_individual_allocation_size;
220
221 // Allocate the largest object possible
222 result = FAILED_TOO_BIG;
223 //log_info("\t\tTrying sub-allocation %d at size %gMB.\n", current_allocation, toMB(allocation_this_time));
224 while (result == FAILED_TOO_BIG && allocation_this_time != 0) {
225
226 // Create the object
227 result = do_allocation(context, queue, device_id, allocation_this_time, type, &mems[current_allocation]);
228 if (result == SUCCEEDED) {
229 // Allocation succeeded, another memory object was added to the array
230 *number_of_mems = (current_allocation+1);
231
232 // Verify the size is correct to within 1MB.
233 actual_allocation = get_actual_allocation_size(mems[current_allocation]);
234 if (fabs((double)allocation_this_time - (double)actual_allocation) > 1024.0*1024.0) {
235 log_error("Allocation not of expected size. Expected %gMB, got %gMB.\n", toMB(allocation_this_time), toMB( actual_allocation));
236 return FAILED_ABORT;
237 }
238
239 // If we are filling the allocation for verification do so
240 if (force_fill) {
241 //log_info("\t\t\tWriting random values to object and calculating checksum.\n");
242 cl_bool blocking_write = true;
243 if (type == BUFFER_NON_BLOCKING || type == IMAGE_READ_NON_BLOCKING || type == IMAGE_WRITE_NON_BLOCKING) {
244 blocking_write = false;
245 }
246 result = fill_mem_with_data(context, device_id, queue, mems[current_allocation], d, blocking_write);
247 }
248 }
249
250 // If creation failed, try to create a smaller object
251 if (result == FAILED_TOO_BIG) {
252 //log_info("\t\t\tAllocation %d failed at size %gMB. Trying smaller.\n", current_allocation, toMB(allocation_this_time));
253 if (allocation_this_time > reduction_amount)
254 allocation_this_time -= reduction_amount;
255 else if (reduction_amount > 1) {
256 reduction_amount /= 2;
257 }
258 else {
259 allocation_this_time = 0;
260 }
261
262 }
263 }
264
265 if (result == FAILED_ABORT) {
266 log_error("\t\tAllocation failed.\n");
267 return FAILED_ABORT;
268 }
269
270 if (!allocation_this_time) {
271 log_info("\t\tFailed to allocate %gMB across several objects.\n", toMB(size_to_allocate));
272 return FAILED_TOO_BIG;
273 }
274
275 // Otherwise we succeeded
276 if (result != SUCCEEDED) {
277 log_error("Test logic error.");
278 exit(-1);
279 }
280 amount_allocated += allocation_this_time;
281
282 *final_size = amount_allocated;
283
284 current_allocation++;
285 }
286
287 log_info("\t\tSucceeded in allocating %gMB using %d memory objects.\n", toMB(amount_allocated), current_allocation);
288 return SUCCEEDED;
289 }
290