1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <assert.h>
7 #include <math.h>
8 #include <stdbool.h>
9 #include <stddef.h>
10 #include <stdint.h>
11 #include <stdlib.h>
12 #include <string.h>
13
14 #include <xnnpack.h>
15 #include <xnnpack/allocator.h>
16 #include <xnnpack/common.h>
17 #include <xnnpack/compute.h>
18 #include <xnnpack/indirection.h>
19 #include <xnnpack/log.h>
20 #include <xnnpack/math.h>
21 #include <xnnpack/operator.h>
22 #include <xnnpack/pack.h>
23 #include <xnnpack/microparams-init.h>
24 #include <xnnpack/params.h>
25
26
xnn_create_convolution2d_nchw_f32(uint32_t input_padding_top,uint32_t input_padding_right,uint32_t input_padding_bottom,uint32_t input_padding_left,uint32_t kernel_height,uint32_t kernel_width,uint32_t subsampling_height,uint32_t subsampling_width,uint32_t dilation_height,uint32_t dilation_width,uint32_t groups,size_t group_input_channels,size_t group_output_channels,size_t input_channel_stride,size_t output_channel_stride,const float * kernel,const float * bias,float output_min,float output_max,uint32_t flags,xnn_caches_t caches,xnn_operator_t * convolution_op_out)27 enum xnn_status xnn_create_convolution2d_nchw_f32(
28 uint32_t input_padding_top,
29 uint32_t input_padding_right,
30 uint32_t input_padding_bottom,
31 uint32_t input_padding_left,
32 uint32_t kernel_height,
33 uint32_t kernel_width,
34 uint32_t subsampling_height,
35 uint32_t subsampling_width,
36 uint32_t dilation_height,
37 uint32_t dilation_width,
38 uint32_t groups,
39 size_t group_input_channels,
40 size_t group_output_channels,
41 size_t input_channel_stride,
42 size_t output_channel_stride,
43 const float* kernel,
44 const float* bias,
45 float output_min,
46 float output_max,
47 uint32_t flags,
48 xnn_caches_t caches,
49 xnn_operator_t* convolution_op_out)
50 {
51 xnn_operator_t convolution_op = NULL;
52 enum xnn_status status = xnn_status_uninitialized;
53
54 if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
55 xnn_log_error("failed to create %s operator: XNNPACK is not initialized",
56 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
57 goto error;
58 }
59
60 status = xnn_status_invalid_parameter;
61
62 if (kernel_width == 0 || kernel_height == 0) {
63 xnn_log_error(
64 "failed to create %s operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
65 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32), kernel_width, kernel_height);
66 goto error;
67 }
68
69 if (subsampling_width == 0 || subsampling_height == 0) {
70 xnn_log_error(
71 "failed to create %s operator with %" PRIu32 "x%" PRIu32 " subsampling: subsampling dimensions must be non-zero",
72 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32), subsampling_width, subsampling_height);
73 goto error;
74 }
75
76 if (dilation_width == 0 || dilation_height == 0) {
77 xnn_log_error(
78 "failed to create %s operator with %" PRIu32 "x%" PRIu32 " dilation: dilation dimensions must be non-zero",
79 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32), dilation_width, dilation_height);
80 goto error;
81 }
82
83 if (groups == 0) {
84 xnn_log_error(
85 "failed to create %s operator with %" PRIu32 " groups: number of groups must be non-zero",
86 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32), groups);
87 goto error;
88 }
89
90 if (group_input_channels == 0) {
91 xnn_log_error(
92 "failed to create %s operator with %zu input channels per group: number of channels must be non-zero",
93 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32), group_input_channels);
94 goto error;
95 }
96
97 if (group_output_channels == 0) {
98 xnn_log_error(
99 "failed to create %s operator with %zu output channels per group: number of channels must be non-zero",
100 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32), group_output_channels);
101 goto error;
102 }
103
104 const size_t input_channels = groups * group_input_channels;
105 if (input_channel_stride < input_channels) {
106 xnn_log_error(
107 "failed to create %s operator with input channel stride of %zu: "
108 "stride must be at least as large as the number of input channels (%" PRIu32 "x%zu)",
109 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32),
110 input_channel_stride, groups, group_input_channels);
111 goto error;
112 }
113
114 const size_t output_channels = groups * group_output_channels;
115 if (output_channel_stride < output_channels) {
116 xnn_log_error(
117 "failed to create %s operator with output channel stride of %zu: "
118 "stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
119 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32),
120 output_channel_stride, groups, group_output_channels);
121 goto error;
122 }
123
124 if (isnan(output_min)) {
125 xnn_log_error(
126 "failed to create %s operator with NaN output lower bound: lower bound must be non-NaN",
127 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
128 goto error;
129 }
130
131 if (isnan(output_max)) {
132 xnn_log_error(
133 "failed to create %s operator with NaN output upper bound: upper bound must be non-NaN",
134 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
135 goto error;
136 }
137
138 if (output_min >= output_max) {
139 xnn_log_error(
140 "failed to create %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
141 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32), output_min, output_max);
142 goto error;
143 }
144
145 if ((flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) != 0 && group_input_channels != 1) {
146 xnn_log_error(
147 "failed to create depthwise %s operator with %zu input channels per group: "
148 "depthwise convolution must have exactly 1 input channel per group",
149 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32), group_input_channels);
150 goto error;
151 }
152
153 status = xnn_status_unsupported_parameter;
154
155 enum xnn_ukernel_type ukernel_type;
156 struct dwconv2d_chw_parameters* dwconv2d_parameters = NULL;
157 // Supported cases:
158 // + 1x1 convolution (no groups)
159 // + 3x3 stride-2 with 3 input channels and NHWC input layout
160 // + 3x3 stride-2 depthwise convolution with horizontal padding 1 & no vertical padding
161 // + 3x3 stride-1 depthwise convolution with horizontal padding 1 & no vertical padding
162 // + 5x5 stride-2 depthwise convolution with horizontal padding 2 & no vertical padding
163 // + 5x5 stride-1 depthwise convolution with horizontal padding 2 & no vertical padding
164 const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
165 const bool is_1x1 = kernel_width == 1 && kernel_height == 1 && subsampling_height == 1 && subsampling_width == 1;
166 const bool is_3x3 = kernel_width == 3 && kernel_height == 3 && dilation_height == 1 && dilation_width == 1;
167 const bool is_5x5 = kernel_width == 5 && kernel_height == 5 && dilation_height == 1 && dilation_width == 1;
168 const bool nhwc_input = (flags & XNN_FLAG_INPUT_NHWC) != 0;
169 if (is_1x1 && !any_padding && !nhwc_input && groups == 1) {
170 ukernel_type = xnn_ukernel_type_spmm;
171 } else if (is_3x3 && subsampling_height == 2 && subsampling_width == 2 &&
172 input_padding_top == 1 && input_padding_left == 1 && input_padding_bottom == 1 && input_padding_right == 1 &&
173 nhwc_input && groups == 1)
174 {
175 ukernel_type = xnn_ukernel_type_conv2d_hwc2chw;
176 } else if (is_3x3 && subsampling_height == 1 && subsampling_width == 1 &&
177 input_padding_top == 1 && input_padding_left == 1 && input_padding_bottom == 1 && input_padding_right == 1 &&
178 !nhwc_input && group_input_channels == 1 && group_output_channels == 1)
179 {
180 ukernel_type = xnn_ukernel_type_dwconv;
181 dwconv2d_parameters = &xnn_params.f32.dwconv2d_chw_3x3;
182 } else if (is_3x3 && subsampling_height == 2 && subsampling_width == 2 &&
183 (input_padding_top == 0 || input_padding_top == 1) && input_padding_left == 1 && input_padding_bottom == 1 && input_padding_right == 1 &&
184 !nhwc_input && group_input_channels == 1 && group_output_channels == 1)
185 {
186 ukernel_type = xnn_ukernel_type_dwconv;
187 dwconv2d_parameters = &xnn_params.f32.dwconv2d_chw_3x3s2;
188 } else if (is_5x5 && subsampling_height == 1 && subsampling_width == 1 &&
189 input_padding_top == 2 && input_padding_left == 2 && input_padding_bottom == 2 && input_padding_right == 2 &&
190 !nhwc_input && group_input_channels == 1 && group_output_channels == 1)
191 {
192 ukernel_type = xnn_ukernel_type_dwconv;
193 dwconv2d_parameters = &xnn_params.f32.dwconv2d_chw_5x5;
194 } else if (is_5x5 && subsampling_height == 2 && subsampling_width == 2 &&
195 (input_padding_top == 1 || input_padding_top == 2) && input_padding_left == 2 && input_padding_bottom == 2 && input_padding_right == 2 &&
196 !nhwc_input && group_input_channels == 1 && group_output_channels == 1)
197 {
198 ukernel_type = xnn_ukernel_type_dwconv;
199 dwconv2d_parameters = &xnn_params.f32.dwconv2d_chw_5x5s2;
200 } else {
201 xnn_log_error(
202 "failed to create %s operator with %" PRIu32 "x%" PRIu32 " kernel, %"PRIu32 "x%" PRIu32 " subsampling, %"PRIu32 "x%" PRIu32 " dilation"
203 ", %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding, %" PRIu32 "x%zu input channels, and %" PRIu32 "x%zu output channels: "
204 "only selected convolution parameters are supported",
205 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32),
206 kernel_width, kernel_height, subsampling_width, subsampling_height, dilation_width, dilation_height,
207 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right,
208 groups, group_input_channels, groups, group_output_channels);
209 goto error;
210 }
211
212 status = xnn_status_out_of_memory;
213
214 convolution_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
215 if (convolution_op == NULL) {
216 xnn_log_error(
217 "failed to allocate %zu bytes for %s operator descriptor",
218 sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
219 goto error;
220 }
221
222 if (caches != NULL && ukernel_type != xnn_ukernel_type_spmm) {
223 convolution_op->weights_cache = caches->weights_cache;
224 }
225
226 switch (ukernel_type) {
227 case xnn_ukernel_type_spmm:
228 {
229 assert(kernel_height == 1);
230 assert(kernel_width == 1);
231 assert(groups == 1);
232
233 size_t num_nonzeroes = 0;
234 size_t num_nonzero_blocks2 = 0;
235 size_t num_nonzero_blocks4 = 0;
236 for (size_t oc = 0; oc < round_down_po2(group_output_channels, 4); oc += 4) {
237 for (size_t ic = 0; ic < group_input_channels; ic++) {
238 const size_t row0_nonzero = (size_t) (kernel[oc * group_input_channels + ic] != 0.0f);
239 const size_t row1_nonzero = (size_t) (kernel[(oc + 1) * group_input_channels + ic] != 0.0f);
240 const size_t row2_nonzero = (size_t) (kernel[(oc + 2) * group_input_channels + ic] != 0.0f);
241 const size_t row3_nonzero = (size_t) (kernel[(oc + 3) * group_input_channels + ic] != 0.0f);
242 num_nonzeroes += row0_nonzero + row1_nonzero + row2_nonzero + row3_nonzero;
243 num_nonzero_blocks2 += (row0_nonzero | row1_nonzero) + (row2_nonzero | row3_nonzero);
244 num_nonzero_blocks4 += (row0_nonzero | row1_nonzero | row2_nonzero | row3_nonzero);
245 }
246 }
247 const size_t num_block4_nonzeroes = num_nonzeroes;
248 for (size_t oc = round_down_po2(group_output_channels, 4); oc < round_down_po2(group_output_channels, 2); oc += 2) {
249 for (size_t ic = 0; ic < group_input_channels; ic++) {
250 const size_t row0_nonzero = (size_t) (kernel[oc * group_input_channels + ic] != 0.0f);
251 const size_t row1_nonzero = (size_t) (kernel[(oc + 1) * group_input_channels + ic] != 0.0f);
252 num_nonzeroes += row0_nonzero + row1_nonzero;
253 num_nonzero_blocks2 += (row0_nonzero | row1_nonzero);
254 }
255 }
256 const size_t num_block2_nonzeroes = num_nonzeroes;
257 for (size_t oc = round_down_po2(group_output_channels, 2); oc < group_output_channels; oc++) {
258 for (size_t ic = 0; ic < group_input_channels; ic++) {
259 num_nonzeroes += (size_t) (kernel[oc * group_input_channels + ic] != 0.0f);
260 }
261 }
262 size_t output_channels_block_size = 1;
263 size_t num_output_channel_blocks = group_output_channels;
264 size_t num_nonzero_values = num_nonzeroes;
265 size_t num_nonzero_blocks = num_nonzeroes;
266 const struct spmm_parameters* spmm_parameters = &xnn_params.f32.spmm;
267 if (num_block4_nonzeroes * 5 >= num_nonzero_blocks4 * 18 && xnn_params.f32.spmm4.ukernel != NULL) {
268 // 4-channel blocks have 90%+ non-zeroes
269
270 output_channels_block_size = 4;
271 num_output_channel_blocks = num_output_channel_blocks / 4 + num_output_channel_blocks % 4;
272 spmm_parameters = &xnn_params.f32.spmm4;
273 // Non-zeroes which don't fit into whole 4-channel blocks, processed one-by-one
274 const size_t num_remaining_nonzeroes = num_nonzeroes - num_block4_nonzeroes;
275 num_nonzero_values = num_nonzero_blocks4 * 4 + num_remaining_nonzeroes;
276 num_nonzero_blocks = num_nonzero_blocks4 + num_remaining_nonzeroes;
277 } else if (num_block2_nonzeroes * 5 >= num_nonzero_blocks2 * 9 && xnn_params.f32.spmm2.ukernel != NULL) {
278 // 2-channel blocks have 90%+ non-zeroes
279
280 output_channels_block_size = 2;
281 num_output_channel_blocks = num_output_channel_blocks / 2 + num_output_channel_blocks % 2;
282 spmm_parameters = &xnn_params.f32.spmm2;
283 // Non-zeroes which don't fit into whole 2-channel blocks, processed one-by-one
284 const size_t num_remaining_nonzeroes = num_nonzeroes - num_block2_nonzeroes;
285 num_nonzero_values = num_nonzero_blocks2 * 2 + num_remaining_nonzeroes;
286 num_nonzero_blocks = num_nonzero_blocks2 + num_remaining_nonzeroes;
287 }
288
289 // Sparse representation of weights consists of four components:
290 // 1. An array of float values storing non-zero kernel elements, and all (group_output_channels) bias elements.
291 // All elements within non-zero block are assumed to be non-zero.
292 // 2. An array of int32_t values storing increment for input pointer after each processed tile. This array is
293 // derived from scaled difference in array 2 using parameters to setup function.
294 // 3. An array of uint32_t values storing the number of non-zero kernel elements per each output channel.
295 // 4. An array of int32_t values storing scaled [by sizeof(input element)] difference between input channels
296 // corresponding to successive non-zero blocks.
297 const size_t packed_weights_size = num_output_channel_blocks * sizeof(uint32_t) +
298 (num_nonzero_blocks * 2) * sizeof(int32_t) + (num_nonzero_values + group_output_channels) * sizeof(float);
299
300 convolution_op->packed_weights.pointer = xnn_allocate_simd_memory(packed_weights_size);
301 if (convolution_op->packed_weights.pointer == NULL) {
302 xnn_log_error(
303 "failed to allocate %zu bytes for %s operator packed weights",
304 packed_weights_size, xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
305 goto error;
306 }
307 convolution_op->num_nonzero_values = num_nonzero_values;
308 convolution_op->num_nonzero_blocks = num_nonzero_blocks;
309 convolution_op->num_output_channel_blocks = num_output_channel_blocks;
310
311 float* nonzero_values = convolution_op->packed_weights.pointer;
312 int32_t* input_increments = (int32_t*) (nonzero_values + num_nonzero_values + group_output_channels);
313 uint32_t* output_channel_nonzeros = (uint32_t*) (input_increments + num_nonzero_blocks);
314 int32_t* input_channel_diffs = (int32_t*) (output_channel_nonzeros + num_output_channel_blocks);
315 memset(output_channel_nonzeros, 0, num_output_channel_blocks * sizeof(uint32_t));
316
317 status = xnn_status_unsupported_parameter;
318
319 size_t first_ic = 0, last_ic = 0;
320 bool first_nonzero = true;
321 for (size_t ocb = 0; ocb < round_down_po2(group_output_channels, output_channels_block_size); ocb += output_channels_block_size) {
322 if XNN_LIKELY(bias != NULL) {
323 for (size_t oco = 0; oco < output_channels_block_size; oco++) {
324 *nonzero_values++ = bias[ocb + oco];
325 }
326 } else {
327 for (size_t oco = 0; oco < output_channels_block_size; oco++) {
328 *nonzero_values++ = 0.0f;
329 }
330 }
331 for (size_t ic = 0; ic < group_input_channels; ic++) {
332 bool is_nonzero_block = false;
333 for (size_t oco = 0; oco < output_channels_block_size; oco++) {
334 is_nonzero_block |= (kernel[(ocb + oco) * group_input_channels + ic] != 0.0f);
335 }
336 if (is_nonzero_block) {
337 for (size_t oco = 0; oco < output_channels_block_size; oco++) {
338 *nonzero_values++ = kernel[(ocb + oco) * group_input_channels + ic];
339 }
340 if (first_nonzero) {
341 first_ic = ic;
342 } else {
343 const int64_t diff = (int64_t) ((uint64_t) ic - (uint64_t) last_ic) * (int64_t) sizeof(float);
344 if (diff != (int64_t) (int32_t) diff) {
345 xnn_log_error("failed to convert kernel to sparse representation: "
346 "scaled difference in input channels exceeds int32_t range");
347 goto error;
348 }
349 *input_channel_diffs++ = (int32_t) diff;
350 }
351 first_nonzero = false;
352 last_ic = ic;
353 *output_channel_nonzeros += 1;
354 }
355 }
356 output_channel_nonzeros += 1;
357 }
358 for (size_t oc = round_down_po2(group_output_channels, output_channels_block_size); oc < group_output_channels; oc++) {
359 if XNN_LIKELY(bias != NULL) {
360 *nonzero_values++ = bias[oc];
361 } else {
362 *nonzero_values++ = 0.0f;
363 }
364 for (size_t ic = 0; ic < group_input_channels; ic++) {
365 const float weight = kernel[oc * group_input_channels + ic];
366 if (weight != 0.0f) {
367 *nonzero_values++ = weight;
368 if (first_nonzero) {
369 first_ic = ic;
370 } else {
371 const int64_t diff = (int64_t) ((uint64_t) ic - (uint64_t) last_ic) * (int64_t) sizeof(float);
372 if (diff != (int64_t) (int32_t) diff) {
373 xnn_log_error("failed to convert kernel to sparse representation: "
374 "scaled difference in input channels exceeds int32_t range");
375 goto error;
376 }
377 *input_channel_diffs++ = (int32_t) diff;
378 }
379 first_nonzero = false;
380 last_ic = ic;
381 *output_channel_nonzeros += 1;
382 }
383 }
384 output_channel_nonzeros += 1;
385 }
386 // If there are any non-zero elements, we have to return to the initial input channel.
387 if (!first_nonzero) {
388 const int64_t diff = (int64_t) ((uint64_t) first_ic - (uint64_t) last_ic) * (int64_t) sizeof(float);
389 if (diff != (int64_t) (int32_t) diff) {
390 xnn_log_error("failed to convert kernel to sparse representation: "
391 "scaled difference in input channels exceeds int32_t range");
392 goto error;
393 }
394 *input_channel_diffs++ = (int32_t) diff;
395 }
396 convolution_op->first_input_channel = first_ic;
397
398 convolution_op->ukernel.spmm = (struct xnn_ukernel_spmm) {
399 .function = spmm_parameters->ukernel,
400 .mr = spmm_parameters->mr,
401 };
402
403 break;
404 }
405 case xnn_ukernel_type_conv2d_hwc2chw:
406 {
407 assert(groups == 1);
408
409 const size_t packed_group_output_channels =
410 round_up(group_output_channels, xnn_params.f32.conv_hwc2chw_3x3c3s2.output_channel_tile);
411 const size_t packed_weights_size = groups * packed_group_output_channels *
412 (group_input_channels * kernel_height * kernel_width + 1 /* bias */) * sizeof(float);
413 size_t aligned_total_weights_size = round_up_po2(packed_weights_size, XNN_ALLOCATION_ALIGNMENT);
414 void* weights_ptr = xnn_get_pointer_to_write_weights(
415 convolution_op, aligned_total_weights_size, 0);
416 if (weights_ptr == NULL) {
417 xnn_log_error("failed to reserve or allocate %zu bytes for %s operator conv2d_hwc2chw packed weights",
418 aligned_total_weights_size,
419 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
420 goto error;
421 }
422
423 xnn_pack_f32_dconv_oki_w(
424 group_output_channels,
425 group_input_channels,
426 xnn_params.f32.conv_hwc2chw_3x3c3s2.output_channel_tile,
427 kernel_height, kernel_width,
428 kernel, bias, weights_ptr, NULL);
429
430 if (use_weights_cache(convolution_op)) {
431 convolution_op->packed_weights.offset = xnn_get_or_insert_weights_cache(
432 convolution_op->weights_cache, weights_ptr, aligned_total_weights_size);
433 }
434
435 convolution_op->ukernel.conv2d = (struct xnn_ukernel_conv2d) {
436 .hwc2chw_function = xnn_params.f32.conv_hwc2chw_3x3c3s2.ukernel_with_symm_padding,
437 .output_height_tile = xnn_params.f32.conv_hwc2chw_3x3c3s2.output_height_tile,
438 .output_channel_tile = xnn_params.f32.conv_hwc2chw_3x3c3s2.output_channel_tile,
439 };
440
441 break;
442 }
443 case xnn_ukernel_type_dwconv:
444 {
445 assert(dwconv2d_parameters != NULL);
446 assert(group_input_channels == 1);
447 assert(group_output_channels == 1);
448
449 const size_t packed_weights_size = groups * (kernel_height * kernel_width + 1 /* bias */) * sizeof(float);
450 size_t aligned_total_weights_size = round_up_po2(packed_weights_size, XNN_ALLOCATION_ALIGNMENT);
451 void* weights_ptr = xnn_get_pointer_to_write_weights(
452 convolution_op, aligned_total_weights_size, 0);
453 if (weights_ptr == NULL) {
454 xnn_log_error("failed to reserve or allocate %zu bytes for %s operator dwconv packed weights",
455 aligned_total_weights_size,
456 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
457 goto error;
458 }
459
460 if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
461 xnn_pack_f32_chw_dwconv_hwg_w(
462 kernel_height * kernel_width, groups,
463 kernel, bias, weights_ptr, NULL);
464 } else {
465 xnn_pack_f32_chw_dwconv_ghw_w(
466 kernel_height * kernel_width, groups,
467 kernel, bias, weights_ptr, NULL);
468 }
469
470 if (use_weights_cache(convolution_op)) {
471 convolution_op->packed_weights.offset = xnn_get_or_insert_weights_cache(
472 convolution_op->weights_cache, weights_ptr, aligned_total_weights_size);
473 }
474
475 convolution_op->ukernel.dwconv2d = (struct xnn_ukernel_dwconv2d) {
476 .chw_function = dwconv2d_parameters->ukernel,
477 .output_width_tile = dwconv2d_parameters->output_width_tile,
478 };
479
480 break;
481 }
482 default:
483 XNN_UNREACHABLE;
484 }
485
486 convolution_op->padding_top = input_padding_top;
487 convolution_op->padding_right = input_padding_right;
488 convolution_op->padding_bottom = input_padding_bottom;
489 convolution_op->padding_left = input_padding_left;
490
491 convolution_op->kernel_height = kernel_height;
492 convolution_op->kernel_width = kernel_width;
493 convolution_op->stride_height = subsampling_height;
494 convolution_op->stride_width = subsampling_width;
495 convolution_op->dilation_height = dilation_height;
496 convolution_op->dilation_width = dilation_width;
497 convolution_op->groups = groups;
498 convolution_op->group_input_channels = group_input_channels;
499 convolution_op->group_output_channels = group_output_channels;
500 convolution_op->input_pixel_stride = input_channel_stride;
501 convolution_op->output_pixel_stride = output_channel_stride;
502
503 if (ukernel_type == xnn_ukernel_type_dwconv) {
504 xnn_init_f32_chw_params(&convolution_op->params.f32_chw, 0, output_min, output_max);
505 } else {
506 xnn_init_f32_minmax_params(&convolution_op->params.f32_minmax, output_min, output_max);
507 }
508
509 convolution_op->type = xnn_operator_type_convolution_nchw_f32;
510 convolution_op->ukernel.type = ukernel_type;
511 convolution_op->flags = flags;
512
513 convolution_op->state = xnn_run_state_invalid;
514
515 *convolution_op_out = convolution_op;
516 return xnn_status_success;
517
518 error:
519 xnn_delete_operator(convolution_op);
520 return status;
521 }
522
setup_convolution2d_nchw(xnn_operator_t convolution_op,size_t batch_size,size_t input_height,size_t input_width,const void * input,void * output,uint32_t log2_input_element_size,uint32_t log2_filter_element_size,uint32_t bias_element_size,uint32_t log2_output_element_size,const void * params,void * chw_params,size_t num_threads)523 static enum xnn_status setup_convolution2d_nchw(
524 xnn_operator_t convolution_op,
525 size_t batch_size,
526 size_t input_height,
527 size_t input_width,
528 const void* input,
529 void* output,
530 uint32_t log2_input_element_size,
531 uint32_t log2_filter_element_size,
532 uint32_t bias_element_size,
533 uint32_t log2_output_element_size,
534 const void* params,
535 void* chw_params,
536 size_t num_threads)
537 {
538 convolution_op->state = xnn_run_state_invalid;
539
540 if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
541 xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
542 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
543 return xnn_status_uninitialized;
544 }
545
546 if (input_width == 0 || input_height == 0) {
547 xnn_log_error(
548 "failed to setup %s operator with %zux%zu input: input dimensions must be non-zero",
549 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32), input_width, input_height);
550 return xnn_status_invalid_parameter;
551 }
552
553 if (batch_size == 0) {
554 convolution_op->state = xnn_run_state_skip;
555 return xnn_status_success;
556 }
557
558 if (convolution_op->weights_cache != NULL && !xnn_weights_cache_is_finalized(convolution_op->weights_cache)) {
559 xnn_log_error("failed to setup %s operator: weights cache is not finalized",
560 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
561 return xnn_status_invalid_state;
562 }
563
564 convolution_op->batch_size = batch_size;
565 convolution_op->input_height = input_height;
566 convolution_op->input_width = input_width;
567 convolution_op->input = input;
568 convolution_op->output = output;
569
570 const size_t output_height = xnn_compute_convolution_output_dimension(
571 convolution_op->padding_top + input_height + convolution_op->padding_bottom,
572 convolution_op->kernel_height,
573 convolution_op->dilation_height,
574 convolution_op->stride_height);
575 const size_t output_width = xnn_compute_convolution_output_dimension(
576 convolution_op->padding_left + input_width + convolution_op->padding_right,
577 convolution_op->kernel_width,
578 convolution_op->dilation_width,
579 convolution_op->stride_width);
580
581 const size_t input_batch_stride = (input_height * input_width * convolution_op->input_pixel_stride) << log2_input_element_size;
582 const size_t output_batch_stride = (output_height * output_width * convolution_op->output_pixel_stride) << log2_output_element_size;
583 switch (convolution_op->ukernel.type) {
584 case xnn_ukernel_type_spmm:
585 {
586 const size_t num_nonzero_values = convolution_op->num_nonzero_values;
587 const size_t num_nonzero_blocks = convolution_op->num_nonzero_blocks;
588 const size_t num_output_channel_blocks = convolution_op->num_output_channel_blocks;
589
590 convolution_op->num_nonzero_values = num_nonzero_values;
591 convolution_op->num_nonzero_blocks = num_nonzero_blocks;
592 convolution_op->num_output_channel_blocks = num_output_channel_blocks;
593
594 float* nonzero_values = packed_weights(convolution_op);
595 int32_t* input_increments = (int32_t*) (nonzero_values + num_nonzero_values + convolution_op->group_output_channels);
596 uint32_t* output_channel_nonzeros = (uint32_t*) (input_increments + num_nonzero_blocks);
597 int32_t* input_channel_diffs = (int32_t*) (output_channel_nonzeros + num_output_channel_blocks);
598
599 const size_t input_size = input_height * input_width;
600 for (size_t i = 0; i < num_nonzero_blocks; i++) {
601 const int32_t diff = input_channel_diffs[i];
602 const int64_t increment = (int64_t) diff * input_size;
603 if ((int64_t) (int32_t) increment != increment) {
604 xnn_log_error(
605 "failed to setup %s operator with sparse kernel representation: input increment exceeds int32_t range",
606 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
607 return xnn_status_unsupported_parameter;
608 }
609 input_increments[i] = (int32_t) increment;
610 }
611
612 convolution_op->context.spmm = (struct spmm_context) {
613 .n = convolution_op->group_output_channels,
614 .scaled_m = input_size * sizeof(float),
615 .input = (const void*) ((uintptr_t) input + (convolution_op->first_input_channel * input_size * sizeof(float))),
616 .nonzero_weights = nonzero_values,
617 .input_increments = input_increments,
618 .output_channel_nonzeros = output_channel_nonzeros,
619 .output = output,
620 .batched_input_stride = input_batch_stride,
621 .batched_output_stride = output_batch_stride,
622 .ukernel = convolution_op->ukernel.spmm.function,
623 };
624 memcpy(&convolution_op->context.spmm.params, params, sizeof(convolution_op->context.spmm.params));
625
626 const size_t mr = convolution_op->ukernel.spmm.mr;
627 #if XNN_TEST_MODE
628 const size_t mc = mr;
629 #else
630 size_t mc = input_size;
631 if (num_threads > 1) {
632 const size_t target_tiles_per_thread = 5;
633 const size_t max_mc = divide_round_up(input_size, num_threads * target_tiles_per_thread);
634 if (max_mc < mc) {
635 mc = min(mc, divide_round_up(mc, max_mc * mr) * mr);
636 }
637 }
638 #endif
639 convolution_op->compute.type = xnn_parallelization_type_2d_tile_1d;
640 convolution_op->compute.task_2d_tile_1d = (pthreadpool_task_2d_tile_1d_t) xnn_compute_spmm;
641 convolution_op->compute.range[0] = batch_size;
642 convolution_op->compute.range[1] = input_size * sizeof(float);
643 convolution_op->compute.tile[0] = mc * sizeof(float);
644 convolution_op->state = xnn_run_state_ready;
645
646 return xnn_status_success;
647 }
648 case xnn_ukernel_type_conv2d_hwc2chw:
649 {
650 const size_t zero_size = (input_width * convolution_op->group_input_channels << log2_input_element_size) + XNN_EXTRA_BYTES;
651 void* zero_buffer = xnn_reallocate_memory(convolution_op->zero_buffer, zero_size);
652 if (zero_buffer == NULL) {
653 xnn_log_error(
654 "failed to allocate %zu bytes for %s operator zero padding",
655 sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
656 return xnn_status_out_of_memory;
657 }
658 memset(zero_buffer, 0, zero_size);
659 convolution_op->zero_buffer = zero_buffer;
660
661 convolution_op->context.conv2d = (struct conv2d_context) {
662 .input_height = input_height,
663 .input_width = input_width,
664 .input = input,
665 .input_batch_stride = input_batch_stride,
666 .zero = zero_buffer,
667 .packed_weights = packed_weights(convolution_op),
668 .output = output,
669 .output_batch_stride = output_batch_stride,
670 .input_padding_top = convolution_op->padding_top,
671 .output_channels = convolution_op->group_output_channels,
672 .output_height_stride = output_width << log2_output_element_size,
673 .output_channel_stride = output_height * output_width << log2_output_element_size,
674 .hwc2chw_ukernel = convolution_op->ukernel.conv2d.hwc2chw_function,
675 };
676 memcpy(&convolution_op->context.conv2d.params, params, sizeof(convolution_op->context.conv2d.params));
677
678 const size_t output_height_tile = convolution_op->ukernel.conv2d.output_height_tile;
679 #if XNN_TEST_MODE
680 size_t output_height_slice = output_height_tile;
681 #else
682 size_t output_height_slice = output_height;
683 if (num_threads > 1) {
684 const size_t target_tiles_per_thread = 5;
685 const size_t max_output_height_slice = divide_round_up(output_height, num_threads * target_tiles_per_thread);
686 if (max_output_height_slice < output_height_slice) {
687 output_height_slice = min(output_height_slice,
688 divide_round_up(output_height_slice, max_output_height_slice * output_height_tile) * output_height_tile);
689 }
690 }
691 #endif
692 convolution_op->compute.type = xnn_parallelization_type_2d_tile_1d;
693 convolution_op->compute.task_2d_tile_1d = (pthreadpool_task_2d_tile_1d_t) xnn_compute_conv2d_hwc2chw;
694 convolution_op->compute.range[0] = batch_size;
695 convolution_op->compute.range[1] = output_height;
696 convolution_op->compute.tile[0] = output_height_slice;
697 convolution_op->state = xnn_run_state_ready;
698
699 return xnn_status_success;
700 }
701 case xnn_ukernel_type_dwconv:
702 {
703 const size_t zero_size = (input_width << log2_input_element_size) + 2 * XNN_EXTRA_BYTES;
704 void* zero_buffer = xnn_reallocate_memory(convolution_op->zero_buffer, zero_size);
705 if (zero_buffer == NULL) {
706 xnn_log_error(
707 "failed to allocate %zu bytes for %s operator zero padding",
708 sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32));
709 return xnn_status_out_of_memory;
710 }
711 memset(zero_buffer, 0, zero_size);
712 convolution_op->zero_buffer = zero_buffer;
713
714 xnn_update_f32_chw_params((union xnn_f32_chw_params*) chw_params, (uint32_t) input_width);
715 convolution_op->context.dwconv2d = (struct dwconv2d_context) {
716 .input_height = input_height,
717 .input_width = input_width << log2_input_element_size,
718 .input = input,
719 .zero = zero_buffer,
720 .input_padding_top = convolution_op->padding_top,
721 .input_channel_stride = input_height * input_width << log2_input_element_size,
722 .input_batch_stride = input_batch_stride,
723 .packed_weights = packed_weights(convolution_op),
724 .weights_channel_stride = bias_element_size +
725 (convolution_op->kernel_height * convolution_op->kernel_width << log2_filter_element_size),
726 .output = output,
727 .output_channel_stride = output_height * output_width << log2_output_element_size,
728 .output_batch_stride = output_batch_stride,
729 .chw_ukernel = convolution_op->ukernel.dwconv2d.chw_function,
730 };
731 memcpy(&convolution_op->context.dwconv2d.params, chw_params, sizeof(convolution_op->context.dwconv2d.params));
732
733 convolution_op->compute.type = xnn_parallelization_type_2d;
734 convolution_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_dwconv2d_chw;
735 convolution_op->compute.range[0] = batch_size;
736 convolution_op->compute.range[1] = convolution_op->groups;
737 convolution_op->state = xnn_run_state_ready;
738
739 return xnn_status_success;
740 }
741 default:
742 XNN_UNREACHABLE;
743 }
744 }
745
xnn_setup_convolution2d_nchw_f32(xnn_operator_t convolution_op,size_t batch_size,size_t input_height,size_t input_width,const float * input,float * output,pthreadpool_t threadpool)746 enum xnn_status xnn_setup_convolution2d_nchw_f32(
747 xnn_operator_t convolution_op,
748 size_t batch_size,
749 size_t input_height,
750 size_t input_width,
751 const float* input,
752 float* output,
753 pthreadpool_t threadpool)
754 {
755 if (convolution_op->type != xnn_operator_type_convolution_nchw_f32) {
756 xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
757 xnn_operator_type_to_string(xnn_operator_type_convolution_nchw_f32),
758 xnn_operator_type_to_string(convolution_op->type));
759 return xnn_status_invalid_parameter;
760 }
761
762 return setup_convolution2d_nchw(
763 convolution_op,
764 batch_size, input_height, input_width,
765 input, output,
766 2 /* log2(sizeof(input element)) = log2(sizeof(float)) */,
767 2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
768 sizeof(float) /* sizeof(bias element) */,
769 2 /* log2(sizeof(output element)) = log2(sizeof(float)) */,
770 &convolution_op->params.f32_minmax,
771 &convolution_op->params.f32_chw,
772 pthreadpool_get_threads_count(threadpool));
773 }
774