xref: /aosp_15_r20/external/XNNPACK/test/convolution-2d.cc (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>  // For std::generate, std::min.
7 #include <array>      // For std::array.
8 #include <cmath>      // For std::lrintf.
9 #include <cstddef>    // For size_t.
10 #include <cstdint>    // For uint32_t.
11 #include <limits>     // For std::numeric_limits.
12 #include <memory>     // For std::unique_ptr.
13 #include <random>     // For std::random_device, std::mt19937, std::uniform_real_distribution.
14 #include <vector>     // For std::vector.
15 
16 #include <xnnpack.h>
17 #include <xnnpack/operator.h>
18 #include <xnnpack/requantization.h>
19 #include <xnnpack/subgraph.h>
20 
21 #include "convolution-test-helpers.h"
22 #include <gtest/gtest.h>
23 
24 namespace xnnpack {
25 template <class T, class BiasType = T> class ConvolutionTestBase : public ::testing::Test {
26 protected:
ConvolutionTestBase()27   ConvolutionTestBase()
28   {
29     random_device = std::unique_ptr<std::random_device>(new std::random_device());
30     rng = std::mt19937((*random_device)());
31     input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15);
32     kernel_size_dist = std::uniform_int_distribution<uint32_t>(1, 5);
33     stride_dist = std::uniform_int_distribution<uint32_t>(1, 2);
34     f32dist = std::uniform_real_distribution<float>(0.1f, 1.0f);
35     scale_dist = std::uniform_real_distribution<float>(1.0f, 5.0f);
36     i32dist = std::uniform_int_distribution<int32_t>(-10000, 10000);
37 
38     batch_size = input_size_dist(rng);
39     input_height = input_size_dist(rng);
40     input_width = input_size_dist(rng);
41     kernel_height = kernel_size_dist(rng);
42     kernel_width = kernel_size_dist(rng);
43     subsampling_height = stride_dist(rng);
44     subsampling_width = subsampling_height;
45     dilation_height = 1;  // TODO(zhin): test other dilation values.
46     dilation_width = dilation_height;
47     groups = input_size_dist(rng);
48     group_input_channels = input_size_dist(rng);
49     group_output_channels = input_size_dist(rng);
50     output_min = -std::numeric_limits<float>::infinity();
51     output_max = std::numeric_limits<float>::infinity();
52     output_height = xnn_compute_convolution_output_dimension(input_height, kernel_height, dilation_height, subsampling_height);
53     output_width = xnn_compute_convolution_output_dimension(input_width, kernel_width, dilation_width, subsampling_width);
54 
55     input_dims = {{batch_size, input_height, input_width, group_input_channels}};
56     filter_dims = {{groups * group_output_channels, kernel_height, kernel_width, group_input_channels}};
57     bias_dims = {{groups * group_output_channels}};
58     output_dims = {{batch_size, output_height, output_width, groups * group_output_channels}};
59 
60     input = std::vector<T>(
61       XNN_EXTRA_BYTES / sizeof(T) + batch_size * input_height * input_width * groups * group_input_channels);
62     filter = std::vector<T>(groups * group_output_channels * kernel_height * kernel_width * group_input_channels);
63     bias = std::vector<BiasType>(groups * group_output_channels);
64     operator_output = std::vector<T>(batch_size * output_height * output_width * groups * group_output_channels);
65     subgraph_output = std::vector<T>(batch_size * output_height * output_width * groups * group_output_channels);
66   }
67 
68   std::unique_ptr<std::random_device> random_device;
69   std::mt19937 rng;
70   std::uniform_int_distribution<uint32_t> input_size_dist;
71   std::uniform_int_distribution<uint32_t> kernel_size_dist;
72   std::uniform_int_distribution<uint32_t> stride_dist;
73   std::uniform_int_distribution<int32_t> i32dist;
74   std::uniform_real_distribution<float> f32dist;
75   std::uniform_real_distribution<float> scale_dist;
76 
77   const uint32_t input_padding_top = 0;
78   const uint32_t input_padding_right = 0;
79   const uint32_t input_padding_bottom = 0;
80   const uint32_t input_padding_left = 0;
81   uint32_t batch_size;
82   uint32_t input_height;
83   uint32_t input_width;
84   uint32_t kernel_height;
85   uint32_t kernel_width;
86   uint32_t subsampling_height;
87   uint32_t subsampling_width;
88   uint32_t dilation_height;
89   uint32_t dilation_width;
90   uint32_t groups;
91   uint32_t group_input_channels;
92   uint32_t group_output_channels;
93   float output_min;
94   float output_max;
95   uint32_t output_height;
96   uint32_t output_width;
97 
98   std::array<size_t, 4> input_dims;
99   std::array<size_t, 4> filter_dims;
100   std::array<size_t, 1> bias_dims;
101   std::array<size_t, 4> output_dims;
102 
103   std::vector<T> input;
104   std::vector<T> filter;
105   std::vector<BiasType> bias;
106   std::vector<T> operator_output;
107   std::vector<T> subgraph_output;
108 };
109 
110 template <class T> class QuantizedConvolutionTestBase : public ConvolutionTestBase<T, int32_t> {
111 protected:
QuantizedConvolutionTestBase()112   QuantizedConvolutionTestBase()
113   {
114     i8dist = std::uniform_int_distribution<int32_t>(std::numeric_limits<T>::min(), std::numeric_limits<T>::max());
115     w8dist = std::uniform_int_distribution<int32_t>(-std::numeric_limits<T>::max(), std::numeric_limits<T>::max());
116     std::uniform_int_distribution<int32_t> u8dist(
117       std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
118     accumulators = std::vector<int32_t>(
119       this->batch_size * this->output_height * this->output_width * this->groups * this->group_output_channels);
120   }
121 
122   std::uniform_int_distribution<int32_t> i8dist;
123   std::uniform_int_distribution<int32_t> u8dist;
124   std::uniform_int_distribution<int32_t> w8dist;
125   std::vector<int32_t> accumulators;
126 };
127 
128 using ConvolutionTestQC8 = QuantizedConvolutionTestBase<int8_t>;
129 using ConvolutionTestQS8 = QuantizedConvolutionTestBase<int8_t>;
130 using ConvolutionTestQU8 = QuantizedConvolutionTestBase<uint8_t>;
131 using ConvolutionTestF32 = ConvolutionTestBase<float>;
132 
TEST_F(ConvolutionTestQC8,define)133 TEST_F(ConvolutionTestQC8, define)
134 {
135   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
136 
137   xnn_subgraph_t subgraph = nullptr;
138   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
139   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
140 
141   uint32_t input_id = XNN_INVALID_NODE_ID;
142   ASSERT_EQ(
143     xnn_status_success, xnn_define_quantized_tensor_value(
144                           subgraph, xnn_datatype_qint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr,
145                           /*external_id=*/0, /*flags=*/0, &input_id));
146   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
147 
148   std::vector<float> scale(groups * group_output_channels, 1.0f);
149   uint32_t filter_id = XNN_INVALID_NODE_ID;
150   ASSERT_EQ(
151     xnn_status_success,
152     xnn_define_channelwise_quantized_tensor_value(
153       subgraph, xnn_datatype_qcint8, scale.data(), filter_dims.size(), 0, filter_dims.data(), filter.data(),
154       /*external_id=*/1, /*flags=*/0, &filter_id));
155 
156   uint32_t bias_id = XNN_INVALID_NODE_ID;
157   ASSERT_EQ(
158     xnn_status_success,
159     xnn_define_channelwise_quantized_tensor_value(
160       subgraph, xnn_datatype_qcint32, scale.data(), bias_dims.size(), 0, bias_dims.data(), bias.data(),
161       /*external_id=*/2, /*flags=*/0, &bias_id));
162 
163   uint32_t output_id = XNN_INVALID_NODE_ID;
164   ASSERT_EQ(
165     xnn_status_success, xnn_define_quantized_tensor_value(
166                           subgraph, xnn_datatype_qint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr,
167                           /*external_id=*/3, /*flags=*/0, &output_id));
168   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
169 
170   ASSERT_EQ(
171     xnn_status_success,
172     xnn_define_convolution_2d(
173       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height,
174       kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups,
175       group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id,
176       /*flags=*/0));
177 
178   ASSERT_EQ(subgraph->num_nodes, 1);
179   const struct xnn_node* node = &subgraph->nodes[0];
180   ASSERT_EQ(node->type, xnn_node_type_convolution_2d);
181   ASSERT_EQ(node->compute_type, xnn_compute_type_qc8);
182   ASSERT_EQ(node->params.convolution_2d.input_padding_top, input_padding_top);
183   ASSERT_EQ(node->params.convolution_2d.input_padding_right, input_padding_right);
184   ASSERT_EQ(node->params.convolution_2d.input_padding_bottom, input_padding_bottom);
185   ASSERT_EQ(node->params.convolution_2d.input_padding_left, input_padding_left);
186   ASSERT_EQ(node->params.convolution_2d.kernel_height, kernel_height);
187   ASSERT_EQ(node->params.convolution_2d.kernel_width, kernel_width);
188   ASSERT_EQ(node->params.convolution_2d.subsampling_height, subsampling_height);
189   ASSERT_EQ(node->params.convolution_2d.subsampling_width, subsampling_width);
190   ASSERT_EQ(node->params.convolution_2d.dilation_height, dilation_height);
191   ASSERT_EQ(node->params.convolution_2d.dilation_width, dilation_width);
192   ASSERT_EQ(node->params.convolution_2d.groups, groups);
193   ASSERT_EQ(node->params.convolution_2d.group_input_channels, group_input_channels);
194   ASSERT_EQ(node->params.convolution_2d.group_output_channels, group_output_channels);
195   ASSERT_EQ(node->activation.output_min, output_min);
196   ASSERT_EQ(node->activation.output_max, output_max);
197   ASSERT_EQ(node->num_inputs, 3);
198   ASSERT_EQ(node->inputs[0], input_id);
199   ASSERT_EQ(node->inputs[1], filter_id);
200   ASSERT_EQ(node->inputs[2], bias_id);
201   ASSERT_EQ(node->num_outputs, 1);
202   ASSERT_EQ(node->outputs[0], output_id);
203   ASSERT_EQ(node->flags, 0);
204 }
205 
TEST_F(ConvolutionTestQS8,define)206 TEST_F(ConvolutionTestQS8, define)
207 {
208   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
209 
210   xnn_subgraph_t subgraph = nullptr;
211   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
212   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
213 
214   uint32_t input_id = XNN_INVALID_NODE_ID;
215   ASSERT_EQ(
216     xnn_status_success, xnn_define_quantized_tensor_value(
217                           subgraph, xnn_datatype_qint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr,
218                           /*external_id=*/0, /*flags=*/0, &input_id));
219   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
220 
221   uint32_t filter_id = XNN_INVALID_NODE_ID;
222   ASSERT_EQ(
223     xnn_status_success, xnn_define_quantized_tensor_value(
224                           subgraph, xnn_datatype_qint8, 0, 1.0f, filter_dims.size(), filter_dims.data(), filter.data(),
225                           /*external_id=*/1, /*flags=*/0, &filter_id));
226 
227   uint32_t bias_id = XNN_INVALID_NODE_ID;
228   ASSERT_EQ(
229     xnn_status_success, xnn_define_quantized_tensor_value(
230                           subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(),
231                           /*external_id=*/2, /*flags=*/0, &bias_id));
232 
233   uint32_t output_id = XNN_INVALID_NODE_ID;
234   ASSERT_EQ(
235     xnn_status_success, xnn_define_quantized_tensor_value(
236                           subgraph, xnn_datatype_qint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr,
237                           /*external_id=*/3, /*flags=*/0, &output_id));
238   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
239 
240   ASSERT_EQ(
241     xnn_status_success,
242     xnn_define_convolution_2d(
243       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height,
244       kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups,
245       group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id,
246       /*flags=*/0));
247 
248   ASSERT_EQ(subgraph->num_nodes, 1);
249   const struct xnn_node* node = &subgraph->nodes[0];
250   ASSERT_EQ(node->type, xnn_node_type_convolution_2d);
251   ASSERT_EQ(node->compute_type, xnn_compute_type_qs8);
252   ASSERT_EQ(node->params.convolution_2d.input_padding_top, input_padding_top);
253   ASSERT_EQ(node->params.convolution_2d.input_padding_right, input_padding_right);
254   ASSERT_EQ(node->params.convolution_2d.input_padding_bottom, input_padding_bottom);
255   ASSERT_EQ(node->params.convolution_2d.input_padding_left, input_padding_left);
256   ASSERT_EQ(node->params.convolution_2d.kernel_height, kernel_height);
257   ASSERT_EQ(node->params.convolution_2d.kernel_width, kernel_width);
258   ASSERT_EQ(node->params.convolution_2d.subsampling_height, subsampling_height);
259   ASSERT_EQ(node->params.convolution_2d.subsampling_width, subsampling_width);
260   ASSERT_EQ(node->params.convolution_2d.dilation_height, dilation_height);
261   ASSERT_EQ(node->params.convolution_2d.dilation_width, dilation_width);
262   ASSERT_EQ(node->params.convolution_2d.groups, groups);
263   ASSERT_EQ(node->params.convolution_2d.group_input_channels, group_input_channels);
264   ASSERT_EQ(node->params.convolution_2d.group_output_channels, group_output_channels);
265   ASSERT_EQ(node->activation.output_min, output_min);
266   ASSERT_EQ(node->activation.output_max, output_max);
267   ASSERT_EQ(node->num_inputs, 3);
268   ASSERT_EQ(node->inputs[0], input_id);
269   ASSERT_EQ(node->inputs[1], filter_id);
270   ASSERT_EQ(node->inputs[2], bias_id);
271   ASSERT_EQ(node->num_outputs, 1);
272   ASSERT_EQ(node->outputs[0], output_id);
273   ASSERT_EQ(node->flags, 0);
274 }
275 
TEST_F(ConvolutionTestQU8,define)276 TEST_F(ConvolutionTestQU8, define)
277 {
278   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
279 
280   xnn_subgraph_t subgraph = nullptr;
281   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
282   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
283 
284   uint32_t input_id = XNN_INVALID_NODE_ID;
285   ASSERT_EQ(
286     xnn_status_success, xnn_define_quantized_tensor_value(
287                           subgraph, xnn_datatype_quint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr,
288                           /*external_id=*/0, /*flags=*/0, &input_id));
289   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
290 
291   uint32_t filter_id = XNN_INVALID_NODE_ID;
292   ASSERT_EQ(
293     xnn_status_success, xnn_define_quantized_tensor_value(
294                           subgraph, xnn_datatype_quint8, 0, 1.0f, filter_dims.size(), filter_dims.data(), filter.data(),
295                           /*external_id=*/1, /*flags=*/0, &filter_id));
296 
297   uint32_t bias_id = XNN_INVALID_NODE_ID;
298   ASSERT_EQ(
299     xnn_status_success, xnn_define_quantized_tensor_value(
300                           subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(),
301                           /*external_id=*/2, /*flags=*/0, &bias_id));
302 
303   uint32_t output_id = XNN_INVALID_NODE_ID;
304   ASSERT_EQ(
305     xnn_status_success, xnn_define_quantized_tensor_value(
306                           subgraph, xnn_datatype_quint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr,
307                           /*external_id=*/3, /*flags=*/0, &output_id));
308   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
309 
310   ASSERT_EQ(
311     xnn_status_success,
312     xnn_define_convolution_2d(
313       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height,
314       kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups,
315       group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id,
316       /*flags=*/0));
317 
318   ASSERT_EQ(subgraph->num_nodes, 1);
319   const struct xnn_node* node = &subgraph->nodes[0];
320   ASSERT_EQ(node->type, xnn_node_type_convolution_2d);
321   ASSERT_EQ(node->compute_type, xnn_compute_type_qu8);
322   ASSERT_EQ(node->params.convolution_2d.input_padding_top, input_padding_top);
323   ASSERT_EQ(node->params.convolution_2d.input_padding_right, input_padding_right);
324   ASSERT_EQ(node->params.convolution_2d.input_padding_bottom, input_padding_bottom);
325   ASSERT_EQ(node->params.convolution_2d.input_padding_left, input_padding_left);
326   ASSERT_EQ(node->params.convolution_2d.kernel_height, kernel_height);
327   ASSERT_EQ(node->params.convolution_2d.kernel_width, kernel_width);
328   ASSERT_EQ(node->params.convolution_2d.subsampling_height, subsampling_height);
329   ASSERT_EQ(node->params.convolution_2d.subsampling_width, subsampling_width);
330   ASSERT_EQ(node->params.convolution_2d.dilation_height, dilation_height);
331   ASSERT_EQ(node->params.convolution_2d.dilation_width, dilation_width);
332   ASSERT_EQ(node->params.convolution_2d.groups, groups);
333   ASSERT_EQ(node->params.convolution_2d.group_input_channels, group_input_channels);
334   ASSERT_EQ(node->params.convolution_2d.group_output_channels, group_output_channels);
335   ASSERT_EQ(node->activation.output_min, output_min);
336   ASSERT_EQ(node->activation.output_max, output_max);
337   ASSERT_EQ(node->num_inputs, 3);
338   ASSERT_EQ(node->inputs[0], input_id);
339   ASSERT_EQ(node->inputs[1], filter_id);
340   ASSERT_EQ(node->inputs[2], bias_id);
341   ASSERT_EQ(node->num_outputs, 1);
342   ASSERT_EQ(node->outputs[0], output_id);
343   ASSERT_EQ(node->flags, 0);
344 }
345 
TEST_F(ConvolutionTestF32,define)346 TEST_F(ConvolutionTestF32, define)
347 {
348   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
349 
350   xnn_subgraph_t subgraph = nullptr;
351   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
352   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
353 
354   uint32_t input_id = XNN_INVALID_NODE_ID;
355   ASSERT_EQ(
356     xnn_status_success, xnn_define_tensor_value(
357                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr,
358                           /*external_id=*/0, /*flags=*/0, &input_id));
359   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
360 
361   uint32_t filter_id = XNN_INVALID_NODE_ID;
362   ASSERT_EQ(
363     xnn_status_success,
364     xnn_define_tensor_value(
365       subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1,
366       /*flags=*/0, &filter_id));
367 
368   uint32_t bias_id = XNN_INVALID_NODE_ID;
369   ASSERT_EQ(
370     xnn_status_success, xnn_define_tensor_value(
371                           subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(),
372                           /*external_id=*/2, /*flags=*/0, &bias_id));
373 
374   uint32_t output_id = XNN_INVALID_NODE_ID;
375   ASSERT_EQ(
376     xnn_status_success, xnn_define_tensor_value(
377                           subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr,
378                           /*external_id=*/3, /*flags=*/0, &output_id));
379   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
380 
381   ASSERT_EQ(
382     xnn_status_success,
383     xnn_define_convolution_2d(
384       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height,
385       kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups,
386       group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id,
387       /*flags=*/0));
388 
389   ASSERT_EQ(subgraph->num_nodes, 1);
390   const struct xnn_node* node = &subgraph->nodes[0];
391   ASSERT_EQ(node->type, xnn_node_type_convolution_2d);
392   ASSERT_EQ(node->compute_type, xnn_compute_type_fp32);
393   ASSERT_EQ(node->params.convolution_2d.input_padding_top, input_padding_top);
394   ASSERT_EQ(node->params.convolution_2d.input_padding_right, input_padding_right);
395   ASSERT_EQ(node->params.convolution_2d.input_padding_bottom, input_padding_bottom);
396   ASSERT_EQ(node->params.convolution_2d.input_padding_left, input_padding_left);
397   ASSERT_EQ(node->params.convolution_2d.kernel_height, kernel_height);
398   ASSERT_EQ(node->params.convolution_2d.kernel_width, kernel_width);
399   ASSERT_EQ(node->params.convolution_2d.subsampling_height, subsampling_height);
400   ASSERT_EQ(node->params.convolution_2d.subsampling_width, subsampling_width);
401   ASSERT_EQ(node->params.convolution_2d.dilation_height, dilation_height);
402   ASSERT_EQ(node->params.convolution_2d.dilation_width, dilation_width);
403   ASSERT_EQ(node->params.convolution_2d.groups, groups);
404   ASSERT_EQ(node->params.convolution_2d.group_input_channels, group_input_channels);
405   ASSERT_EQ(node->params.convolution_2d.group_output_channels, group_output_channels);
406   ASSERT_EQ(node->activation.output_min, output_min);
407   ASSERT_EQ(node->activation.output_max, output_max);
408   ASSERT_EQ(node->num_inputs, 3);
409   ASSERT_EQ(node->inputs[0], input_id);
410   ASSERT_EQ(node->inputs[1], filter_id);
411   ASSERT_EQ(node->inputs[2], bias_id);
412   ASSERT_EQ(node->num_outputs, 1);
413   ASSERT_EQ(node->outputs[0], output_id);
414   ASSERT_EQ(node->flags, 0);
415 }
416 
TEST_F(ConvolutionTestQC8,matches_operator_api)417 TEST_F(ConvolutionTestQC8, matches_operator_api)
418 {
419   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
420 
421   xnn_operator_t op = nullptr;
422 
423   std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
424   std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); });
425   std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); });
426   std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5));
427   std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5));
428   std::vector<float> requantization_scales(groups * group_output_channels);
429   const int8_t input_zero_point = i8dist(rng);
430   const int8_t output_zero_point = i8dist(rng);
431   const float input_scale = scale_dist(rng);
432   const float output_scale = scale_dist(rng);
433   const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point);
434   const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point);
435 
436   compute_convolution_qs8_reference_results(
437       batch_size,
438       output_height,
439       output_width,
440       input_height,
441       input_width,
442       input_padding_top,
443       input_padding_right,
444       input_padding_bottom,
445       input_padding_left,
446       kernel_height,
447       kernel_width,
448       subsampling_height,
449       subsampling_width,
450       dilation_height,
451       dilation_width,
452       groups,
453       group_input_channels,
454       group_output_channels,
455       input_zero_point,
456       input,
457       filter,
458       accumulators,
459       /*has_bias=*/true,
460       bias);
461 
462   // Compute renormalization parameters.
463   for (size_t c = 0; c < groups * group_output_channels; c++) {
464     int32_t accumulated_min = accumulators[c];
465     int32_t accumulated_max = accumulators[c];
466     for (size_t px = 0; px < batch_size * output_height * output_width; px++) {
467       accumulated_min = std::min(accumulated_min, accumulators[px * groups * group_output_channels + c]);
468       accumulated_max = std::max(accumulated_max, accumulators[px * groups * group_output_channels + c]);
469     }
470 
471     float requantization_scale = 0x1.0p-32f;
472     if (accumulated_max != 0) {
473       requantization_scale = std::max(
474         requantization_scale,
475         float(int32_t(std::numeric_limits<int8_t>::max()) - int32_t(output_zero_point)) / float(accumulated_max));
476     }
477     if (accumulated_min != 0) {
478       requantization_scale = std::max(
479         requantization_scale,
480         float(int32_t(std::numeric_limits<int8_t>::min()) - int32_t(output_zero_point)) / float(accumulated_min));
481     }
482     requantization_scale = std::min(requantization_scale, 0x1.FFFFFEp-1f);
483 
484     requantization_scales[c] = requantization_scale;
485   }
486 
487   // Call operator API.
488   const xnn_status status = xnn_create_convolution2d_nhwc_qc8(
489     input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width,
490     subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels,
491     group_output_channels, groups * group_input_channels, groups * group_output_channels, input_zero_point, input_scale,
492     requantization_scales.data(), filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min,
493     quantized_output_max, /*flags=*/0, nullptr, &op);
494   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
495 
496   if (status == xnn_status_unsupported_hardware) {
497     GTEST_SKIP();
498   }
499 
500   ASSERT_EQ(xnn_status_success, status);
501   ASSERT_NE(nullptr, op);
502   ASSERT_EQ(
503     xnn_status_success, xnn_setup_convolution2d_nhwc_qc8(
504                           op, batch_size, input_height, input_width, input.data(), operator_output.data(),
505                           /*threadpool=*/nullptr));
506 
507   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
508 
509   // Call subgraph API.
510   xnn_subgraph_t subgraph = nullptr;
511   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
512   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
513 
514   uint32_t input_id = XNN_INVALID_NODE_ID;
515   ASSERT_EQ(
516     xnn_status_success, xnn_define_quantized_tensor_value(
517                           subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(),
518                           input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
519   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
520 
521   uint32_t filter_id = XNN_INVALID_NODE_ID;
522   ASSERT_EQ(
523     xnn_status_success, xnn_define_channelwise_quantized_tensor_value(
524                           subgraph, xnn_datatype_qcint8, requantization_scales.data(), filter_dims.size(), 0,
525                           filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id));
526 
527   uint32_t bias_id = XNN_INVALID_NODE_ID;
528   ASSERT_EQ(
529     xnn_status_success, xnn_define_channelwise_quantized_tensor_value(
530                           subgraph, xnn_datatype_qcint32, requantization_scales.data(), bias_dims.size(), 0,
531                           bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id));
532 
533   uint32_t output_id = XNN_INVALID_NODE_ID;
534   ASSERT_EQ(
535     xnn_status_success, xnn_define_quantized_tensor_value(
536                           subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(),
537                           output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
538   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
539   ASSERT_EQ(
540     xnn_status_success,
541     xnn_define_convolution_2d(
542       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height,
543       kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups,
544       group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id,
545       /*flags=*/0));
546 
547   xnn_runtime_t runtime = nullptr;
548   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
549   ASSERT_NE(nullptr, runtime);
550   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
551   std::array<xnn_external_value, 2> external = {
552     xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
553   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
554   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
555 
556   // Check outputs match.
557   for (size_t i = 0; i < operator_output.size(); i++) {
558     ASSERT_EQ(subgraph_output[i], operator_output[i]);
559   }
560 }
561 
TEST_F(ConvolutionTestQS8,matches_operator_api)562 TEST_F(ConvolutionTestQS8, matches_operator_api)
563 {
564   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
565 
566   xnn_operator_t op = nullptr;
567 
568   std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
569   std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); });
570   std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); });
571   std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5));
572   std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5));
573   const int8_t input_zero_point = -1;
574   const float input_scale = scale_dist(rng);
575   const float kernel_scale = scale_dist(rng);
576 
577   compute_convolution_qs8_reference_results(
578       batch_size,
579       output_height,
580       output_width,
581       input_height,
582       input_width,
583       input_padding_top,
584       input_padding_right,
585       input_padding_bottom,
586       input_padding_left,
587       kernel_height,
588       kernel_width,
589       subsampling_height,
590       subsampling_width,
591       dilation_height,
592       dilation_width,
593       groups,
594       group_input_channels,
595       group_output_channels,
596       input_zero_point,
597       input,
598       filter,
599       accumulators,
600       /*has_bias=*/true,
601       bias);
602 
603   // Compute renormalization parameters.
604   const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
605   const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
606 
607   float output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
608   int8_t output_zero_point = int8_t(std::max(
609     std::min(
610       lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
611       long(std::numeric_limits<int8_t>::max())),
612     long(std::numeric_limits<int8_t>::min())));
613   const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point);
614   const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point);
615 
616   // Call operator API.
617   const xnn_status status = xnn_create_convolution2d_nhwc_qs8(
618     input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width,
619     subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels,
620     group_output_channels, groups * group_input_channels, groups * group_output_channels, input_zero_point, input_scale,
621     kernel_scale, filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min,
622     quantized_output_max, /*flags=*/0, nullptr, &op);
623   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
624 
625   if (status == xnn_status_unsupported_hardware) {
626     GTEST_SKIP();
627   }
628 
629   ASSERT_EQ(xnn_status_success, status);
630   ASSERT_NE(nullptr, op);
631   ASSERT_EQ(
632     xnn_status_success, xnn_setup_convolution2d_nhwc_qs8(
633                           op, batch_size, input_height, input_width, input.data(), operator_output.data(),
634                           /*threadpool=*/nullptr));
635 
636   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
637 
638   // Call subgraph API.
639   xnn_subgraph_t subgraph = nullptr;
640   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
641   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
642 
643   uint32_t input_id = XNN_INVALID_NODE_ID;
644   ASSERT_EQ(
645     xnn_status_success, xnn_define_quantized_tensor_value(
646                           subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(),
647                           input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
648   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
649 
650   uint32_t filter_id = XNN_INVALID_NODE_ID;
651   ASSERT_EQ(
652     xnn_status_success, xnn_define_quantized_tensor_value(
653                           subgraph, xnn_datatype_qint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(),
654                           filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id));
655 
656   uint32_t bias_id = XNN_INVALID_NODE_ID;
657   ASSERT_EQ(
658     xnn_status_success, xnn_define_quantized_tensor_value(
659                           subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(),
660                           bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id));
661 
662   uint32_t output_id = XNN_INVALID_NODE_ID;
663   ASSERT_EQ(
664     xnn_status_success, xnn_define_quantized_tensor_value(
665                           subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(),
666                           output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
667   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
668   ASSERT_EQ(
669     xnn_status_success,
670     xnn_define_convolution_2d(
671       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height,
672       kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups,
673       group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id,
674       /*flags=*/0));
675 
676   xnn_runtime_t runtime = nullptr;
677   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
678   ASSERT_NE(nullptr, runtime);
679   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
680   std::array<xnn_external_value, 2> external = {
681     xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
682   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
683   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
684 
685   // Check outputs match.
686   for (size_t i = 0; i < operator_output.size(); i++) {
687     ASSERT_EQ(subgraph_output[i], operator_output[i]);
688   }
689 }
690 
TEST_F(ConvolutionTestQU8,matches_operator_api)691 TEST_F(ConvolutionTestQU8, matches_operator_api)
692 {
693   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
694 
695   xnn_operator_t op = nullptr;
696 
697   std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
698   std::generate(filter.begin(), filter.end(), [&]() { return u8dist(rng); });
699   std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); });
700   std::fill(operator_output.begin(), operator_output.end(), UINT8_C(0xA5));
701   std::fill(subgraph_output.begin(), subgraph_output.end(), UINT8_C(0xA5));
702   const uint8_t input_zero_point = u8dist(rng);
703   const uint8_t kernel_zero_point = 0;
704   const float input_scale = scale_dist(rng);
705   const float kernel_scale = scale_dist(rng);
706 
707   // Compute reference results, without renormalization.
708   compute_convolution_qu8_reference_results(
709       batch_size,
710       output_height,
711       output_width,
712       input_height,
713       input_width,
714       input_padding_top,
715       input_padding_right,
716       input_padding_bottom,
717       input_padding_left,
718       kernel_height,
719       kernel_width,
720       subsampling_height,
721       subsampling_width,
722       dilation_height,
723       dilation_width,
724       groups,
725       group_input_channels,
726       group_output_channels,
727       input_zero_point,
728       kernel_zero_point,
729       input,
730       filter,
731       accumulators,
732       /*has_bias=*/true,
733       bias);
734 
735   // Compute renormalization parameters.
736   const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
737   const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
738 
739   const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
740   const uint8_t output_zero_point = uint8_t(std::max(
741     std::min(
742       lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
743       long(std::numeric_limits<uint8_t>::max())),
744     long(std::numeric_limits<uint8_t>::min())));
745   const uint8_t quantized_output_min = xnn_qu8_quantize(output_min, output_scale, output_zero_point);
746   const uint8_t quantized_output_max = xnn_qu8_quantize(output_max, output_scale, output_zero_point);
747 
748   // Call operator API.
749   const xnn_status status = xnn_create_convolution2d_nhwc_qu8(
750     input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width,
751     subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels,
752     group_output_channels, groups * group_input_channels, groups * group_output_channels, input_zero_point, input_scale,
753     kernel_zero_point, kernel_scale, filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min,
754     quantized_output_max, /*flags=*/0, nullptr, &op);
755   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
756 
757   if (status == xnn_status_unsupported_hardware) {
758     GTEST_SKIP();
759   }
760 
761   ASSERT_EQ(xnn_status_success, status);
762   ASSERT_NE(nullptr, op);
763   ASSERT_EQ(
764     xnn_status_success, xnn_setup_convolution2d_nhwc_qu8(
765                           op, batch_size, input_height, input_width, input.data(), operator_output.data(),
766                           /*threadpool=*/nullptr));
767 
768   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
769 
770   // Call subgraph API.
771   xnn_subgraph_t subgraph = nullptr;
772   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
773   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
774 
775   uint32_t input_id = XNN_INVALID_NODE_ID;
776   ASSERT_EQ(
777     xnn_status_success, xnn_define_quantized_tensor_value(
778                           subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(),
779                           input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
780   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
781 
782   uint32_t filter_id = XNN_INVALID_NODE_ID;
783   ASSERT_EQ(
784     xnn_status_success, xnn_define_quantized_tensor_value(
785                           subgraph, xnn_datatype_quint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(),
786                           filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id));
787 
788   uint32_t bias_id = XNN_INVALID_NODE_ID;
789   ASSERT_EQ(
790     xnn_status_success, xnn_define_quantized_tensor_value(
791                           subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(),
792                           bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id));
793 
794   uint32_t output_id = XNN_INVALID_NODE_ID;
795   ASSERT_EQ(
796     xnn_status_success, xnn_define_quantized_tensor_value(
797                           subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(),
798                           output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
799   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
800   ASSERT_EQ(
801     xnn_status_success,
802     xnn_define_convolution_2d(
803       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height,
804       kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups,
805       group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id,
806       /*flags=*/0));
807 
808   xnn_runtime_t runtime = nullptr;
809   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
810   ASSERT_NE(nullptr, runtime);
811   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
812   std::array<xnn_external_value, 2> external = {
813     xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
814   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
815   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
816 
817   // Check outputs match.
818   for (size_t i = 0; i < operator_output.size(); i++) {
819     ASSERT_EQ(subgraph_output[i], operator_output[i]);
820   }
821 }
822 
TEST_F(ConvolutionTestF32,matches_operator_api)823 TEST_F(ConvolutionTestF32, matches_operator_api)
824 {
825   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
826 
827   xnn_operator_t op = nullptr;
828 
829   std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
830   std::generate(filter.begin(), filter.end(), [&]() { return f32dist(rng); });
831   std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
832   std::fill(operator_output.begin(), operator_output.end(), nanf(""));
833   std::fill(subgraph_output.begin(), subgraph_output.end(), nanf(""));
834 
835   // Call operator API.
836   const xnn_status status = xnn_create_convolution2d_nhwc_f32(
837     input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width,
838     subsampling_height, subsampling_width, dilation_height, dilation_width, groups, group_input_channels,
839     group_output_channels, groups * group_input_channels, groups * group_output_channels, filter.data(), bias.data(),
840     output_min, output_max,
841     /*flags=*/0, nullptr, &op);
842   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
843 
844   if (status == xnn_status_unsupported_hardware) {
845     GTEST_SKIP();
846   }
847 
848   ASSERT_EQ(xnn_status_success, status);
849   ASSERT_NE(nullptr, op);
850   ASSERT_EQ(
851     xnn_status_success, xnn_setup_convolution2d_nhwc_f32(
852                           op, batch_size, input_height, input_width, input.data(), operator_output.data(),
853                           /*threadpool=*/nullptr));
854 
855   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
856 
857   // Call subgraph API.
858   xnn_subgraph_t subgraph = nullptr;
859   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
860   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
861 
862   uint32_t input_id = XNN_INVALID_NODE_ID;
863   ASSERT_EQ(
864     xnn_status_success, xnn_define_tensor_value(
865                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr,
866                           /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
867   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
868 
869   uint32_t filter_id = XNN_INVALID_NODE_ID;
870   ASSERT_EQ(
871     xnn_status_success, xnn_define_tensor_value(
872                           subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(),
873                           /*external_id=*/1, /*flags=*/0, &filter_id));
874 
875   uint32_t bias_id = XNN_INVALID_NODE_ID;
876   ASSERT_EQ(
877     xnn_status_success, xnn_define_tensor_value(
878                           subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(),
879                           /*external_id=*/2, /*flags=*/0, &bias_id));
880 
881   uint32_t output_id = XNN_INVALID_NODE_ID;
882   ASSERT_EQ(
883     xnn_status_success, xnn_define_tensor_value(
884                           subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr,
885                           /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
886   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
887   ASSERT_EQ(
888     xnn_status_success,
889     xnn_define_convolution_2d(
890       subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height,
891       kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, groups,
892       group_input_channels, group_output_channels, output_min, output_max, input_id, filter_id, bias_id, output_id,
893       /*flags=*/0));
894 
895   xnn_runtime_t runtime = nullptr;
896   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
897   ASSERT_NE(nullptr, runtime);
898   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
899   std::array<xnn_external_value, 2> external = {
900     xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
901   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
902   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
903 
904   // Check outputs match.
905   for (size_t i = 0; i < operator_output.size(); i++) {
906     ASSERT_EQ(subgraph_output[i], operator_output[i]);
907   }
908 }
909 }  // namespace xnnpack
910