xref: /aosp_15_r20/external/XNNPACK/test/vmulcaddc-microkernel-tester.h (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #pragma once
7 
8 #include <gtest/gtest.h>
9 
10 #include <algorithm>
11 #include <cassert>
12 #include <cstddef>
13 #include <cstdlib>
14 #include <functional>
15 #include <random>
16 #include <vector>
17 
18 #include <fp16.h>
19 
20 #include <xnnpack.h>
21 #include <xnnpack/aligned-allocator.h>
22 #include <xnnpack/pack.h>
23 #include <xnnpack/microfnptr.h>
24 #include <xnnpack/microparams-init.h>
25 
26 
27 class VMulCAddCMicrokernelTester {
28  public:
channel_tile(size_t channel_tile)29   inline VMulCAddCMicrokernelTester& channel_tile(size_t channel_tile) {
30     this->channel_tile_ = channel_tile;
31     return *this;
32   }
33 
channel_tile()34   inline size_t channel_tile() const {
35     return this->channel_tile_;
36   }
37 
channels(size_t channels)38   inline VMulCAddCMicrokernelTester& channels(size_t channels) {
39     assert(channels != 0);
40     this->channels_ = channels;
41     return *this;
42   }
43 
channels()44   inline size_t channels() const {
45     return this->channels_;
46   }
47 
packed_channels()48   inline size_t packed_channels() const {
49     return channels() % channel_tile() == 0 ? channels() : (channels() / channel_tile() + 1) * channel_tile();
50   }
51 
rows(size_t rows)52   inline VMulCAddCMicrokernelTester& rows(size_t rows) {
53     assert(rows != 0);
54     this->rows_ = rows;
55     return *this;
56   }
57 
rows()58   inline size_t rows() const {
59     return this->rows_;
60   }
61 
input_stride(size_t input_stride)62   inline VMulCAddCMicrokernelTester& input_stride(size_t input_stride) {
63     this->input_stride_ = input_stride;
64     return *this;
65   }
66 
input_stride()67   inline size_t input_stride() const {
68     return this->input_stride_ == 0 ? channels() : this->input_stride_;
69   }
70 
output_stride(size_t output_stride)71   inline VMulCAddCMicrokernelTester& output_stride(size_t output_stride) {
72     this->output_stride_ = output_stride;
73     return *this;
74   }
75 
output_stride()76   inline size_t output_stride() const {
77     return this->output_stride_ == 0 ? channels() : this->output_stride_;
78   }
79 
inplace(bool inplace)80   inline VMulCAddCMicrokernelTester& inplace(bool inplace) {
81     this->inplace_ = inplace;
82     return *this;
83   }
84 
inplace()85   inline bool inplace() const {
86     return this->inplace_;
87   }
88 
qmin(uint8_t qmin)89   inline VMulCAddCMicrokernelTester& qmin(uint8_t qmin) {
90     this->qmin_ = qmin;
91     return *this;
92   }
93 
qmin()94   inline uint8_t qmin() const {
95     return this->qmin_;
96   }
97 
qmax(uint8_t qmax)98   inline VMulCAddCMicrokernelTester& qmax(uint8_t qmax) {
99     this->qmax_ = qmax;
100     return *this;
101   }
102 
qmax()103   inline uint8_t qmax() const {
104     return this->qmax_;
105   }
106 
iterations(size_t iterations)107   inline VMulCAddCMicrokernelTester& iterations(size_t iterations) {
108     this->iterations_ = iterations;
109     return *this;
110   }
111 
iterations()112   inline size_t iterations() const {
113     return this->iterations_;
114   }
115 
Test(xnn_f16_vmulcaddc_ukernel_function vmulcaddc,xnn_init_f16_minmax_params_fn init_params)116   void Test(xnn_f16_vmulcaddc_ukernel_function vmulcaddc, xnn_init_f16_minmax_params_fn init_params) const {
117     std::random_device random_device;
118     auto rng = std::mt19937(random_device());
119     std::uniform_real_distribution<float> f32dist;
120 
121     if (inplace()) {
122       ASSERT_EQ(input_stride(), output_stride());
123     }
124 
125     std::vector<uint16_t> x((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
126     std::vector<uint16_t> scale(channels());
127     std::vector<uint16_t> bias(channels());
128     std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_w(packed_channels() * 2);
129     std::vector<uint16_t> y((rows() - 1) * output_stride() + channels() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
130     std::vector<float> y_ref(rows() * channels());
131 
132     for (size_t iteration = 0; iteration < iterations(); iteration++) {
133       std::generate(scale.begin(), scale.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
134       std::generate(bias.begin(), bias.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
135       std::generate(x.begin(), x.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
136       if (inplace()) {
137         std::copy(x.cbegin(), x.cend(), y.begin());
138       } else {
139         std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
140       }
141       const uint16_t* x_data = inplace() ? y.data() : x.data();
142 
143       std::fill(packed_w.begin(), packed_w.end(), UINT16_C(0x7E00) /* NaN */);
144       xnn_pack_f16_vmulcaddc_w(channels(), channel_tile(),
145         scale.data(), bias.data(), packed_w.data(), nullptr);
146 
147       // Compute reference results.
148       for (size_t i = 0; i < rows(); i++) {
149         for (size_t j = 0; j < channels(); j++) {
150           y_ref[i * channels() + j] = fp16_ieee_to_fp32_value(x_data[i * input_stride() + j]) * fp16_ieee_to_fp32_value(scale[j]) + fp16_ieee_to_fp32_value(bias[j]);
151         }
152       }
153       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
154       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
155       const float accumulated_range = accumulated_max - accumulated_min;
156       const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())));
157       const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin())));
158 
159       for (float& y_value : y_ref) {
160         y_value = std::max(std::min(y_value, y_max), y_min);
161       }
162 
163       // Prepare parameters.
164       xnn_f16_minmax_params params;
165       init_params(&params, fp16_ieee_from_fp32_value(y_min), fp16_ieee_from_fp32_value(y_max));
166 
167       // Call optimized micro-kernel.
168       vmulcaddc(rows(), channels() * sizeof(uint16_t),
169         x_data, input_stride() * sizeof(uint16_t),
170         packed_w.data(),
171         y.data(), output_stride() * sizeof(uint16_t),
172         &params);
173 
174       // Verify results.
175       for (size_t i = 0; i < rows(); i++) {
176         for (size_t j = 0; j < channels(); j++) {
177           ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i * output_stride() + j]), y_ref[i * channels() + j], std::max(1.0e-4f, std::abs(y_ref[i * channels() + j]) * 1.0e-2f))
178             << "at pixel " << i << " / " << rows()
179             << ", channel = " << j << " / " << channels();
180         }
181       }
182     }
183   }
184 
Test(xnn_f32_vmulcaddc_ukernel_function vmulcaddc,xnn_init_f32_minmax_params_fn init_params)185   void Test(xnn_f32_vmulcaddc_ukernel_function vmulcaddc, xnn_init_f32_minmax_params_fn init_params) const {
186     std::random_device random_device;
187     auto rng = std::mt19937(random_device());
188     std::uniform_real_distribution<float> f32dist;
189 
190     if (inplace()) {
191       ASSERT_EQ(input_stride(), output_stride());
192     }
193 
194     std::vector<float> x((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
195     std::vector<float> scale(channels());
196     std::vector<float> bias(channels());
197     std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_channels() * 2);
198     std::vector<float> y((rows() - 1) * output_stride() + channels() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
199     std::vector<float> y_ref(rows() * channels());
200     for (size_t iteration = 0; iteration < iterations(); iteration++) {
201       std::generate(scale.begin(), scale.end(), [&]() { return f32dist(rng); });
202       std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
203       std::generate(x.begin(), x.end(), [&]() { return f32dist(rng); });
204       if (inplace()) {
205         std::copy(x.cbegin(), x.cend(), y.begin());
206       } else {
207         std::fill(y.begin(), y.end(), nanf(""));
208       }
209       const float* x_data = inplace() ? y.data() : x.data();
210 
211       std::fill(packed_w.begin(), packed_w.end(), nanf(""));
212       xnn_pack_f32_vmulcaddc_w(channels(), channel_tile(),
213         scale.data(), bias.data(), packed_w.data(), nullptr);
214 
215       // Compute reference results.
216       for (size_t i = 0; i < rows(); i++) {
217         for (size_t j = 0; j < channels(); j++) {
218           y_ref[i * channels() + j] = x_data[i * input_stride() + j] * scale[j] + bias[j];
219         }
220       }
221       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
222       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
223       const float accumulated_range = accumulated_max - accumulated_min;
224       const float y_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
225       const float y_min = accumulated_min + accumulated_range / 255.0f * float(qmin());
226       for (float& y_value : y_ref) {
227         y_value = std::max<float>(std::min<float>(y_value, y_max), y_min);
228       }
229 
230       // Prepare parameters.
231       xnn_f32_minmax_params params;
232       init_params(&params, y_min, y_max);
233 
234       // Call optimized micro-kernel.
235       vmulcaddc(rows(), channels() * sizeof(float),
236         x_data, input_stride() * sizeof(float),
237         packed_w.data(),
238         y.data(), output_stride() * sizeof(float),
239         &params);
240 
241       // Verify results.
242       for (size_t i = 0; i < rows(); i++) {
243         for (size_t j = 0; j < channels(); j++) {
244           ASSERT_NEAR(y[i * output_stride() + j], y_ref[i * channels() + j], std::abs(y_ref[i * channels() + j]) * 1.0e-6f)
245             << "at pixel " << i << " / " << rows()
246             << ", channel = " << j << " / " << channels();
247         }
248       }
249     }
250   }
251 
252  private:
253   size_t channel_tile_{1};
254   size_t channels_{1};
255   size_t rows_{1};
256   size_t input_stride_{0};
257   size_t output_stride_{0};
258   bool inplace_{false};
259   uint8_t qmin_{0};
260   uint8_t qmax_{255};
261   size_t iterations_{15};
262 };
263