1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
16 #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
17
18 #include <cassert>
19 #include <cstddef>
20 #include <cstring>
21 #include <memory>
22 #include <new>
23 #include <tuple>
24 #include <type_traits>
25 #include <utility>
26
27 #include "absl/base/config.h"
28 #include "absl/memory/memory.h"
29 #include "absl/meta/type_traits.h"
30 #include "absl/utility/utility.h"
31
32 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
33 #include <sanitizer/asan_interface.h>
34 #endif
35
36 #ifdef ABSL_HAVE_MEMORY_SANITIZER
37 #include <sanitizer/msan_interface.h>
38 #endif
39
40 namespace absl {
41 ABSL_NAMESPACE_BEGIN
42 namespace container_internal {
43
44 template <size_t Alignment>
45 struct alignas(Alignment) AlignedType {};
46
47 // Allocates at least n bytes aligned to the specified alignment.
48 // Alignment must be a power of 2. It must be positive.
49 //
50 // Note that many allocators don't honor alignment requirements above certain
51 // threshold (usually either alignof(std::max_align_t) or alignof(void*)).
52 // Allocate() doesn't apply alignment corrections. If the underlying allocator
53 // returns insufficiently alignment pointer, that's what you are going to get.
54 template <size_t Alignment, class Alloc>
Allocate(Alloc * alloc,size_t n)55 void* Allocate(Alloc* alloc, size_t n) {
56 static_assert(Alignment > 0, "");
57 assert(n && "n must be positive");
58 using M = AlignedType<Alignment>;
59 using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
60 using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
61 // On macOS, "mem_alloc" is a #define with one argument defined in
62 // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it
63 // with the "foo(bar)" syntax.
64 A my_mem_alloc(*alloc);
65 void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
66 assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
67 "allocator does not respect alignment");
68 return p;
69 }
70
71 // Returns true if the destruction of the value with given Allocator will be
72 // trivial.
73 template <class Allocator, class ValueType>
IsDestructionTrivial()74 constexpr auto IsDestructionTrivial() {
75 constexpr bool result =
76 std::is_trivially_destructible<ValueType>::value &&
77 std::is_same<typename absl::allocator_traits<
78 Allocator>::template rebind_alloc<char>,
79 std::allocator<char>>::value;
80 return std::integral_constant<bool, result>();
81 }
82
83 // The pointer must have been previously obtained by calling
84 // Allocate<Alignment>(alloc, n).
85 template <size_t Alignment, class Alloc>
Deallocate(Alloc * alloc,void * p,size_t n)86 void Deallocate(Alloc* alloc, void* p, size_t n) {
87 static_assert(Alignment > 0, "");
88 assert(n && "n must be positive");
89 using M = AlignedType<Alignment>;
90 using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
91 using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
92 // On macOS, "mem_alloc" is a #define with one argument defined in
93 // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it
94 // with the "foo(bar)" syntax.
95 A my_mem_alloc(*alloc);
96 AT::deallocate(my_mem_alloc, static_cast<M*>(p),
97 (n + sizeof(M) - 1) / sizeof(M));
98 }
99
100 namespace memory_internal {
101
102 // Constructs T into uninitialized storage pointed by `ptr` using the args
103 // specified in the tuple.
104 template <class Alloc, class T, class Tuple, size_t... I>
ConstructFromTupleImpl(Alloc * alloc,T * ptr,Tuple && t,absl::index_sequence<I...>)105 void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
106 absl::index_sequence<I...>) {
107 absl::allocator_traits<Alloc>::construct(
108 *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
109 }
110
111 template <class T, class F>
112 struct WithConstructedImplF {
113 template <class... Args>
decltypeWithConstructedImplF114 decltype(std::declval<F>()(std::declval<T>())) operator()(
115 Args&&... args) const {
116 return std::forward<F>(f)(T(std::forward<Args>(args)...));
117 }
118 F&& f;
119 };
120
121 template <class T, class Tuple, size_t... Is, class F>
decltype(std::declval<F> ()(std::declval<T> ()))122 decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
123 Tuple&& t, absl::index_sequence<Is...>, F&& f) {
124 return WithConstructedImplF<T, F>{std::forward<F>(f)}(
125 std::get<Is>(std::forward<Tuple>(t))...);
126 }
127
128 template <class T, size_t... Is>
129 auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
130 -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
131 return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
132 }
133
134 // Returns a tuple of references to the elements of the input tuple. T must be a
135 // tuple.
136 template <class T>
137 auto TupleRef(T&& t) -> decltype(TupleRefImpl(
138 std::forward<T>(t),
139 absl::make_index_sequence<
140 std::tuple_size<typename std::decay<T>::type>::value>())) {
141 return TupleRefImpl(
142 std::forward<T>(t),
143 absl::make_index_sequence<
144 std::tuple_size<typename std::decay<T>::type>::value>());
145 }
146
147 template <class F, class K, class V>
decltype(std::declval<F> ()(std::declval<const K &> (),std::piecewise_construct,std::declval<std::tuple<K>> (),std::declval<V> ()))148 decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
149 std::declval<std::tuple<K>>(), std::declval<V>()))
150 DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
151 const auto& key = std::get<0>(p.first);
152 return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
153 std::move(p.second));
154 }
155
156 } // namespace memory_internal
157
158 // Constructs T into uninitialized storage pointed by `ptr` using the args
159 // specified in the tuple.
160 template <class Alloc, class T, class Tuple>
ConstructFromTuple(Alloc * alloc,T * ptr,Tuple && t)161 void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
162 memory_internal::ConstructFromTupleImpl(
163 alloc, ptr, std::forward<Tuple>(t),
164 absl::make_index_sequence<
165 std::tuple_size<typename std::decay<Tuple>::type>::value>());
166 }
167
168 // Constructs T using the args specified in the tuple and calls F with the
169 // constructed value.
170 template <class T, class Tuple, class F>
decltype(std::declval<F> ()(std::declval<T> ()))171 decltype(std::declval<F>()(std::declval<T>())) WithConstructed(Tuple&& t,
172 F&& f) {
173 return memory_internal::WithConstructedImpl<T>(
174 std::forward<Tuple>(t),
175 absl::make_index_sequence<
176 std::tuple_size<typename std::decay<Tuple>::type>::value>(),
177 std::forward<F>(f));
178 }
179
180 // Given arguments of an std::pair's constructor, PairArgs() returns a pair of
181 // tuples with references to the passed arguments. The tuples contain
182 // constructor arguments for the first and the second elements of the pair.
183 //
184 // The following two snippets are equivalent.
185 //
186 // 1. std::pair<F, S> p(args...);
187 //
188 // 2. auto a = PairArgs(args...);
189 // std::pair<F, S> p(std::piecewise_construct,
190 // std::move(a.first), std::move(a.second));
PairArgs()191 inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
192 template <class F, class S>
PairArgs(F && f,S && s)193 std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
194 return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
195 std::forward_as_tuple(std::forward<S>(s))};
196 }
197 template <class F, class S>
PairArgs(const std::pair<F,S> & p)198 std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
199 const std::pair<F, S>& p) {
200 return PairArgs(p.first, p.second);
201 }
202 template <class F, class S>
PairArgs(std::pair<F,S> && p)203 std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
204 return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
205 }
206 template <class F, class S>
207 auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
208 -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
209 memory_internal::TupleRef(std::forward<S>(s)))) {
210 return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
211 memory_internal::TupleRef(std::forward<S>(s)));
212 }
213
214 // A helper function for implementing apply() in map policies.
215 template <class F, class... Args>
216 auto DecomposePair(F&& f, Args&&... args)
217 -> decltype(memory_internal::DecomposePairImpl(
218 std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
219 return memory_internal::DecomposePairImpl(
220 std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
221 }
222
223 // A helper function for implementing apply() in set policies.
224 template <class F, class Arg>
decltype(std::declval<F> ()(std::declval<const Arg &> (),std::declval<Arg> ()))225 decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
226 DecomposeValue(F&& f, Arg&& arg) {
227 const auto& key = arg;
228 return std::forward<F>(f)(key, std::forward<Arg>(arg));
229 }
230
231 // Helper functions for asan and msan.
SanitizerPoisonMemoryRegion(const void * m,size_t s)232 inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
233 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
234 ASAN_POISON_MEMORY_REGION(m, s);
235 #endif
236 #ifdef ABSL_HAVE_MEMORY_SANITIZER
237 __msan_poison(m, s);
238 #endif
239 (void)m;
240 (void)s;
241 }
242
SanitizerUnpoisonMemoryRegion(const void * m,size_t s)243 inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
244 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
245 ASAN_UNPOISON_MEMORY_REGION(m, s);
246 #endif
247 #ifdef ABSL_HAVE_MEMORY_SANITIZER
248 __msan_unpoison(m, s);
249 #endif
250 (void)m;
251 (void)s;
252 }
253
254 template <typename T>
SanitizerPoisonObject(const T * object)255 inline void SanitizerPoisonObject(const T* object) {
256 SanitizerPoisonMemoryRegion(object, sizeof(T));
257 }
258
259 template <typename T>
SanitizerUnpoisonObject(const T * object)260 inline void SanitizerUnpoisonObject(const T* object) {
261 SanitizerUnpoisonMemoryRegion(object, sizeof(T));
262 }
263
264 namespace memory_internal {
265
266 // If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
267 // OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
268 // offsetof(Pair, second) respectively. Otherwise they are -1.
269 //
270 // The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
271 // type, which is non-portable.
272 template <class Pair, class = std::true_type>
273 struct OffsetOf {
274 static constexpr size_t kFirst = static_cast<size_t>(-1);
275 static constexpr size_t kSecond = static_cast<size_t>(-1);
276 };
277
278 template <class Pair>
279 struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
280 static constexpr size_t kFirst = offsetof(Pair, first);
281 static constexpr size_t kSecond = offsetof(Pair, second);
282 };
283
284 template <class K, class V>
285 struct IsLayoutCompatible {
286 private:
287 struct Pair {
288 K first;
289 V second;
290 };
291
292 // Is P layout-compatible with Pair?
293 template <class P>
294 static constexpr bool LayoutCompatible() {
295 return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
296 alignof(P) == alignof(Pair) &&
297 memory_internal::OffsetOf<P>::kFirst ==
298 memory_internal::OffsetOf<Pair>::kFirst &&
299 memory_internal::OffsetOf<P>::kSecond ==
300 memory_internal::OffsetOf<Pair>::kSecond;
301 }
302
303 public:
304 // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
305 // then it is safe to store them in a union and read from either.
306 static constexpr bool value = std::is_standard_layout<K>() &&
307 std::is_standard_layout<Pair>() &&
308 memory_internal::OffsetOf<Pair>::kFirst == 0 &&
309 LayoutCompatible<std::pair<K, V>>() &&
310 LayoutCompatible<std::pair<const K, V>>();
311 };
312
313 } // namespace memory_internal
314
315 // The internal storage type for key-value containers like flat_hash_map.
316 //
317 // It is convenient for the value_type of a flat_hash_map<K, V> to be
318 // pair<const K, V>; the "const K" prevents accidental modification of the key
319 // when dealing with the reference returned from find() and similar methods.
320 // However, this creates other problems; we want to be able to emplace(K, V)
321 // efficiently with move operations, and similarly be able to move a
322 // pair<K, V> in insert().
323 //
324 // The solution is this union, which aliases the const and non-const versions
325 // of the pair. This also allows flat_hash_map<const K, V> to work, even though
326 // that has the same efficiency issues with move in emplace() and insert() -
327 // but people do it anyway.
328 //
329 // If kMutableKeys is false, only the value member can be accessed.
330 //
331 // If kMutableKeys is true, key can be accessed through all slots while value
332 // and mutable_value must be accessed only via INITIALIZED slots. Slots are
333 // created and destroyed via mutable_value so that the key can be moved later.
334 //
335 // Accessing one of the union fields while the other is active is safe as
336 // long as they are layout-compatible, which is guaranteed by the definition of
337 // kMutableKeys. For C++11, the relevant section of the standard is
338 // https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19)
339 template <class K, class V>
340 union map_slot_type {
341 map_slot_type() {}
342 ~map_slot_type() = delete;
343 using value_type = std::pair<const K, V>;
344 using mutable_value_type =
345 std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;
346
347 value_type value;
348 mutable_value_type mutable_value;
349 absl::remove_const_t<K> key;
350 };
351
352 template <class K, class V>
353 struct map_slot_policy {
354 using slot_type = map_slot_type<K, V>;
355 using value_type = std::pair<const K, V>;
356 using mutable_value_type =
357 std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;
358
359 private:
360 static void emplace(slot_type* slot) {
361 // The construction of union doesn't do anything at runtime but it allows us
362 // to access its members without violating aliasing rules.
363 new (slot) slot_type;
364 }
365 // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
366 // or the other via slot_type. We are also free to access the key via
367 // slot_type::key in this case.
368 using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>;
369
370 public:
371 static value_type& element(slot_type* slot) { return slot->value; }
372 static const value_type& element(const slot_type* slot) {
373 return slot->value;
374 }
375
376 // When C++17 is available, we can use std::launder to provide mutable
377 // access to the key for use in node handle.
378 #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606
379 static K& mutable_key(slot_type* slot) {
380 // Still check for kMutableKeys so that we can avoid calling std::launder
381 // unless necessary because it can interfere with optimizations.
382 return kMutableKeys::value ? slot->key
383 : *std::launder(const_cast<K*>(
384 std::addressof(slot->value.first)));
385 }
386 #else // !(defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606)
387 static const K& mutable_key(slot_type* slot) { return key(slot); }
388 #endif
389
390 static const K& key(const slot_type* slot) {
391 return kMutableKeys::value ? slot->key : slot->value.first;
392 }
393
394 template <class Allocator, class... Args>
395 static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
396 emplace(slot);
397 if (kMutableKeys::value) {
398 absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
399 std::forward<Args>(args)...);
400 } else {
401 absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
402 std::forward<Args>(args)...);
403 }
404 }
405
406 // Construct this slot by moving from another slot.
407 template <class Allocator>
408 static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
409 emplace(slot);
410 if (kMutableKeys::value) {
411 absl::allocator_traits<Allocator>::construct(
412 *alloc, &slot->mutable_value, std::move(other->mutable_value));
413 } else {
414 absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
415 std::move(other->value));
416 }
417 }
418
419 // Construct this slot by copying from another slot.
420 template <class Allocator>
421 static void construct(Allocator* alloc, slot_type* slot,
422 const slot_type* other) {
423 emplace(slot);
424 absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
425 other->value);
426 }
427
428 template <class Allocator>
429 static auto destroy(Allocator* alloc, slot_type* slot) {
430 if (kMutableKeys::value) {
431 absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
432 } else {
433 absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
434 }
435 return IsDestructionTrivial<Allocator, value_type>();
436 }
437
438 template <class Allocator>
439 static auto transfer(Allocator* alloc, slot_type* new_slot,
440 slot_type* old_slot) {
441 auto is_relocatable =
442 typename absl::is_trivially_relocatable<value_type>::type();
443
444 emplace(new_slot);
445 #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606
446 if (is_relocatable) {
447 // TODO(b/247130232,b/251814870): remove casts after fixing warnings.
448 std::memcpy(static_cast<void*>(std::launder(&new_slot->value)),
449 static_cast<const void*>(&old_slot->value),
450 sizeof(value_type));
451 return is_relocatable;
452 }
453 #endif
454
455 if (kMutableKeys::value) {
456 absl::allocator_traits<Allocator>::construct(
457 *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
458 } else {
459 absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
460 std::move(old_slot->value));
461 }
462 destroy(alloc, old_slot);
463 return is_relocatable;
464 }
465 };
466
467 // Type erased function for computing hash of the slot.
468 using HashSlotFn = size_t (*)(const void* hash_fn, void* slot);
469
470 // Type erased function to apply `Fn` to data inside of the `slot`.
471 // The data is expected to have type `T`.
472 template <class Fn, class T>
473 size_t TypeErasedApplyToSlotFn(const void* fn, void* slot) {
474 const auto* f = static_cast<const Fn*>(fn);
475 return (*f)(*static_cast<const T*>(slot));
476 }
477
478 // Type erased function to apply `Fn` to data inside of the `*slot_ptr`.
479 // The data is expected to have type `T`.
480 template <class Fn, class T>
481 size_t TypeErasedDerefAndApplyToSlotFn(const void* fn, void* slot_ptr) {
482 const auto* f = static_cast<const Fn*>(fn);
483 const T* slot = *static_cast<const T**>(slot_ptr);
484 return (*f)(*slot);
485 }
486
487 } // namespace container_internal
488 ABSL_NAMESPACE_END
489 } // namespace absl
490
491 #endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
492