xref: /aosp_15_r20/external/abseil-cpp/absl/crc/internal/crc.cc (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2022 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // Implementation of CRCs (aka Rabin Fingerprints).
16 // Treats the input as a polynomial with coefficients in Z(2),
17 // and finds the remainder when divided by an irreducible polynomial
18 // of the appropriate length.
19 // It handles all CRC sizes from 8 to 128 bits.
20 // It's somewhat complicated by having separate implementations optimized for
21 // CRC's <=32 bits, <= 64 bits, and <= 128 bits.
22 // The input string is prefixed with a "1" bit, and has "degree" "0" bits
23 // appended to it before the remainder is found.   This ensures that
24 // short strings are scrambled somewhat and that strings consisting
25 // of all nulls have a non-zero CRC.
26 //
27 // Uses the "interleaved word-by-word" method from
28 // "Everything we know about CRC but afraid to forget" by Andrew Kadatch
29 // and Bob Jenkins,
30 // http://crcutil.googlecode.com/files/crc-doc.1.0.pdf
31 //
32 // The idea is to compute kStride CRCs simultaneously, allowing the
33 // processor to more effectively use multiple execution units. Each of
34 // the CRCs is calculated on one word of data followed by kStride - 1
35 // words of zeroes; the CRC starting points are staggered by one word.
36 // Assuming a stride of 4 with data words "ABCDABCDABCD", the first
37 // CRC is over A000A000A, the second over 0B000B000B, and so on.
38 // The CRC of the whole data is then calculated by properly aligning the
39 // CRCs by appending zeroes until the data lengths agree then XORing
40 // the CRCs.
41 
42 #include "absl/crc/internal/crc.h"
43 
44 #include <cstdint>
45 
46 #include "absl/base/internal/endian.h"
47 #include "absl/base/internal/raw_logging.h"
48 #include "absl/base/prefetch.h"
49 #include "absl/crc/internal/crc_internal.h"
50 
51 namespace absl {
52 ABSL_NAMESPACE_BEGIN
53 namespace crc_internal {
54 
55 namespace {
56 
57 // Constants
58 #if defined(__i386__) || defined(__x86_64__)
59 constexpr bool kNeedAlignedLoads = false;
60 #else
61 constexpr bool kNeedAlignedLoads = true;
62 #endif
63 
64 // We express the number of zeroes as a number in base ZEROES_BASE. By
65 // pre-computing the zero extensions for all possible components of such an
66 // expression (numbers in a form a*ZEROES_BASE**b), we can calculate the
67 // resulting extension by multiplying the extensions for individual components
68 // using log_{ZEROES_BASE}(num_zeroes) polynomial multiplications. The tables of
69 // zero extensions contain (ZEROES_BASE - 1) * (log_{ZEROES_BASE}(64)) entries.
70 constexpr int ZEROES_BASE_LG = 4;                   // log_2(ZEROES_BASE)
71 constexpr int ZEROES_BASE = (1 << ZEROES_BASE_LG);  // must be a power of 2
72 
73 constexpr uint32_t kCrc32cPoly = 0x82f63b78;
74 
ReverseBits(uint32_t bits)75 uint32_t ReverseBits(uint32_t bits) {
76   bits = (bits & 0xaaaaaaaau) >> 1 | (bits & 0x55555555u) << 1;
77   bits = (bits & 0xccccccccu) >> 2 | (bits & 0x33333333u) << 2;
78   bits = (bits & 0xf0f0f0f0u) >> 4 | (bits & 0x0f0f0f0fu) << 4;
79   return absl::gbswap_32(bits);
80 }
81 
82 // Polynomial long multiplication mod the polynomial of degree 32.
PolyMultiply(uint32_t * val,uint32_t m,uint32_t poly)83 void PolyMultiply(uint32_t* val, uint32_t m, uint32_t poly) {
84   uint32_t l = *val;
85   uint32_t result = 0;
86   auto onebit = uint32_t{0x80000000u};
87   for (uint32_t one = onebit; one != 0; one >>= 1) {
88     if ((l & one) != 0) {
89       result ^= m;
90     }
91     if (m & 1) {
92       m = (m >> 1) ^ poly;
93     } else {
94       m >>= 1;
95     }
96   }
97   *val = result;
98 }
99 }  // namespace
100 
FillWordTable(uint32_t poly,uint32_t last,int word_size,Uint32By256 * t)101 void CRCImpl::FillWordTable(uint32_t poly, uint32_t last, int word_size,
102                             Uint32By256* t) {
103   for (int j = 0; j != word_size; j++) {  // for each byte of extension....
104     t[j][0] = 0;                          // a zero has no effect
105     for (int i = 128; i != 0; i >>= 1) {  // fill in entries for powers of 2
106       if (j == 0 && i == 128) {
107         t[j][i] = last;  // top bit in last byte is given
108       } else {
109         // each successive power of two is derived from the previous
110         // one, either in this table, or the last table
111         uint32_t pred;
112         if (i == 128) {
113           pred = t[j - 1][1];
114         } else {
115           pred = t[j][i << 1];
116         }
117         // Advance the CRC by one bit (multiply by X, and take remainder
118         // through one step of polynomial long division)
119         if (pred & 1) {
120           t[j][i] = (pred >> 1) ^ poly;
121         } else {
122           t[j][i] = pred >> 1;
123         }
124       }
125     }
126     // CRCs have the property that CRC(a xor b) == CRC(a) xor CRC(b)
127     // so we can make all the tables for non-powers of two by
128     // xoring previously created entries.
129     for (int i = 2; i != 256; i <<= 1) {
130       for (int k = i + 1; k != (i << 1); k++) {
131         t[j][k] = t[j][i] ^ t[j][k - i];
132       }
133     }
134   }
135 }
136 
FillZeroesTable(uint32_t poly,Uint32By256 * t)137 int CRCImpl::FillZeroesTable(uint32_t poly, Uint32By256* t) {
138   uint32_t inc = 1;
139   inc <<= 31;
140 
141   // Extend by one zero bit. We know degree > 1 so (inc & 1) == 0.
142   inc >>= 1;
143 
144   // Now extend by 2, 4, and 8 bits, so now `inc` is extended by one zero byte.
145   for (int i = 0; i < 3; ++i) {
146     PolyMultiply(&inc, inc, poly);
147   }
148 
149   int j = 0;
150   for (uint64_t inc_len = 1; inc_len != 0; inc_len <<= ZEROES_BASE_LG) {
151     // Every entry in the table adds an additional inc_len zeroes.
152     uint32_t v = inc;
153     for (int a = 1; a != ZEROES_BASE; a++) {
154       t[0][j] = v;
155       PolyMultiply(&v, inc, poly);
156       j++;
157     }
158     inc = v;
159   }
160   ABSL_RAW_CHECK(j <= 256, "");
161   return j;
162 }
163 
164 // Internal version of the "constructor".
NewInternal()165 CRCImpl* CRCImpl::NewInternal() {
166   // Find an accelearated implementation first.
167   CRCImpl* result = TryNewCRC32AcceleratedX86ARMCombined();
168 
169   // Fall back to generic implementions if no acceleration is available.
170   if (result == nullptr) {
171     result = new CRC32();
172   }
173 
174   result->InitTables();
175 
176   return result;
177 }
178 
179 //  The 32-bit implementation
180 
InitTables()181 void CRC32::InitTables() {
182   // Compute the table for extending a CRC by one byte.
183   Uint32By256* t = new Uint32By256[4];
184   FillWordTable(kCrc32cPoly, kCrc32cPoly, 1, t);
185   for (int i = 0; i != 256; i++) {
186     this->table0_[i] = t[0][i];
187   }
188 
189   // Construct a table for updating the CRC by 4 bytes data followed by
190   // 12 bytes of zeroes.
191   //
192   // Note: the data word size could be larger than the CRC size; it might
193   // be slightly faster to use a 64-bit data word, but doing so doubles the
194   // table size.
195   uint32_t last = kCrc32cPoly;
196   const size_t size = 12;
197   for (size_t i = 0; i < size; ++i) {
198     last = (last >> 8) ^ this->table0_[last & 0xff];
199   }
200   FillWordTable(kCrc32cPoly, last, 4, t);
201   for (size_t b = 0; b < 4; ++b) {
202     for (int i = 0; i < 256; ++i) {
203       this->table_[b][i] = t[b][i];
204     }
205   }
206 
207   int j = FillZeroesTable(kCrc32cPoly, t);
208   ABSL_RAW_CHECK(j <= static_cast<int>(ABSL_ARRAYSIZE(this->zeroes_)), "");
209   for (int i = 0; i < j; i++) {
210     this->zeroes_[i] = t[0][i];
211   }
212 
213   delete[] t;
214 
215   // Build up tables for _reversing_ the operation of doing CRC operations on
216   // zero bytes.
217 
218   // In C++, extending `crc` by a single zero bit is done by the following:
219   // (A)  bool low_bit_set = (crc & 1);
220   //      crc >>= 1;
221   //      if (low_bit_set) crc ^= kCrc32cPoly;
222   //
223   // In particular note that the high bit of `crc` after this operation will be
224   // set if and only if the low bit of `crc` was set before it.  This means that
225   // no information is lost, and the operation can be reversed, as follows:
226   // (B)  bool high_bit_set = (crc & 0x80000000u);
227   //      if (high_bit_set) crc ^= kCrc32cPoly;
228   //      crc <<= 1;
229   //      if (high_bit_set) crc ^= 1;
230   //
231   // Or, equivalently:
232   // (C)  bool high_bit_set = (crc & 0x80000000u);
233   //      crc <<= 1;
234   //      if (high_bit_set) crc ^= ((kCrc32cPoly << 1) ^ 1);
235   //
236   // The last observation is, if we store our checksums in variable `rcrc`,
237   // with order of the bits reversed, the inverse operation becomes:
238   // (D)  bool low_bit_set = (rcrc & 1);
239   //      rcrc >>= 1;
240   //      if (low_bit_set) rcrc ^= ReverseBits((kCrc32cPoly << 1) ^ 1)
241   //
242   // This is the same algorithm (A) that we started with, only with a different
243   // polynomial bit pattern.  This means that by building up our tables with
244   // this alternate polynomial, we can apply the CRC algorithms to a
245   // bit-reversed CRC checksum to perform inverse zero-extension.
246 
247   const uint32_t kCrc32cUnextendPoly =
248       ReverseBits(static_cast<uint32_t>((kCrc32cPoly << 1) ^ 1));
249   FillWordTable(kCrc32cUnextendPoly, kCrc32cUnextendPoly, 1, &reverse_table0_);
250 
251   j = FillZeroesTable(kCrc32cUnextendPoly, &reverse_zeroes_);
252   ABSL_RAW_CHECK(j <= static_cast<int>(ABSL_ARRAYSIZE(this->reverse_zeroes_)),
253                  "");
254 }
255 
Extend(uint32_t * crc,const void * bytes,size_t length) const256 void CRC32::Extend(uint32_t* crc, const void* bytes, size_t length) const {
257   const uint8_t* p = static_cast<const uint8_t*>(bytes);
258   const uint8_t* e = p + length;
259   uint32_t l = *crc;
260 
261   auto step_one_byte = [this, &p, &l]() {
262     int c = (l & 0xff) ^ *p++;
263     l = this->table0_[c] ^ (l >> 8);
264   };
265 
266   if (kNeedAlignedLoads) {
267     // point x at first 4-byte aligned byte in string. this might be past the
268     // end of the string.
269     const uint8_t* x = RoundUp<4>(p);
270     if (x <= e) {
271       // Process bytes until finished or p is 4-byte aligned
272       while (p != x) {
273         step_one_byte();
274       }
275     }
276   }
277 
278   const size_t kSwathSize = 16;
279   if (static_cast<size_t>(e - p) >= kSwathSize) {
280     // Load one swath of data into the operating buffers.
281     uint32_t buf0 = absl::little_endian::Load32(p) ^ l;
282     uint32_t buf1 = absl::little_endian::Load32(p + 4);
283     uint32_t buf2 = absl::little_endian::Load32(p + 8);
284     uint32_t buf3 = absl::little_endian::Load32(p + 12);
285     p += kSwathSize;
286 
287     // Increment a CRC value by a "swath"; this combines the four bytes
288     // starting at `ptr` and twelve zero bytes, so that four CRCs can be
289     // built incrementally and combined at the end.
290     const auto step_swath = [this](uint32_t crc_in, const std::uint8_t* ptr) {
291       return absl::little_endian::Load32(ptr) ^
292              this->table_[3][crc_in & 0xff] ^
293              this->table_[2][(crc_in >> 8) & 0xff] ^
294              this->table_[1][(crc_in >> 16) & 0xff] ^
295              this->table_[0][crc_in >> 24];
296     };
297 
298     // Run one CRC calculation step over all swaths in one 16-byte stride
299     const auto step_stride = [&]() {
300       buf0 = step_swath(buf0, p);
301       buf1 = step_swath(buf1, p + 4);
302       buf2 = step_swath(buf2, p + 8);
303       buf3 = step_swath(buf3, p + 12);
304       p += 16;
305     };
306 
307     // Process kStride interleaved swaths through the data in parallel.
308     while ((e - p) > kPrefetchHorizon) {
309       PrefetchToLocalCacheNta(
310           reinterpret_cast<const void*>(p + kPrefetchHorizon));
311       // Process 64 bytes at a time
312       step_stride();
313       step_stride();
314       step_stride();
315       step_stride();
316     }
317     while (static_cast<size_t>(e - p) >= kSwathSize) {
318       step_stride();
319     }
320 
321     // Now advance one word at a time as far as possible. This isn't worth
322     // doing if we have word-advance tables.
323     while (static_cast<size_t>(e - p) >= 4) {
324       buf0 = step_swath(buf0, p);
325       uint32_t tmp = buf0;
326       buf0 = buf1;
327       buf1 = buf2;
328       buf2 = buf3;
329       buf3 = tmp;
330       p += 4;
331     }
332 
333     // Combine the results from the different swaths. This is just a CRC
334     // on the data values in the bufX words.
335     auto combine_one_word = [this](uint32_t crc_in, uint32_t w) {
336       w ^= crc_in;
337       for (size_t i = 0; i < 4; ++i) {
338         w = (w >> 8) ^ this->table0_[w & 0xff];
339       }
340       return w;
341     };
342 
343     l = combine_one_word(0, buf0);
344     l = combine_one_word(l, buf1);
345     l = combine_one_word(l, buf2);
346     l = combine_one_word(l, buf3);
347   }
348 
349   // Process the last few bytes
350   while (p != e) {
351     step_one_byte();
352   }
353 
354   *crc = l;
355 }
356 
ExtendByZeroesImpl(uint32_t * crc,size_t length,const uint32_t zeroes_table[256],const uint32_t poly_table[256])357 void CRC32::ExtendByZeroesImpl(uint32_t* crc, size_t length,
358                                const uint32_t zeroes_table[256],
359                                const uint32_t poly_table[256]) {
360   if (length != 0) {
361     uint32_t l = *crc;
362     // For each ZEROES_BASE_LG bits in length
363     // (after the low-order bits have been removed)
364     // we lookup the appropriate polynomial in the zeroes_ array
365     // and do a polynomial long multiplication (mod the CRC polynomial)
366     // to extend the CRC by the appropriate number of bits.
367     for (int i = 0; length != 0;
368          i += ZEROES_BASE - 1, length >>= ZEROES_BASE_LG) {
369       int c = length & (ZEROES_BASE - 1);  // pick next ZEROES_BASE_LG bits
370       if (c != 0) {                        // if they are not zero,
371                                            // multiply by entry in table
372         // Build a table to aid in multiplying 2 bits at a time.
373         // It takes too long to build tables for more bits.
374         uint64_t m = zeroes_table[c + i - 1];
375         m <<= 1;
376         uint64_t m2 = m << 1;
377         uint64_t mtab[4] = {0, m, m2, m2 ^ m};
378 
379         // Do the multiply one byte at a time.
380         uint64_t result = 0;
381         for (int x = 0; x < 32; x += 8) {
382           // The carry-less multiply.
383           result ^= mtab[l & 3] ^ (mtab[(l >> 2) & 3] << 2) ^
384                     (mtab[(l >> 4) & 3] << 4) ^ (mtab[(l >> 6) & 3] << 6);
385           l >>= 8;
386 
387           // Reduce modulo the polynomial
388           result = (result >> 8) ^ poly_table[result & 0xff];
389         }
390         l = static_cast<uint32_t>(result);
391       }
392     }
393     *crc = l;
394   }
395 }
396 
ExtendByZeroes(uint32_t * crc,size_t length) const397 void CRC32::ExtendByZeroes(uint32_t* crc, size_t length) const {
398   return CRC32::ExtendByZeroesImpl(crc, length, zeroes_, table0_);
399 }
400 
UnextendByZeroes(uint32_t * crc,size_t length) const401 void CRC32::UnextendByZeroes(uint32_t* crc, size_t length) const {
402   // See the comment in CRC32::InitTables() for an explanation of the algorithm
403   // below.
404   *crc = ReverseBits(*crc);
405   ExtendByZeroesImpl(crc, length, reverse_zeroes_, reverse_table0_);
406   *crc = ReverseBits(*crc);
407 }
408 
Scramble(uint32_t * crc) const409 void CRC32::Scramble(uint32_t* crc) const {
410   // Rotate by near half the word size plus 1.  See the scramble comment in
411   // crc_internal.h for an explanation.
412   constexpr int scramble_rotate = (32 / 2) + 1;
413   *crc = RotateRight<uint32_t>(static_cast<unsigned int>(*crc + kScrambleLo),
414                                32, scramble_rotate) &
415          MaskOfLength<uint32_t>(32);
416 }
417 
Unscramble(uint32_t * crc) const418 void CRC32::Unscramble(uint32_t* crc) const {
419   constexpr int scramble_rotate = (32 / 2) + 1;
420   uint64_t rotated = RotateRight<uint32_t>(static_cast<unsigned int>(*crc), 32,
421                                            32 - scramble_rotate);
422   *crc = (rotated - kScrambleLo) & MaskOfLength<uint32_t>(32);
423 }
424 
425 // Constructor and destructor for base class CRC.
~CRC()426 CRC::~CRC() {}
CRC()427 CRC::CRC() {}
428 
429 // The "constructor" for a CRC32C with a standard polynomial.
Crc32c()430 CRC* CRC::Crc32c() {
431   static CRC* singleton = CRCImpl::NewInternal();
432   return singleton;
433 }
434 
435 }  // namespace crc_internal
436 ABSL_NAMESPACE_END
437 }  // namespace absl
438