xref: /aosp_15_r20/external/abseil-cpp/absl/crc/internal/crc_internal.h (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2022 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_CRC_INTERNAL_CRC_INTERNAL_H_
16 #define ABSL_CRC_INTERNAL_CRC_INTERNAL_H_
17 
18 #include <cstdint>
19 #include <memory>
20 #include <vector>
21 
22 #include "absl/base/internal/raw_logging.h"
23 #include "absl/crc/internal/crc.h"
24 
25 namespace absl {
26 ABSL_NAMESPACE_BEGIN
27 
28 namespace crc_internal {
29 
30 // Prefetch constants used in some Extend() implementations
31 constexpr int kPrefetchHorizon = ABSL_CACHELINE_SIZE * 4;  // Prefetch this far
32 // Shorter prefetch distance for smaller buffers
33 constexpr int kPrefetchHorizonMedium = ABSL_CACHELINE_SIZE * 1;
34 static_assert(kPrefetchHorizon >= 64, "CRCPrefetchHorizon less than loop len");
35 
36 // We require the Scramble() function:
37 //  - to be reversible (Unscramble() must exist)
38 //  - to be non-linear in the polynomial's Galois field (so the CRC of a
39 //    scrambled CRC is not linearly affected by the scrambled CRC, even if
40 //    using the same polynomial)
41 //  - not to be its own inverse.  Preferably, if X=Scramble^N(X) and N!=0, then
42 //    N is large.
43 //  - to be fast.
44 //  - not to change once defined.
45 // We introduce non-linearity in two ways:
46 //     Addition of a constant.
47 //         - The carries introduce non-linearity; we use bits of an irrational
48 //           (phi) to make it unlikely that we introduce no carries.
49 //     Rotate by a constant number of bits.
50 //         - We use floor(degree/2)+1, which does not divide the degree, and
51 //           splits the bits nearly evenly, which makes it less likely the
52 //           halves will be the same or one will be all zeroes.
53 // We do both things to improve the chances of non-linearity in the face of
54 // bit patterns with low numbers of bits set, while still being fast.
55 // Below is the constant that we add.  The bits are the first 128 bits of the
56 // fractional part of phi, with a 1 ored into the bottom bit to maximize the
57 // cycle length of repeated adds.
58 constexpr uint64_t kScrambleHi = (static_cast<uint64_t>(0x4f1bbcdcU) << 32) |
59                                  static_cast<uint64_t>(0xbfa53e0aU);
60 constexpr uint64_t kScrambleLo = (static_cast<uint64_t>(0xf9ce6030U) << 32) |
61                                  static_cast<uint64_t>(0x2e76e41bU);
62 
63 class CRCImpl : public CRC {  // Implementation of the abstract class CRC
64  public:
65   using Uint32By256 = uint32_t[256];
66 
67   CRCImpl() = default;
68   ~CRCImpl() override = default;
69 
70   // The internal version of CRC::New().
71   static CRCImpl* NewInternal();
72 
73   // Fill in a table for updating a CRC by one word of 'word_size' bytes
74   // [last_lo, last_hi] contains the answer if the last bit in the word
75   // is set.
76   static void FillWordTable(uint32_t poly, uint32_t last, int word_size,
77                             Uint32By256* t);
78 
79   // Build the table for extending by zeroes, returning the number of entries.
80   // For a in {1, 2, ..., ZEROES_BASE-1}, b in {0, 1, 2, 3, ...},
81   // entry j=a-1+(ZEROES_BASE-1)*b
82   // contains a polynomial Pi such that multiplying
83   // a CRC by Pi mod P, where P is the CRC polynomial, is equivalent to
84   // appending a*2**(ZEROES_BASE_LG*b) zero bytes to the original string.
85   static int FillZeroesTable(uint32_t poly, Uint32By256* t);
86 
87   virtual void InitTables() = 0;
88 
89  private:
90   CRCImpl(const CRCImpl&) = delete;
91   CRCImpl& operator=(const CRCImpl&) = delete;
92 };
93 
94 // This is the 32-bit implementation.  It handles all sizes from 8 to 32.
95 class CRC32 : public CRCImpl {
96  public:
97   CRC32() = default;
98   ~CRC32() override = default;
99 
100   void Extend(uint32_t* crc, const void* bytes, size_t length) const override;
101   void ExtendByZeroes(uint32_t* crc, size_t length) const override;
102   void Scramble(uint32_t* crc) const override;
103   void Unscramble(uint32_t* crc) const override;
104   void UnextendByZeroes(uint32_t* crc, size_t length) const override;
105 
106   void InitTables() override;
107 
108  private:
109   // Common implementation guts for ExtendByZeroes and UnextendByZeroes().
110   //
111   // zeroes_table is a table as returned by FillZeroesTable(), containing
112   // polynomials representing CRCs of strings-of-zeros of various lengths,
113   // and which can be combined by polynomial multiplication.  poly_table is
114   // a table of CRC byte extension values.  These tables are determined by
115   // the generator polynomial.
116   //
117   // These will be set to reverse_zeroes_ and reverse_table0_ for Unextend, and
118   // CRC32::zeroes_ and CRC32::table0_ for Extend.
119   static void ExtendByZeroesImpl(uint32_t* crc, size_t length,
120                                  const uint32_t zeroes_table[256],
121                                  const uint32_t poly_table[256]);
122 
123   uint32_t table0_[256];  // table of byte extensions
124   uint32_t zeroes_[256];  // table of zero extensions
125 
126   // table of 4-byte extensions shifted by 12 bytes of zeroes
127   uint32_t table_[4][256];
128 
129   // Reverse lookup tables, using the alternate polynomial used by
130   // UnextendByZeroes().
131   uint32_t reverse_table0_[256];  // table of reverse byte extensions
132   uint32_t reverse_zeroes_[256];  // table of reverse zero extensions
133 
134   CRC32(const CRC32&) = delete;
135   CRC32& operator=(const CRC32&) = delete;
136 };
137 
138 // Helpers
139 
140 // Return a bit mask containing len 1-bits.
141 // Requires 0 < len <= sizeof(T)
142 template <typename T>
MaskOfLength(int len)143 T MaskOfLength(int len) {
144   // shift 2 by len-1 rather than 1 by len because shifts of wordsize
145   // are undefined.
146   return (T(2) << (len - 1)) - 1;
147 }
148 
149 // Rotate low-order "width" bits of "in" right by "r" bits,
150 // setting other bits in word to arbitrary values.
151 template <typename T>
RotateRight(T in,int width,int r)152 T RotateRight(T in, int width, int r) {
153   return (in << (width - r)) | ((in >> r) & MaskOfLength<T>(width - r));
154 }
155 
156 // RoundUp<N>(p) returns the lowest address >= p aligned to an N-byte
157 // boundary.  Requires that N is a power of 2.
158 template <int alignment>
RoundUp(const uint8_t * p)159 const uint8_t* RoundUp(const uint8_t* p) {
160   static_assert((alignment & (alignment - 1)) == 0, "alignment is not 2^n");
161   constexpr uintptr_t mask = alignment - 1;
162   const uintptr_t as_uintptr = reinterpret_cast<uintptr_t>(p);
163   return reinterpret_cast<const uint8_t*>((as_uintptr + mask) & ~mask);
164 }
165 
166 // Return a newly created CRC32AcceleratedX86ARMCombined if we can use Intel's
167 // or ARM's CRC acceleration for a given polynomial.  Return nullptr otherwise.
168 CRCImpl* TryNewCRC32AcceleratedX86ARMCombined();
169 
170 // Return all possible hardware accelerated implementations. For testing only.
171 std::vector<std::unique_ptr<CRCImpl>> NewCRC32AcceleratedX86ARMCombinedAll();
172 
173 }  // namespace crc_internal
174 ABSL_NAMESPACE_END
175 }  // namespace absl
176 
177 #endif  // ABSL_CRC_INTERNAL_CRC_INTERNAL_H_
178